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High-performance dynamic language implementations make heavy use of speculative optimizations to achieve

speeds close to statically compiled languages. These optimizations are typically performed by a just-in-time

compiler that generates code under a set of assumptions about the state of the program and its environment.

In certain cases, a program may execute code compiled under assumptions that are no longer valid. The

implementation must then deoptimize the program on-the-fly; this entails finding semantically equivalent code

that does not rely on invalid assumptions, translating program state to that expected by the target code, and

transferring control. This paper looks at the interaction between optimization and deoptimization, and shows

that reasoning about speculation is surprisingly easy when assumptions are made explicit in the program

representation. This insight is demonstrated on a compiler intermediate representation, named sourir,
modeled after the high-level representation for a dynamic language. Traditional compiler optimizations such

constant folding, dead code elimination, and function inlining are shown to be correct in the presence of

assumptions. Furthermore, the paper establishes the correctness of compiler transformations specific to

deoptimization: namely unrestricted deoptimization, predicate hoisting, and assume composition.
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1 INTRODUCTION
Dynamic languages pose unique challenges to compiler writers. With features such as dynamic

binding, runtime code generation, and generalized reflection, languages such as Java, C#, Python,

JavaScript, R, or Lisp force implementers to postpone code generation until the last possible instant.

The intuition being that just-in-time (JIT) compilation can leverage information about the program

state and its environment, e.g., the value of program inputs or which libraries were loaded, to

generate efficient code and potentially update code on-the-fly.

Many dynamic language compilers support some form of speculative optimization to avoid

generating code for unlikely control-flow paths. In a dynamic language prevalent polymorphism

causes even the simplest code to have non-trivial control flow. Consider the JavaScript snip-

pet in Figure 1 (example from Bebenita, Brandner, Fahndrich, Logozzo, Schulte, Tillmann, and

Venter [2010]). Without optimization one iteration of the loop executes 210 instructions; all

arithmetic operations are dispatched and their results boxed. If the compiler is allowed to make
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for (i=0; i < a.length-1; i++) {
var t=a[i];
a[i]=a[i+1];
a[i+1]=t;

}

Fig. 1. JavaScript rotate function.

the assumption it is operating on integers, the body of the loop

shrinks down to 13 instructions. As another example, most Java

implementations assume that non-final methods are not over-

ridden, and speculating on this fact allows compilers to avoid

emitting dispatch code [Ishizaki, Kawahito, Yasue, Komatsu, and

Nakatani 2000]. Newly loaded classes are monitored, and any

time a method is overridden, the virtual machine invalidates code

that contains devirtualized calls to that method. The validity of

speculations is expressed as a predicate on the program state. If some program action, like loading

a new class, falsifies that predicate, the generated code must be discarded. To undo an assumption,

an implementation must ensure that functions compiled under that assumption are retired. This

entails replacing affected code with a version that does not depend on the invalid predicate and,

if a function currently being executed is found to contain invalid code, that function needs to be

replaced on-the-fly. In such a case, it is necessary to transfer control to a different version of the

function, and in the process, it may be necessary to materialize portions of the state that were

optimized away and perform other recovery actions. In particular, if the invalid function was inlined

into another function, it is necessary to synthesize a new stack frame for the caller. This is referred

to as deoptimization, or on-stack-replacement, and is found in most industrial-strength compilers.

Speculative optimization gives rise to a large and multi-dimensional design space that lies mostly

unexplored. First, compiler writers must decide how to obtain information about program state.

This can be done ahead-of-time by profiling, just-in-time by sampling or instrumenting code. Next,

they must select what facts to record. This can range from information about the program, its class

hierarchy, which packages were loaded, to information about the value of a particular mutable

location in the heap. Finally, they must decide how to efficiently monitor the validity of speculations.

While some points in this space have been explored empirically, existing systems have done it in

an ad hoc manner that is often both language- and implementation-specific, and thus difficult to

apply broadly.

This paper has a focused goal. We aim to demystify the interaction between compiler trans-

formations and deoptimization. When are two versions compiled under different assumptions

equivalent? How should traditional optimizations be adapted when operating on code containing

deoptimization points? In what ways does deoptimization inhibit optimizations? In this work we

give compiler writers the formal tools they need to reason about speculative optimizations. To do

this in a way that is independent of the specific language being targeted and of implementation

details relative to a particular compiler infrastructure, we have designed a high-level compiler

intermediate representation (IR), named sourir, that is adequate for many dynamic languages

without being tied to any one in particular.

Sourir is inspired by our work on RIR, an IR for the R language. A sourir program is made up of

functions, and each function can have multiple versions. We equip the IR with a single instruction,

named assume, specific to speculative optimization. This instruction has the role of describing

what assumptions are being used to perform speculative optimization and what information must

be preserved for deoptimization. It tests if those assumptions hold, and in case they do not, transfers

control to another, less optimized, version of the code. Reifying assumptions in the IR makes the

interaction with compiler transformations explicit and simplifies reasoning. The assume instruction
is more than a branch: when deoptimizing it replaces the current stack frame with a stack frame

that has the variables and values expected by the target version, and, in case the function was

inlined, it synthesizes missing stack frames. Furthermore, unlike a branch, its deoptimization target

is not followed by the compiler during analysis and optimization. The code executed in case of

deoptimization is invisible to the optimizer. This simplifies optimizations and reduces compile
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time as analysis remains local to the version being optimized and the deoptimization metadata is

considered to be a stand-in for the target version.

rot( )
Vnative

. . .

call type = typeof (a)
assume type = NumArray else rot.Vbase.Lt [ ]

Lt branch i < limit Lo Lrt
Lo var t = a[i]

assume t , HL else rot.Vbase.Ls [i = i, j = i + 1]
a[i]← a[i + 1]
a[i + 1]← t
i← i + 1
goto Lt

Lrt . . .

Vbase
. . .

Lt branch i < limit Lo Lrt
Lo call j = add(i, 1)
Ls call t1 = get(a, i)

call t2 = get(a, j)
call t3 = store(a, i, t2)
call t4 = store(a, j, t1)
i← j
goto Lt

Lrt . . .

Fig. 2. Compiled function from Figure 1.

As an example consider the func-

tion from Figure 1. A possible trans-

lation to sourir is shown in Figure 2

(less relevant code elided). Vbase con-

tains the original version. We let the

helper functions get and store imple-

ment JavaScript (JS) array semantics,

and the function add implement JS addi-

tion. Version Vnative contains only prim-

itive sourir instructions. This version is
optimized under the assumption that the

variable a is an array of primitive num-

bers, which is represented by the first as-
sume instruction. Further, JS arrays can
be sparse and contain holes, in which

case access might need to be delegated

to a getter function. For this example we

useHL to denote such a hole. The second
assume instruction reifies the compiler’s

speculation that the array has no holes,

by asserting the predicate t , HL. It also
contains the associated deoptimization

metadata. In case the predicate does not

hold, we deoptimize to a related position

in the base version by recreating the vari-

ables in the target scope. As can be seen

in the second assume, local variables are mapped as [i = i, j = i + 1]; the current value of i is carried
over into the target frame’s i, whereas variable j has to be recomputed.

We prove the correctness of a selection of traditional compiler optimizations in the presence of

speculation; these are constant propagation, unreachable code elimination, and function inlining.

The main challenge for correctness is that the transformations operate on one version in isolation

and therefore only see a subset of all possible control flows. We show how to split the work to prove

correctness between the pass that establishes a version-to-version correspondence and the actual

optimizations. Furthermore we prove the correctness of three optimizations specific to speculation,

namely unrestricted deoptimization, predicate hoisting, and assume composition.

Our work makes several simplifying assumptions. We use the same IR for optimized and un-

optimized code. We ignore the issue of generation of versions: we study optimizations operating

on a program at a certain point of time, on a set of versions created before that time. We do not

model the low-level details of code generation. Correctness of runtime code generation and code

modification within a JIT compiler has been addressed by Myreen [2010]. Sourir is not designed
for implementation, but to give a reasoning model for existing JIT implementations. We do not

intend to implement a new JIT engine. Instead, we evaluated our work by discussing it with JIT

implementers; the V8 team [Chromium 2017] confirmed that intuitions and correctness arguments

could be ported from sourir to their setting.
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2 RELATEDWORK
The SELF virtual machine pioneered dynamic deoptimization [Hölzle, Chambers, and Ungar 1992].

The SELF compiler implemented many optimizations, one of which was aggressive inlining, yet

the language designers wanted to give end users the illusion that they were debugging source

code. They achieved this by replacing optimized code and the corresponding stack frames with

non-optimized code and matching stack frames. When deoptimizing code that had been inlined,

the SELF compiler synthesized stack frames. The HotSpot compiler followed from the work on

SELF by introducing the idea of speculative optimizations [Paleczny, Vick, and Click 2001]. HotSpot

supported very specific assumptions related to the structure of the class hierarchy and instrumented

the class loader to trigger invalidation. When an invalidation occurred affected functions were

rolled forward to a safe point and control was transferred from native code to an interpreter frame.

The Jikes RVM adopted these ideas to avoid compiling uncommon code paths [Fink and Qian 2003].

One drawback of the early work was that deoptimization points were barriers around which

optimizations were not allowed. Odaira and Hiraki [2005] were the first to investigate exception

reordering by hoisting guards. They remarked that checking assumptions early might improve code.

In Soman and Krintz [2006] the optimizer is allowed to update the deoptimization metadata. In

particular they support eliding duplicate variables in the mapping and lazily reconstructing values

when transferring control. This unlocks further optimizations, which were blocked in previous

work. The paper also introduces the idea of being able to transfer control at any point. We support

both the update of metadata and unconstrained deoptimization.

Modern virtual machines have all incorporated some degree of speculation and support deopti-

mization. These include implementations of Java (HotSpot, Jikes RVM), JavaScript (WebKit Core,

Chromium V8, Truffle/JS, Firefox), Ruby (Truffle/Ruby), and R (FastR), among others. Anecdotal

evidence suggests that the representation adopted in this work is representative of the instructions

found in the IR of production VMs: the TurboFan IR from V8 [Chromium 2017] represents assume
with three distinct nodes. First a checkpoint, holding the deoptimization target, marks a stable

point, to where execution can be rolled back. In sourir this corresponds to the original location of

an assume. A framestate node records the layout of, and changes to, the local frame, roughly the

varmap in sourir. Assumption predicates are guarded by conditional deoptimization nodes, such as

deoptimizeIf. Graal [Duboscq, Würthinger, Stadler, Wimmer, Simon, and Mössenböck 2013] also has

an explicit representation for assumptions and associated metadata as guard and framestate nodes
in their high-level IR. In both cases guards are associated with the closest dominating checkpoint.

Lowering deoptimization metadata is described in Duboscq, Würthinger, and Mössenböck [2014];

Schneider and Bolz [2012]. A detailed empirical evaluation of deoptimization appears in Zheng,

Bulej, and Binder [2017]. The implementation of control-flow transfer is not modeled here as it

is not relevant to our results. For one particular implementation, we refer readers to D’Elia and

Demetrescu [2016] which builds on LLVM. Alternatively, Wang, Lin, Blackburn, Norrish, and

Hosking [2015] propose an IR that supports restricted primitives for hot-patching code in a JIT.

There is a rich literature on formalizing compiler optimizations. The CompCert project [Leroy and

Blazy 2008] for example implements many optimizations, and contains detailed proof arguments

for a data-flow optimization used for constant folding that is similar to ours. In fact, sourir is close
to CompCert’s RTL language without versions or assumptions. There are formalizations for tracing

compilers [Dissegna, Logozzo, and Ranzato 2014; Guo and Palsberg 2011], but we are unaware of

any other formalization effort for speculative optimizations in general. Béra, Miranda, Denker, and

Ducasse [2016] present a verifier for a bytecode-to-bytecode optimizer. By symbolically executing

optimized and unoptimized code, they verify that the deoptimization metadata produced by their

optimizer correctly maps the symbolic values of the former to the latter at all deoptimization points.
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3 SOURIR: SPECULATIVE COMPILATION UNDER ASSUMPTIONS
This section introduces our IR and its design principles. We first present the structure of programs

and the assume instruction. Then, Section 3.2 and following explain how sourirmaintains multiple

equivalent versions of the same function, each with a different set of assumptions. This enables

the speculative optimizations presented in Section 4. All concepts introduced in this section are

formalized in Section 5.

3.1 Sourir in a Nutshell

var n = nil
read n
array t[n]
var k = 0

goto L1
L1 branch k < n L2 L3
L2 t[k]← k

k← k + 1
goto L1

L3 drop k
stop

Fig. 3. Example sourir code.

Sourir is an untyped language with lexically scoped mutable

variables and first-class functions. As an example the function

in Figure 3 read queries a number n from the user and initial-

izes an array with values from 0 to n-1. By design, sourir is a
cross between a compiler representation and a high-level lan-

guage. We have equipped it with sufficient expressive power

so that it is possible to write interesting programs in a style

reminiscent of dynamic languages.
1
The only features that

are critical to our result are versions and assumptions. Versions
are the counterpart of dynamically generated code fragments.

Assumptions, represented by the assume instruction, support
dynamic deoptimization of speculatively compiled code. The

syntax of sourir instructions is shown in Figure 4.

Sourir supports defining a local variable, removing a variable from scope, variable assignment,

creating arrays, array assignment, (unstructured) control flow, input and output, function calls and

returns, assumptions, and terminating execution. Control-flow instructions take explicit labels,

which are compiler-generated symbols but we sometimes give themmeaningful names for clarity of

exposition. Literals are integers, booleans, and nil. Together with variables and function references,

they form simple expressions. Finally, an expression is either a simple expression or an operation:

array access, array length, or primitive operation (arithmetic, comparison, and logic operation).

Expressions are not nested—this is common in intermediate representations such as A-normal

form [Sabry and Felleisen 1992]. We do allow bounded nesting in instructions for brevity.

A program P is a set of function declarations. The body of a function is a list of versions indexed

by a version label, where each version is an instruction sequence. The first instruction sequence in

the list (the active version) is executed when the function is called. We use F to range over function

names, V for version labels, and L for instruction labels. An absolute reference to an instruction

of the program is thus a triple F .V .L. Every instruction is labeled, but for brevity we omit unused

labels.

Versionsmodel the speculative optimizations performed by the compiler. The only instruction that

explicitly references versions is assume. It has the form assume e∗ else ξ ˜ξ ∗ with a list of predicates

(e∗) and deoptimization metadata ξ and
˜ξ ∗. When executed, assume evaluates its predicates; if

they hold execution skips to the next instruction. Otherwise, deoptimization occurs according to

the metadata. The format of ξ is F .V .L [x1 = e1, .. , xn = en], which contains a target F .V .L and a

varmap [x1 = e1, .. , xn = en]. To deoptimize, a fresh environment for the target is created according

to the varmap. Each expression ei is evaluated in the old environment and bound to xi in the new

environment. The environment specified by ξ replaces the current one. Deoptimization might also

need to create additional continuations (i.e., activation records), if assume occurs in an inlined

1
An implementation of a sourir interpreter and of the optimizations presented here is available at https://github.com/

reactorlabs/sourir.
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i ::= instructions

| var x = e variable declaration

| drop x drop a variable from scope

| x ← e assignment

| array x[e] array allocation

| array x = [e∗ ] array creation

| x[e1]← e2 array assignment

| branch e L1 L2 conditional branch

| gotoL unconditional branch

| print e print

| read x read

| call x = e(e∗) function call

| return e return

| assume e∗ else ξ ˜ξ ∗ assume instruction

| stop terminate execution

e ::= expression

| se simple expression

| x[se] array access

| length(se) array length

| primop (se∗) primitive operation

se ::= simple expressions

| lit literals

| F function reference

| x variables

lit ::= literals

| . . . ,−1, 0, 1, . . . numbers

| nil | true | false other literals

ξ ::= F .V .L VA target and varmap
˜ξ ::= F .V .L x VA extra continuation
VA ::= [x1 = e1, .. , xn = en] varmap

Fig. 4. The syntax of sourir.

function. In this case multiple
˜ξ of the form F .V .L x [x1 = e1, .. , xn = en] can be appended. Each

one synthesizes a continuation with an environment constructed according to the varmap, a return

target F .V .L, and the name x to hold the returned result—we discuss this situation and inlining

in Section 4.3. The purpose of deoptimization metadata is twofold. First, it provides the necessary

information for jumping to the target version. Second, its presence in the instruction stream allows

the optimizer to keep the mapping between different versions up-to-date.

size(x)
Vo

assume x , nil else size.Vb.L2 [el = 32, x = x]
var l = x[0]
return l ∗ 32

Vb
L1 var el = 32

L2 branch x = nil L3 L4
L3 var l = x[0]

return l ∗ el
L4 return 0

Fig. 5. Speculation on x.

Example. Consider the function size in

Figure 5 which computes the size of a vec-

tor x. In version Vb, x is either nil or an

array with its length stored at index 0. The

optimized version Vo expects that the input
is never nil. Classical compiler optimiza-

tions can leverage this fact: unreachable

code removal prunes the unused branch.

Constant propagation replaces the use of el
with its value and updates the varmap so

that it restores the deleted variable, when

we deoptimize to the base version Vb.
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3.2 Deoptimization Invariants

show(x)
Vo

assume x = 42 else show.Vb.L1 [x = x]
print 42

Vw
assume true else show.Vb.L1 [x = 42]

print x
Vb
L1 print x

Fig. 6. The middle version violates the deoptimization invari-
ant.

A version is the unit of optimization and

deoptimization. Thus we expect that each

function will have one original version

and possibly many optimized versions.

Versions are constructed such that they

preserve two crucial invariants: (1) ver-
sion equivalence and (2) assumption trans-
parency. By the first invariant all versions

of a function are observationally equiv-

alent. The second invariant ensures that

even if the assumption predicates do hold,
deoptimizing to the target should be cor-

rect. Thus one could execute an optimized

version and its base in lockstep; at every

assume the varmap provides a complete mapping from the new version to the base. This simulation

relation between versions is our correctness argument. The transparency invariant allows us to

add assumption predicates without fear of altering program semantics. Consider a function show
in Figure 6 which prints its argument x. Version Vo respects both invariants: any value for x will
result in the same behavior as the base version and deoptimizing is always possible. On the other

hand, Vw, which is equivalent because it will never deoptimize, violates the second invariant: if it

were to deoptimize, the value of x would be set to 42, which is almost always incorrect. We present

a formal treatment of the invariants and the correctness proofs in Section 5.4 and following.

3.3 Creating Fresh Versions

fun( )
V2
L0 assume true else fun.V1.L0 [ ]

var x = 1

L1 assume e else fun.V1.L1 [x = x]
L2 print x + 2

V1
L0 var x = 1

L1 assume e else fun.V0.L1 [g = x]
L2 assume true else fun.V0.L2 [g = x, h = x + 1]

print x + 2
V0
L0 var g = 1

L1 var h = g + 1
L2 print h + 1

Fig. 7. Chained assume instructions: Version 1 was created
from 0, then optimized. Version 2 is a fresh copy of 1.

We expect that versions are chained. A

compiler will create a new version, say V1,
from an existing version V0 by copying

all instructions from the original version

and chaining their deoptimization targets.

The latter is done by updating the target

and varmap of assume instructions such
that all targets refer to V0 at the same la-

bel as the current instruction. As the new

version starts out as a copy, the varmap is

the identity function. For instance, if the

target contains the variables x and y, then
the mapping is [x = x, z = z]. Additional
assume instructions can be added; assume
instructions that bear predicates (i.e., the
predicate list is either empty or just tau-

tologies) can be removed while preserving

equivalence. As an example in Figure 7,

the new version V2 is a copy of V1; the in-
struction at L0 was added, the instruction
at L1 was updated, and the one at L2 was
removed.
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size(x)
Vdup
L1 assume true else size.Vb.L1 [x = x]

var el = 32

L2 assume true else size.Vb.L2 [el = el, x = x]
branch x = nil L5 L6

L5 var l = x[0]
return l ∗ el

L6 return 0

Vb . . .

Fig. 8. A fresh copy of the base version of size.

Updating assume instructions is not
required for correctness. But the idea

with a new version is that it captures a

set of assumptions that can be undone

independently from the previously ex-

isting assumptions. Thus, we want to

be able to undo one version at a time.

In an implementation, versions might,

for example, correspond to optimization

tiers.
2
This approach can lead to a cas-

cade of deoptimizations if an inherited

assumption fails; we discuss this in Sec-

tion 4.6. In the following sections we

use the base version Vb of Figure 5 as our running example. As a first step, we generate the new

version Vdup with two fresh assume instructions shown in Figure 8. Initially the predicates are

true and the assume instructions never fire. Version Vb stays unchanged.

3.4 Injecting Assumptions
We advocate an approach where the compiler—after establishing the correspondence between

two versions with assume instructions—first injects predicates, and then uses those predicates in

optimizations. In contrast, earlier work would apply an unsound optimization and then recover

by adding a guard (see, for example, Duboscq et al. [2013]). While the end result is the same, the

different perspective helps with reasoning about correctness. Assumptions are boolean predicates,

similar to user-provided assertions. For example, to speculate on a branch target, the assumption

is the branch condition or its negation. It is therefore correct for the compiler to expect that the

predicate holds immediately following an assume. Inserting a fresh assume in a function is difficult

in general, as we must determine where to transfer control to or how to reconstruct the target

environment. On the other hand, it is always correct to add a predicate to an existing assume.
Thanks to the assumption transparency invariant it is always safe to deoptimize more often to the

target. For instance, in assume x , nil, x > 10 else . . . the predicate x , nil was narrowed down

to x > 10.

4 OPTIMIZATIONWITH ASSUMPTIONS
In the previous section we introduced our approach for establishing a fresh version of a function

that lends itself to speculative optimizations. Next, we introduce classical compiler optimizations

that are exemplary of our approach. Then we give additional transformations for the assume
in Section 4.4 and following, and conclude with a case study in Section 4.7. All transformations

introduced in this section are proved correct in Section 6.

4.1 Constant Propagation
Consider a simple constant propagation pass that finds constant variables and then updates all

uses. This pass maintains a map from variable names to constant expressions or unknown. The
map is computed for every position in the instruction stream using a data-flow analysis. Following

the approach by Kildall [1973], the analysis has an update function to add and remove constants

to the map. For example analyzing var x = 2, or x← 2 adds the mapping x→ 2. The instruction

2
A common strategy for VMs is to have different kind of optimizing compilers with different compilation speed versus code

quality trade-offs. The more a code fragment is executed, the more powerful optimizations will be applied to it.
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var y = x + 1 adds y→ 3 to the previous map. Finally, drop x removes a mapping. Control-flow

merges rely on a join function for intersecting twomaps; mappings which agree are preserved, while

others are set to unknown. In a second step, expressions that can be evaluated to values are replaced

and unused variables are removed. No additional care needs to be taken to make this pass correct

in the presence of assumptions. This is because in sourir, the expressions needed to reconstruct

environments appear in the varmap of the assume and are thus visible to the constant propagation

pass. Additionally, the pass can update them, for example, in assume true else F.V.L [x = y + z],
the variables y and z are treated the same as in call h = foo(y + z). They can be replaced and will

not artificially keep constant variables alive.

Constant propagation can become speculative. After the instruction assume x = 0 else . . . , we
know that x is 0. Therefore, we can add x← 0 to the state map. This is the only extension required

for speculative constant propagation. As an example, in the case where we speculate on a nil check

. . .

L2 assume x , nil else size.Vb.L2 [el = el, x = x]
branch x = nil L5 L6
. . .

the map is x→ ¬nil after L2. Evaluating the branch condition under this context yields ¬nil == nil,
and a further optimization opportunity presents itself.

4.2 Unreachable Code Elimination

size(x)
Vpruned
L1 assume true else size.Vb.L1 [x = x]

var el = 32

L2 assume x , nil else size.Vb.L2 [el = el, x = x]
var l = x[0]
return l ∗ el

Vb . . .

Fig. 9. A speculation that the argument is not nil eliminated
one of the former branches.

As shown above, an assumption coupled

with constant folding leads to branches

becoming deterministic. Unreachable code

elimination benefits from that. We consider

a two step algorithm: the first pass replaces

branch e L1 L2 with goto L1 if e is a tautol-
ogy and with goto L2 if it is a contradiction.
The second pass removes unreachable in-

structions. In our running example from

Figure 8, we add the predicate x , nil to
the empty assume at L2. Constant propaga-
tion shows that the branch always goes to

L5, and unreachable code elimination removes the dead statement at L6 and branch. This creates

the version shown in Figure 9. Additionally, constant propagation can replace el by 32. By also

replacing its mention in the varmap of the assume at L2, el becomes unused and can be removed

from the optimized version. This yields version Vo in Figure 5 at the top.

4.3 Function Inlining
Function inlining is our most involved optimization, since assume instructions inherited from the

inlinee need to remain correct. The inlining itself is standard. Name mangling is used to separate

the caller and callee environments. As an example Figure 10 shows the inlining of size into a

function main. Naïvely inlining without updating the metadata of the assume at L1 will result in
an incorrect deoptimization, as we would jump to size.Vb.L2 with no way to return to the main
function. Also, main’s part of the environment is discarded in the transfer and permanently lost.

The solution is that we must synthesize a new stack frame. As shown in the figure, the assume at
in the optimized main is thus extended with main.Vb.Lret s [pl = pl, vec = vec].

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 49. Publication date: January 2018.



49:10 Olivier Flückiger, Gabriel Scherer, Ming-Ho Yee, Aviral Goel, Amal Ahmed, and Jan Vitek

main( )
Vinl

array pl = [1, 2, 3, 4]

array vec = [length(pl), pl]
var s = nil
var x = vec
assume x , nil else size.Vb.L2 [el = 32, x = x]

main.Vb.Lret s [pl = pl, vec = vec]
var l = x[0]
s← l ∗ 32
drop l
drop x
goto Lret

Lret print s
stop

Vb
array pl = [1, 2, 3, 4]

array vec = [length(pl), pl]
call s = size(vec)

Lret print s
stop

size(x)
Vo
L1 assume x , nil else size.Vb.L2 [el = 32, x = x]

var l = x[0]
return l ∗ 32

Vb . . .

Fig. 10. An inlining of size into a main.

This creates an additional stack

frame that returns to the base ver-

sion of main, and stores the result

in s with the entire caller portion

of the environment reconstructed.

It is always possible to compute

the continuation, since the origi-

nal call site must have a label and

the scope at this label is known.

Overall, after deoptimization, it ap-

pears as if version Vb of main had

called version Vb of size. Note, we
should not create a continuation

that returns to the optimized ver-

sion of the caller Vinl. If we de-

optimized from the inlined code,

it is precisely because some of its

assumptions are invalid. Multiple

continuations can be appended for

further levels of inlining. The inlin-

ing needs to be applied bottom up:

for the next level of inlining, e.g.,
to inline Vinl into an outer caller,

renamings must also be applied

to the extra continuation frames,

since they refer to local variables

in Vinl.

4.4 Unrestricted Deoptimization
The assume instructions are expensive: they create dependencies on live variables and are barriers

for moving instructions. Hoisting a side-effecting instruction over an assume is invalid, because if
we deoptimize the effect happens twice. Removing a local variable is also not possible if its value

is needed to reconstruct the target environment. Thus it makes sense to insert as few assume
instructions as possible. On the other hand we would like to “deoptimize everywhere”—checking

assumptions in the basic block in which they are used can avoid unnecessary deoptimization—so

there is a tension between speculation and optimization. Reaching an assumemarks a stable state in

the execution of the program that we can fall back to, similar to a transaction. Implementations, like

Duboscq et al. [2013], separate deoptimization points and the associated guards into two separate

instructions, to be able to deoptimize more freely. As long as the effects of instructions performed

since the last deoptimization point are not observable, it is valid to throw away intermediate

results and resume control from there. Effectively, in sourir this corresponds to moving an assume
instruction forward in the instruction stream, while keeping its deoptimization target fixed.

An assume can be moved over another instruction if that instruction:

(1) has no side-effects and is not a call instruction,

(2) does not interfere with the varmap or predicates, and

(3) has the assume as its only predecessor instruction.
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The first condition prevents side-effects from happening twice. The second condition can be enabled

by copying the affected variables at the original assume instruction location (i.e., taking a snapshot

of the required part of the environment).
3
The last condition prevents capturing traces incoming

from other basic blocks where (1) and (2) do not hold for all intermediate instructions since the

original location. This is not the weakest condition, but a reasonable, sufficient one. Let us consider

a modified version of our running example in Figure 11 on the left. Again, we have an assume
before the branch, but would like to place a guard inside one of the branches.

size(x)
Vany
L1 assume true else size.Vb.L1 [x = x]

var el = 32

branch x = nil L6 L5
L5 x← x[0]

return x ∗ el
L6 . . .

Vb . . .

size(x)
Vany

var x0 = x
var el = 32

branch x = nil L6 L5
L5 x← x[0]
L1 assume x = 1 else size.Vb.L1 [x = x0]

return 1 ∗ el
L6 . . .

Vb . . .

Fig. 11. Moving an assume forward in the instruction stream.

There is an interfering instruction at L5 that modifies x. By creating a temporary variable to hold

the value of x at the original assume location we can resolve the interference. Now it is possible

to move the assume inside the branch and then add a predicate on the updated x, as can be seen

on the right side of the figure. Note that the target is unchanged. This approach allows for the

(logical) separation between the deoptimization point and the position where assumption predicates

are introduced. In the transformed example a stable deoptimization point is established at the

beginning of the function by storing the value of x, but then the assumption is checked only in

one branch. The intermediate states are ephemeral and can be safely discarded when deoptimizing.

For example the variable el is not mentioned in the varmap here, we say it is not captured by the

assume. Instead it is recomputed by the original code at the deoptimization target size.Vb.L1. To be

able to deoptimize from any position it is sufficient to have an assume after every side-effecting

instruction, call, and control-flow merge.

4.5 Predicate Hoisting
Moving an assume backwards in the code would require replaying the moved-over instructions in

the case of deoptimization. Hoisting assume true else size.Vb.L2 [el = el, . . .] above var el = 32 is

allowed if the varmap is changed to [el = 32, . . .] to compensate for the lost definition. However

this approach is tricky and does not work for instructions with multiple predecessors as it could

lead to conflicting compensation code. But as a simple alternative to hoisting assume, we can hoist

a predicate from one assume to a previous one. To understand why, let us decompose the approach

in two steps. Given an assume at L1 that dominates a second one at L2, we copy a predicate from the

latter to the former. This is valid since the assumption transparency invariant allows strengthening

predicates. A data-flow analysis can determine if the copied predicate from L1 is available at L2,
in which case it can be removed from the original instruction. In our running example, version

Vpruned in Figure 9 has two assume instructions and one predicate. We can trivially hoist x , nil,

3
In an SSA based IR this step is not necessary for SSA variables, since the captured ones are guaranteed to stay unchanged.
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since there are no interfering instructions. This allows us to discard the assume with the larger

scope. More interestingly, in the case of a loop-invariant assumption, we can hoist predicates out

of the loop.

4.6 Assume Composition
Aswe have argued in Section 3.3, it is beneficial to undo as few assumptions as possible. On the other

hand, deoptimizing an assumption added in an early version cascades through all the later versions.

To be able to remove chained assume instructions, we show that assumptions are composable. If an
assume in version V3 transfers control to a target V2.La that is itself an assumption with V1.Lb as
target, thenwe can combine themetadata to take both steps at once. By the assumption transparency

invariant, the pre- and post-deoptimization states are equivalent: even if the assumptions are not the

same, it is correct to conservatively trigger the second deoptimization. For example, an instruction

assume e else F.V2.La [x = 1] that jumps to assume e′ else F.V0.Lb [y = x] can be combined as

assume e, e′ else F.V0.Lb [y = 1]. This new unified assume skips the intermediate version V2 and
goes to V0 directly. This could be an interesting approach for multi-tier JITs: after the system

stabilizes, the intermediate versions are rarely used and we might want to discard them.

4.7 Case Study
We conclude with an example. In dynamic languages code is often dispatched on runtime types.

If types were known, code could be specialized, resulting in faster code with fewer checks and

branches. Consider implementing a generic binary division function that expects two values and

their type tags:

div(tagx, x, tagy, y)
Vbase
L1 branch tagx , NUM Lslow L2
L2 branch tagy , NUM Lslow L3
L3 branch x = 0 Lerror L4
L4 return y/x
Lslow . . .

No static information is available; the arguments could be any type. Therefore, multiple checks

are needed before the division, for example the slow branch will require even more checks on the

exact value of the type tag. Suppose we have profiling information that indicates we should expect

numbers. We specialize the function by speculatively pruning the branches:

assume tagx = NUM, tagy = NUM else div.Vb.L1 [. . .]
branch x = 0 Lerror L4

L4 return y/x
. . .

In certain cases, sourir’s transformations can make it appear as though checks have been reordered.

Consider a variation of the previous example, where we speculate on x, but not y:

assume tagx = NUM, x , 0 else div.Vb.L1 [. . .]
branch tagy , NUM Lslow L4

L4 return y/x
. . .

In this version, we perform both checks on x first and then the ones on y, whereas in the unoptimized

version they are interleaved. By ruling out an exception early, it is possible to perform the checks
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in a more efficient order. The fully speculated on version contains only the integer division and the

required assumptions.

assume tagx = NUM, tagy = NUM, x , 0 else div.Vb.L1 [. . .]
return y/x

This version has no more branches and is for example a good inlining candidate.

5 SOURIR: SPECULATIVE COMPILATION FORMALIZED
A sourir program contains several functions, each of which can have multiple versions. This high-

level structure is described in Figure 12. The first version is considered the currently active version

and will be picked by a call operation. Each version consists of a stream of labeled instructions. We

use an indentation-based syntax that directly reflects this structure and omit unreferenced labels.

Besides grammatical and scoping validity, we impose some well-formedness requirements to ease

analysis and reasoning.

P ::=

F (x∗ )
V
L i

indentation-based syntax

P ::= F (x∗) : DF , ... program: a list of named functions

DF ::= V : I , ... function definition: a list of versioned instruction streams

I ::= L : i, ... instruction stream with labeled instructions

Fig. 12. Program syntax.

Explicit stop. We expect the last instruction of each version of the main function to be stop.

Single declaration. We forbid having two variable declarations for the same name in a given

instruction stream. This simplifies reasoning by letting us use variable names to unambiguously

track information depending on the declaration site. Different versions have separate scopes and

can have names in common.

Validity of function reference. If a function reference F is used in the program source, we require

that the function F indeed exists in the program.

Scoping discipline. We ask that the source and target of control-flow transitions have the same

set of declared variables to ease determining the lexical environment at any point in the program.

To jump to a label L, one has to drop all the variables (drop x) not in scope at L.

5.1 Operational Semantics: Expressions
In Figure 13 we define the semantics of expressions. The evaluation of an expression e returns a
value v, which may be either a literal lit, a function, or an address a. Arrays are represented by

addresses into memory M , formalized as a mapping from addresses to blocks of values [v1, .. , vn].
To evaluate an expression, one needs to know the current memory, and the lexical environment

E, that is a mapping from variables in the current scope to their values. Evaluation is defined by

a relation M E e → v: under memory M and environment E, e evaluates to v. This definition in

turn relies on a relation E se ⇀ v defining evaluation of simple expressions se, which need not

access arrays. The evaluation rules are standard. We use the notation [[primop]] to denote, for

each primitive operation primop, a partial function on values. Arithmetic operators and arithmetic
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v ::= values

| lit
| F
| a

addr ::= a addresses

M ::= (a → [v1, .. , vn])∗ array memory
E ::= (x→ v)∗ lexical environment

[Literal]

E lit ⇀ lit

[Funref]

E F ⇀ F

[Lookup]

E x ⇀ E(x)

[SimpleExp]

E se ⇀ v
M E se → v

[Primop]

E se1 ⇀ v1 .. E sen ⇀ vn
M E primop (se1, .. , sen) → [[primop]](v1, .. , vn)

[VecLen]

E se ⇀ a M (a) = [v1, .. , vn]
M E length(se ) → n

[VecAccess]

a def
= E(x) M (a) = [v0, .. , vm]

E se ⇀ n 0 ≤ n ≤ m
M E x[se]→ vn

Fig. 13. Evaluation M E e → v of expressions and E se ⇀ v of simple expressions.

comparison operators are only defined when their arguments are numbers. Equality and inequality

are defined for all values. The relation M E e → v, when seen as a function from M , E, e to v, is
partial: it is not defined on all inputs. For example, there is no v such that the relationM E x[se]→ v
holds if E(x) is not an address a, if a is not bound in M , if se does not reduce to a number n, or if n
is out of bounds.

5.2 Operational Semantics: Instructions and Programs
We define a small-step, labeled operational semantics by defining a notion of machine state, or

configuration, that represents the dynamic state of a program being executed, and a reduction

relation, a transition relation between configurations, that specifies the execution of a single

instruction. A configuration is a six-component tuple ⟨P I LK∗ M E⟩ described in Figure 14. Call

continuations K are tuples of the form ⟨I L x E⟩, storing the information needed to correctly return

to a caller function. On a call call x = e(e1, .. , en), the continuation pushed on the stack contains

the current instruction stream I (to be restored on return), the label L of the next instruction after

the call (the return label), the variable x to name the returned result, and the lexical environment E.
For the details, see the reduction rules for call and return in Figure 16.

Our reduction relation C
Aτ
−→ C ′ specifies that executing the next instruction of C may result

in the configuration C ′. The action Aτ indicates whether this reduction is observable: it is either

the silent action, traditionally written τ , an input/output action read lit or print lit, or stop. We

write C
T
−→∗ C ′ when there are zero or more steps from C to C ′. The reduction trace T is a

list of non-silent actions, collected in the order in which they appeared. For example, if we have

C1

read 1

−→ C2

τ
−→ C3

print 2
−→ C4, then we have C1

read 1 print 2
−→∗ C4. Actions are defined in Figure 15, and

the full reduction relation is given in Figure 16.

Most reduction rules read the current instruction I (L), perform an operation, and advance to the

next label in the stream. The shorthand (L+1) refers to the next label. The read lit and print lit
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C ::= ⟨P I LK∗ M E⟩
configuration

*.........
,

P running program

I current instruction stream

L next instruction label

K∗ ::= (K1, .. ,Kn) call stack

M array memory
E lexical environment

K ::= ⟨I L x E⟩
call continuation

*....
,

I code of the calling function

L return label

x return variable

E lexical environment at the call site

Fig. 14. Abstract machine state.

A ::= I/O action

| print lit
| read lit
| stop

Aτ ::=

| A
| τ silent label

T ::= action trace

| (empty trace)

| A
| Aτ
| T A
| T Aτ

[Refl]

C −→∗ C

[SilentCons]

C
T
−→∗ C ′ C ′

τ
−→ C ′′

C
T
−→∗ C ′′

[ActionCons]

C
T
−→∗ C ′ C ′

A
−→ C ′′

C
T A
−→∗ C ′′

Fig. 15. Actions and traces.

actions represent observable input and output operations. They are emitted by Read and Print

in Figure 16. In particular, the action read lit on the read x transition may be any literal value.

This is the only reduction rule that is non-deterministic, as an arbitrary value may be passed

by the environment. For all other rules, for a given C, there is at most one Aτ and one C ′ such

that C
Aτ
−→ C ′ holds. In particular, the relation C −→∗ C ′ (with the empty trace), containing only

sequences of silent reductions, is deterministic. The stop reduction emits the stop transition, and

also produces a configuration with an empty instruction sequence ∅; this is a technical device to

ensure that the resulting configuration is stuck—it cannot reduce further. Thanks to the “Explicit

stop” a program with a silent loop (without input/output) has a different trace from a program that

halts.

Given a program P , we define start(P ) as its starting configuration, and reachable(P ) as the set
of configurations reachable from it; they are all the states that may be encountered during a valid

run of P .

[StartConf]

I def
= P (main, active) L

def
= start(I )

start(P ) def
= ⟨P I L ∅ ∅ ∅⟩

reachable(P ) def
= {C | ∃T , start(P )

T
−→∗ C}
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[Decl]

I (L) = var x = e M E e → v

⟨P I L K ∗ M E⟩
τ
−→ ⟨P I (L+1) K ∗ M E[x ← v]⟩

[Drop]

I (L) = drop x

⟨P I L K ∗ M E⟩
τ
−→ ⟨P I (L+1) K ∗ M E\{x }⟩

[Array]

I (L) = array x = [e1, .. , en ] M E e1 → v1 .. M E en → vn
a fresh M′ def= M[a← [v1, .. , vn]]

⟨P I L K ∗ M E⟩
τ
−→ ⟨P I (L+1) K ∗ M′ E[x ← a]⟩

[Update]

I (L) = x ← e x ∈ dom (E) M E e → v

⟨P I L K ∗ M E⟩
τ
−→ ⟨P I (L+1) K ∗ M E[x ← v]⟩

[ArrayUpdate]

I (L) = x[e′]← e a
def
= E(x) M E e′ → n M E e → v

M (a) = [v0, .. , vm] 0 ≤ n ≤ m

M′ def= M[a← [v0, .. , vm]{vn/v }]

⟨P I L K ∗ M E⟩
τ
−→ ⟨P I (L+1) K ∗ M′ E⟩

[Read]

I (L) = read x

⟨P I L K ∗ M E⟩
read lit
−→ ⟨P I (L+1) K ∗ M E[x ← lit]⟩

[Print]

I (L) = print e M E e → lit

⟨P I L K ∗ M E⟩
print lit
−→ ⟨P I (L+1) K ∗ M E⟩

[BranchT]

I (L) = branch e L1 L2 M E e → true

⟨P I L K ∗ M E⟩
τ
−→ ⟨P I L1 K ∗ M E⟩

[BranchF]

I (L) = branch e L1 L2 M E e → false

⟨P I L K ∗ M E⟩
τ
−→ ⟨P I L2 K ∗ M E⟩

[Goto]

I (L) = goto L′

⟨P I L K ∗ M E⟩
τ
−→ ⟨P I L′ K ∗ M E⟩

[Stop]

I (L) = stop

⟨P I L K ∗ M E⟩
stop
−→ ⟨P ∅ L K ∗ M E⟩

[Call]

I (L) = call x = e(e1, .. , en )
M E e → F

P (F ) = F (x1, .. , xn ) : DF I ′ def= P (F , active)

L′ def= start(I ′) M E [x1 = e1, .. , xn = en]⇝ E′

⟨P I L K ∗ M E⟩
τ
−→ ⟨P I ′ L′ (K ∗, ⟨I (L+1) x E⟩) M E′⟩

[Return]

I (L) = return e M E e → v

⟨P I L (K ∗, ⟨I ′ L′ x E′⟩) M E⟩
τ
−→ ⟨P I ′ L′ K ∗ M E′[x ← v]⟩

[AssumePass]

I (L) = assume e∗ else ξ ˜ξ ∗ ∀m, M E em → true

⟨P I L K ∗ M E⟩
τ
−→ ⟨P I (L+1) K ∗ M E⟩

[AssumeDeopt]

I (L) = assume e∗ else ξ ˜ξ ∗ ¬(∀m, M E em → true)

⟨P I L K ∗ M E⟩
τ
−→ deoptimize(⟨P I L K ∗ M E⟩, ξ , ˜ξ ∗)

[DeoptimizeConf]

M E VA⇝ E′ I ′ def= P (F ′, V ′)
∀q ∈ 1, .., r,

˜ξq = Fq .Vq .Lq xq VAq

M E VAq ⇝ Eq Iq
def
= P (Fq, Vq ) Kq

def
= ⟨Iq Lq xq Eq⟩

deoptimize(⟨P I L K ∗ M E⟩, F ′.V ′.L′ VA, ˜ξ1, .. , ˜ξr )
def
= ⟨P I ′ L′ (K ∗, K1, .. , Kr ) M E′⟩

[EvalEnv]

M E e1 → v1 .. M E en → vn
M E [x1 = e1, .. , xn = en]⇝ [x1 → v1, .. , xn → vn]

Fig. 16. Reduction relation C
τ
−→ C ′ for sourir IR.
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5.3 Equivalence of Configurations: Bisimulation
We use the standard proof technique of weak bisimulation to prove equivalence between con-

figurations. The idea is to define, for each program transformation we want to prove correct, a

correspondence relation R between configurations over the source program and configurations

over the transformed program. We show that related configurations will behave in the same way:

they have the same observable behavior (they can perform the same input/output actions, or both

terminate), and reducing them results in configurations that are themselves related. Two programs

are equivalent if their starting configurations are related.

Definition 5.1 (Weak Bisimulation). Given two programs P1 and P2 and a relation R between

the configurations of P1 and of P2, we say that R is a weak simulation if for any related states

(C1,C2) ∈ R and any reduction C1

Aτ
−→ C ′

1
over P1, there exists a reduction C2

Aτ
−→∗ C ′

2
over P2 such

that (C ′
1
,C ′

2
) are themselves related by R. Reduction over P2 is allowed to take zero, one, or several

steps, but not to change the trace: the extra steps may only be silent transitions. In other words,

the diagram on the left below can always be completed into the diagram on the right.

C1 C ′
1

C2

R

Aτ C1 C ′
1

C2 C ′
2

R

Aτ

R

∗
Aτ

We say that R is a weak bisimulation if it is a weak simulation and the symmetric relation R−1

also is—a reduction from C2 can be matched by C1. Finally, we say that two configurations are

weakly bisimilar if there exists a weak bisimulation R that relates them.

In the rest of this document we may omit the adjective weak, but it is always implied. The follow-

ing result is standard, and essential to compose the correctness proof of subsequent transformation

passes.

Lemma 5.2 (Transitivity). If R12 is a weak bisimulation between P1 and P2, and R23 is a weak

bisimulation between P2 and P3, then the composed relation R13

def
= (R12;R23) is a weak bisimulation

between P1 and P3.

Definition 5.3 (Version bisimilarity). Let V1, V2 be two versions of a function F in a program

P , and let I1
def
= P (F ,V1) and I2

def
= P (F ,V2). We say that V1 and V2 are (weakly) bisimilar if

⟨P I1 start(I1) K∗ M E⟩ and ⟨P I2 start(I2) K∗ M E⟩ are weakly bisimilar for all K∗, M , E.

Definition 5.4 (Program equivalence). We say that P1 and P2 are equivalent if start(P1) and start(P2)
are weakly bisimilar.

5.4 Deoptimization Invariants
We can now give a formal definition of our two invariants from Section 3.2:

Version Equivalence Any two versions (V1,V2) of a function F are bisimilar as defined in 5.3.

Assumption Transparency For any configuration C at an assume e∗ else ξ ˜ξ ∗, C is bisimilar

to deoptimize(C, ξ , ˜ξ ∗), as defined in Figure 16, DeoptimizeConf.
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5.5 Creating Fresh Versions and Injecting Assumptions
Definition 5.5. We say that the configuration C is is over the location F .V .L when it is of the form

⟨P P (F ,V ) LK∗ M E⟩, where P (F ,V ) denotes the instruction stream at version V of function F in

program P . We write C[F .V .L← F ′.V ′.L′] for the configuration ⟨P P (F ′,V ′) L′K∗ M E⟩.

More generally, we use the notation C[X ← Y ] to replace various components of C. For example,

C[P1 ← P2] updates the program component of C; if only the versions change between two

locations F .V .L and F .V ′.L, we may write C[V ← V ′] instead of repeating the locations, etc.

Theorem 5.6. Creating a new copy of the currently active version of a function, possibly adding
new assume instructions (see Section 3.3 and Section 3.4), returns an equivalent program.

Proof. Consider a program P1 with a function F having an active version V1. Creating a new

version, possibly adding assume instructions, results in a program P2 that has all the functions and
versions of P1, plus a new active version V2 of F such that:

• any label L of V1 also exists in V2; the instruction at L in V1 and in V2 are identical, except

for assume instructions that are updated: if L points to assume e∗ else ξ ˜ξ ∗ in V1, then it

points to assume e∗ else F .V1.L Id in V2, where Id is the identity mapping over the lexical

environment at L.
• V2 may contain extra empty assume instructions: for any instruction i at L in V1, V2 may

contain an assume of the form assume true else F .V1.L Id, where Id is the identity mapping

over the lexical environment at L, followed by i at a fresh label L′.

The bisimulation relation. Let us write I1 for the instruction sequence of V1, and I2 for the

instruction sequence of V2 – with extra assume instructions.
For a stack K∗

1
, we say that a stack K∗

2
is a replacement of K∗

1
if is obtained from K∗

1
by replacing

continuation frames of the form ⟨I1 L x E⟩ (which return into V1) by frames of the form ⟨I2 L x E⟩
(which return into V2). Note that this replacement is a device used in the proof and does not

correspond with a modification by any of the reduction rules.

We define a relation R as the smallest relation such that :

(1) For any configuration C1 over P1, R relates C1 to C1[P1 ← P2].
(2) For any configuration C1 over a F .V1.L such that L in V2 is not a newly added assume

instruction, R also relates C1 to C1[P1 ← P2][V1 ← V2].

(3) For any configuration C1 over a F .V1.L such that L in V2 is a newly added assume in-

struction with next label L′, R also relates C1 to both (a) C1[F .V1.L ← F .V2.L] and (b)

C1[F .V1.L← F .V2.L′].
(4) For any related pair (C1,C2) ∈ R, where K

∗
1
is the call stack of C2, for any replacement K∗

2
,

the pair (C1,C2[K
∗
1
← K∗

2
]) is also in R.

The proof proceeds by showing that R is a bisimulation.

Definition: if a related pair (C1,C2) ∈ R comes from the cases (1), (2) or (3) of the definition of R,
we say that it is a base pair. If the pair comes from the case (4), we define its base pair as follows.

A pair (C1,C2) in case (4) is defined from another pair (C1,C ′2) ∈ R, such that the call stack of C2

is a replacement of the stack of C ′
2
. If (C1,C ′2) ∈ R is a base pair, we say that it is the base pair of

(C1,C2). Otherwise, we say that the base pair of (C1,C2) is the base pair of (C1,C ′2).

Bisimulation proof: generalities. To prove that R is a bisimulation, we consider all related pairs

(C1,C2) ∈ R and show that a reduction from C1 can be matched by C2 and conversely.

Without loss of generality, we can also assume that C2 is not a newly added assume instruction
– that the base pair of (C1,C2) is not in the case (3,b) of the definition of R. Indeed, the proof of
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the case (3,b) follows from proof of the case (3,a). In the case (3,b), C2 is a newly added assume

instruction assume true else . . . at label L with next label L′. C2 can only reduce silently into

C ′
2

def
= C2[L ← L′], which is related to C1 by the case (3,a). The empty reduction sequence from

C1 matches this reduction from C2. Conversely, if we assume the result in the case (3,a), then

any reduction of C1 can be matched from C ′
2
, and thus matched from C2 by prepending the silent

reduction C2

τ
−→ C ′

2
to the matching reduction sequence. Finally, if (C1,C2) comes from case (4)

and has a base pair (C1,C ′2) from (3,b), and C2 has label L and next label L′, then the bisimulation

property for (C1,C2) ∈ R comes from the one of (C1,C2[L← L′]) ∈ R by the same reasoning.

Bisimulation proof: easy cases. The easy cases of the proof are the reductions C1

Aτ
−→ C ′

1
where

neither C1 nor C ′1 are over V1, and the reductions C2

Aτ
−→ C ′

2
where neither C2 nor C ′2 are over V2.

For C1

Aτ
−→ C ′

1
, we can define C ′

2
as C ′

1
[P1 ← P2], and we have both C2

Aτ
−→ C ′

2
and (C ′

1
,C ′

2
) ∈ R as

expected. The C2

Aτ
−→ C ′

2
case is symmetric, defining C ′

1
as C ′

2
[P2 ← P1].

Bisimulation proof: harder cases. The harder cases are split in two categories: version-change

reductions (deoptimizations, functions call and returns), and same-version reductions within V1 in

P1 or V2 in P2. We will consider same-version reductions first.

Without loss of generality, we can assume that the pair (C1,C2) ∈ R is a base pair, that is a pair

related by the cases (2) or (3) of the definition of R, but not (4) – the case that changes the call stack

of the configuration. Indeed, if we have a pair (C1,C ′2) ∈ R coming from (4), the only difference

between this pair and its base pair (C1,C2) ∈ R is in the call stack of C2 and C ′
2
. This means that

C2 and C ′
2
have the exact same reduction behavior for non-version-change reductions. As long as

the proof that the related configurations C1 and C2 match each other does not use version-change

reductions (a property that holds for the proofs of the non-version-change cases below), it also

applies to C1 and C ′
2
.

If we have a reduction C2

Aτ
−→ C ′

2
that is not a version-change reduction (deoptimization, call or

return), we prove that it can be matched from C1 by reasoning on whether C2 or C ′2 are assume
instructions, coming from V1 or newly added.

• If none of them are assume instructions, then they are both in the case (2) of the definition of

R, they are equal to C1[V1 ← V2] and C ′
1
[V1 ← V2] respectively, so we have C1

Aτ
−→ C ′

1
and

(C ′
1
,C ′

2
) ∈ R as expected.

• If C2 or C ′2 are assume instructions coming from V1, the same reasoning holds – the problem-

atic case where the assume is C2 and the guards do not pass is not considered here, as we

assumed that the reduction is not a deoptimization.

• If C ′
2
is a newly added assume in V2 at label L with next label L′ (we already eliminated the

case where C2 may be), we know that C2 is an instruction of V2 copied from V1, so (C1,C2) are
in the case (2) of the definition of R and C1 is C1[V2 ← V1]. The reduction from C2 corresponds

to a reduction C1

Aτ
−→ C ′

1
in P1 with C ′

1

def
= C ′

2
[V2 ← V1], and we have (C ′1,C

′
2
) ∈ R by the case

(3,a) of the definition of R.

The reasoning for transitions C1

Aτ
−→ C ′

1
that have to be matched from C2 and are not version-

change transitions (deoptimization, function calls or return) is similar. C2 cannot be a new assume

instruction, so we have C2

Aτ
−→ C ′

2
, and either C ′

2
is not a new assume instruction and matches C1

by case (2) of the definition of R, or it is a new assume instruction and it matches it by the case (3,a).
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Bisimulation proof: final cases. The cases that remain are the hard cases of version-change

reductions: function call, return and deoptimization.

If C1

Aτ
−→ C ′

1
is a deoptimization reduction, then C1 is over a location F .V1.L in P1, and its

instruction is of the form assume e∗ else ξ ˜ξ ∗, and C ′
1
is equal to deoptimize(C1, ξ , ˜ξ

∗). C2 is over the

copied instruction assume e∗ else F .V1.L Id, where Id is the identity mapping. C2 also deoptimizes,

given that the tests give the same results in the same environment, so we have C2

τ
−→ C ′

2
for

C ′
2

def
= deoptimize(C2, F .V .L1 Id, ∅). C ′2 is over F .V1.L, that is the same assume instruction as C1, so

it also deoptimizes, to C ′′
2

def
= deoptimize(C ′

2
, ξ , ˜ξ ∗). We show that C ′

1
and C ′′

2
are related by R:

• If (C1,C2) ∈ R is a base pair, then we know that C1 is C2[V2 ← V1]. In particular, the two

configurations have the same environment, and C ′
2
, which is identical to C2 except it is over

F .V .L1 is thus identical to C1. As a consequence, C ′1 and C
′′
2
, which are obtained from C1 and

C ′
2
by the same deoptimization reduction, are the same configurations, and thus related in R.

• If C1 and C2 are related by the case (4) of the definition of R, the stack of C2 is a replacement

of the stack of C1. The same reasoning as in the previous case shows that the configurations

C ′
1
and C ′′

2
are not identical, but that the stack of C ′′

2
is a replacement of the stack of C ′

1
, and

the configuration are otherwise identical: they are related by the case (4) of the definition of

R.

Conversely, if C2

Aτ
−→ C ′

2
is a deoptimization instruction then, by the same reasoning as in the

proof of matching a deoptimization of C1, we have that C ′2 is identical to C1 (modulo replaced

stacks). This means that the empty reduction sequence from C1 matches the reduction of C2.

If C1

Aτ
−→ C ′

1
is a function call transition

⟨P1 I1 LK∗1 M E⟩
τ
−→ ⟨P1 I ′1 L

′ (K∗, ⟨I1 (L+1) x E⟩) M E′⟩

we know that C2 is on the same call instruction with the same arguments, so it takes a transition

C2

τ
−→ C ′

2
of the form

⟨P2 I2 LK∗2 M E⟩
τ
−→ ⟨P2 I ′2 L

′ (K∗, ⟨I2 (L+1) x E⟩) M E′⟩

The stack of C ′
2
a replacement of the stack of C ′

1
: assuming that K∗

2
is a replacement of K∗

1
, the

difference in the new stack frame is precisely the definition replacing stacks. Also, the new instruc-

tion streams I ′1 and I ′2 are either identical (if the function is not F itself) or equal to I1 and I2
respectively, so we do have (C ′

1
,C ′

2
) ∈ R as expected. Note that this is precisely for this proof case

to work that we needed to introduce the case (4) in the definition of R. The proof of the symmetric

case, matching a function call from C2, is identical.

If C1

Aτ
−→ C ′

1
is a function return transition

⟨P1 I1 L (K∗, ⟨I ′1 L
′ x E′⟩) M E⟩

τ
−→ ⟨P1 I ′1 L

′K∗
1
M E′[x ← v]⟩

then C2

Aτ
−→ C ′

2
is also a function return transition

⟨P2 I2 L (K∗, ⟨I ′2 L
′ x E′⟩) M E⟩

τ
−→ ⟨P2 I ′2 L

′K∗
2
M E′[x ← v]⟩

We have to show that C ′
1
and C ′

2
are related by R. The environment and heap of the two configu-

rations are identical; we have to reason on their instruction sequence and call stacks. We know

that the stack of C2 is a replacement of the stack of C1, which means that K∗
2
a replacement of K∗

1
,

and that either I ′
1
and I ′

2
are identical (both transitions are returning to the same place), or they are

respectively equal to I1 and I2 (the first returns to V1, and the second was replaced with a return to
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V2). In either case, C ′
1
and C ′

2
are related by R. The proof of the symmetric case, matching a function

return from C2, is identical.

We have established that R is a bisimulation.

Finally, we remark that our choice of R also proves that assumption transparency is respected

by the new version. A new assume at label L in V2 is of the form assume true else F .V1.L Id,
with Id the identity environment. Any configuration C over F .V2.L is in relation, by R−1, with
C[F .V2.L ← F .V1.L], which is equal to deoptimize(C, F .V2.L Id, ∅). These two configurations are

related by R−1, and R−1 is a bisimulation, so they are bisimilar. □

Lemma 5.7. Adding a new predicate e′ to an existing assume instruction assume e∗ else ξ ˜ξ ∗ of P1
returns an equivalent program P2.

Proof. This is a consequence of the invariant of assumption transparency. Let RP1 be the bisimi-

larity relation for configurations over P1, and F .V .L be the location of the modified assume. Let us
define the relation R between P1 and P2 by

(C1,C2) ∈ R ⇐⇒ (C1,C2[P2 ← P1]) ∈ RP1

We show that R is a bisimulation.

Consider (C1,C2) ∈ R. If C2 is not over F .V .L, the reductions of C2 (in P2) and C2[P2 ← P1] (in
P1) are identical, and the latter configuration is, by assumption, bisimilar to C1, so it is immediate

that any reduction from C1 can be matched by C2 and conversely.

If C2 is over F .V .L, we can compare its reduction behavior (in P2) with the one of C2[P2 ← P1] (in
P1). The first configuration deoptimizes when one of the e∗, e′ is not true in the environment of C2,

while the second deoptimizes when one of the e∗ is not true – in the same environment. If C2 gives

the same boolean value to both series of test, then the two configurations have the same reduction

behavior, and (C1,C2) match each other by the same reasoning as in the previous paragraph. The

only interesting case is the configurations C2 that pass all the tests in e∗, but fail e′. Let us show
that, even in that case, the reductions of C1 and C2 match each other.

The following diagram will be useful to follow the proof below:

C1 C ′
1

C2 deoptimize(C2, ξ , ˜ξ
∗) C ′′

1

R

Aτ

R R

τ Aτ

Let us first show that the reductions of C2 can be matched by C1. The only possible reduction

from C2, given our assumptions, is C2

τ
−→ deoptimize(C2, ξ , ˜ξ

∗). We claim that the empty reduction

sequence fromC1 matches it, that is, that (C1, deoptimize(C2, ξ , ˜ξ
∗)) ∈ R. By definition ofR, this goal

means that C1 and deoptimize(C2, ξ , ˜ξ
∗)[P2 ← P1] are bisimilar in P1. But the latter configuration is

the same as deoptimize(C2[P2 ← P1], ξ , ˜ξ ∗), which is bisimilar to C2 by the invariant of assumption

transparency, and thus to C1 by transitivity.

Conversely, we show that the reductions of C1 can be matched by C2. Suppose that we have

a reduction C1

Aτ
−→ C ′

1
. We know that deoptimize(C2, ξ , ˜ξ

∗)[P2 ← P1] is bisimilar to C1 (same

reasoning as in the previous paragraph), so there is a matching state C ′′
1
such that

deoptimize(C2, ξ , ˜ξ
∗)[P2 ← P1]

Aτ
−→ C ′′

1
in P1 with (C ′

1
,C ′′

1
) ∈ RP1 . We can transpose this reduction

in P2: we have deoptimize(C2, ξ , ˜ξ
∗)

Aτ
−→ C ′′

1
[P1 ← P2] in P2, and thus C2

Aτ
−→∗ C ′′

1
[P1 ← P2].
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This matches the reduction of C1, given that our assumption (C ′
1
,C ′′

1
) ∈ RP1 exactly means that

(C ′
1
,C ′′

1
[P1 ← P2]) ∈ R. □

6 OPTIMIZATION CORRECTNESS
The proofs of the classical optimizations from Section 4 are easier than the proofs for the deopti-

mization invariants in the previous Section 5.4 (although, as program transformations, they seem

more elaborate). This comes from the fact that the classical optimizations rewrite a version on the

fly, instead of introducing a new version that is related to an older version, and interact little with

deoptimization.

6.1 Constant Propagation
Definition 6.1. Given a program version V , a static environment SE for the label L is a mapping

from a subset of the variables in scope at L to values. A static environment is valid, written SE ⊨ L,
if for any configuration C over L reachable from the starting label of V we have that SE is a subset

of the lexical environment E of C—they agree on all variables on which SE is defined.

Our implementation of constant propagation uses a classic work-queue data-flow algorithm to

compute a valid static environment SE at each label L. It then replaces, in the instruction at label

L, each expression or simple expression that can be evaluated in SE by its value. This constant

propagation is speculative in the sense that assumption predicates of the form x = lit populate the
static environment with the binding x → lit. In general, a richer abstract domain may be used to

store constraints on values rather than just equalities, but this would not change the shape of the

following correctness argument.

Lemma 6.2. For any program version V1, let V2 be the result of constant propagation. V1 and V2 are
bisimilar.

Proof. The relation R to use here for bisimulation is the one that relates each reachable C1

in reachable(P1) to the corresponding state C2

def
= C1[V1 ← V2] in reachable(P2). Consider two

related C1,C2 over the label L, and SE be the valid static environment at L inferred by our constant

propagation algorithm. Reducing the next instruction of C1 and C2 will produce the same result,

given that they only differ by substitutions of subexpressions by values that are valid under the

static environment SE, and thus under their lexical environment E. If C1

Aτ
−→ C ′

1
then C2

Aτ
−→ C ′

2
,

and conversely. □

The restriction of our bisimulation R to reachable configurations introduced is crucial for the

proof to work. Indeed, a configuration that is not reachable may not respect the static environment

SE. Consider the following example, with V1 on the left and V2 on the right.

L1 var x = 1

print x + x
return 3

L1 var x = 1

print 2
return 3

Now consider a pair of configurations at label L1 with the binding x→ 0 in the lexical environ-

ment.

C1

def
= ⟨P P (F ,V1) L1 K∗ M [x→ 0]⟩ C2

def
= ⟨P P (F ,V2) L1 K∗ M [x→ 0]⟩

They would be related by the relation R used by the proof, yet they are not bisimilar: we have

C1

print 0
−→ C ′

1
as the only transition of C1 in V1, and C2

print 2
−→ C ′

2
as the only transition of C2 in V2.
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6.2 Unreachable Code Elimination
Lemma 6.3. Replacing branch true L1 L2 by goto L1 or branch false L1 L2 by goto L2 results in

an equivalent program version.

Lemma 6.4. Removing an unreachable label results in an equivalent program version.

In those two cases the correctness proof is trivial: the simple version-change mapping between

configurations on the two version is clearly a bisimulation. In the first case, this comes from the

case that branch true L1 L2 and goto L1 reduce in the example same way. In the second case,

unreachable configurations are not even considered by the proof.

6.3 Function Inlining
In this section, we assume that the function F has active version Vcallee. If the new version contains

a direct call call res = F (e1, .. , en) to F with return label Lret (the label after the call), our inlining
pass removes the call and instead:

• it declares a fresh mutable return variable var res = nil
• for the formal variables x, .. of F , it defines the argument variables var x1 = se1, .., var xn = sen.
• then it inserts the instruction stream from Vcallee, replacing each instruction return e by the

sequence: res← e; drop x1; ... ; drop xn; goto Lret

Theorem 6.5. The inlining transformation presented in Section 4.3 returns a version equivalent to
the caller version.

Proof. The key idea of the proof is that any lexical environment E in the inlined instruction

stream can be split into two disjoint parts: a lexical environment corresponding to the caller function,

Ecaller, and a lexical environment corresponding to the callee, Ecallee. To build the bisimulation, we

relate the inlined version, on one hand, with the callee on the other hand, when the callee was

called by the called at the inlined call point. This takes two forms:

• If a configuration is currently executing in the callee, and has the caller on the top of the call

stack with the expected return address, we relate it to a configuration in the inlined version

(at the same position in the callee). The lexical environment of the inlined version is exactly

the union of the callee environment (the environment of the configuration) and the caller

environment (found on the call stack).

• If the call stack contains a caller frame above a callee frame, we relate this to a single

frame in the inlined version; again, there is a bidirectional correspondence between inlined

environment and a pair of a caller and callee environment.

To check that this relation is a bisimulation, there are three sorts of interesting cases:

• If a transition is purely within the callee’s code on one side, and within the inlined version of

the callee on the other, it suffices to check that the environment decomposition is preserved.

During the execution of inlinee, Ecaller never changes, given that the instruction coming from

the callee do not have the caller’s variable in scope—and thus cannot mutate them.

• If the transition is a call of the callee from the caller on one side, and the entry into the

declaration of the return variable var res = nil on the other, we step through the silent

transitions that bind the call parameters var x1 = e1, .., var xn = en and get to a state in the

inlined function corresponding to the start label of the callee.

• If the transition is a return e of the callee to the caller on one side, and the entry into the

result assignment res← e on the other, we similarly step through the drop x for each x in

the callee’s environment, and get to related state on the label ret following the function call.

□
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6.4 Unrestricted Deoptimization
Consider a program P1 containing a program fragment consisting of an assume instruction at label

L1, followed by an instruction im at label L2
def
= (L1+1) such that im has a unique successor, is the

unique predecessor of L1, and is not a function call, has no side-effect (read or write), does not

modify the array memory (array write or creation), and does not modify the variables mentioned

in the assume instruction (tests, environment mapping and extra frames).

Under these conditions, we can move the assume instruction at L1 immediately after its successor

instruction im at L2. Let us name P2 the program modified in this way.

Lemma 6.6. Given a program P1, and P2 obtained by permuting an assume instruction L1 after im
at L2 under the conditions above, P1 and P2 are bisimilar.

Proof. The restrictions on when the transformation may take place are specific enough that we

can reason precisely about the structure of reductions around the permuted instructions.

Consider a configurationC1 over the assume instruction at L1 in version P1, andC2

def
= C1[P1 ← P2][L1 ← L2]

the corresponding configuration over L2 in P2.
We assumed that im, the next instruction of C2, has a single successor, so there is only one

possible reduction rule that applies. And im is not an input-output instruction, it must be a silent

action. Hence there is a unique C ′
2
such that C2

Aτ
−→ C ′

2
holds, and furthermore Aτ is τ .

The configurations C1 and C ′
2
are over the same assume instruction. Let E1 and E2 be the lexical

environment of C1 and C ′2 respectively, and E
′
be their common sub-environment that contain only

the variables mentioned in the assume instruction (the test and the environment construction); it

carries the same values in both configurations as we assumed that im does not modify its variables.

If all tests in the assume instruction are true under E′, then C1 and C ′2 silently reduce to the next

instruction; let us call C ′
1
and C ′′

2
the resulting configurations. C ′

1
is over im at L2, so it can take a

unique reduction C ′
1

τ
−→ C ′′

1
; notice that C ′′

1
and C ′′

2
are over the labels (L2+1) in P1 and (L1+1) in

P2, which we assumed to be equal.

If not all tests of the assume are true under E′, then both C1 and C ′2 deoptimize. The deoptimized

configurations are the same:

• their function, version and label are the same: the assume’s deoptimization target

• they have the same call stack: it only depends on the call stack of C1 and the interpretation

of the assume’s extra frames under E′

• they have the same array memory, as we assumed that im does not modify the array memory

• they have the same deoptimized environment: it only depends on E′

Let us call C0 the configuration resulting from either deoptimization transitions.

We establish bisimilarity using the relation R defined as the smallest relation such that:

(1) For any C1 and C2 as above, C1 and C ′
1
are related to C2.

(2) For any C1 and C2 as above such that C1 passes the assume tests (does not deoptimize), both

C ′
2
and C ′′

2
are related to C ′′

1
.

(3) For any C over P1 that is over neither L1 nor L2, C and C[P1 ← P2] are related.

We now prove that R is a bisimulation.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 49. Publication date: January 2018.



Correctness of Speculative Optimizations with Dynamic Deoptimization 49:25

The following diagrams of R are useful to follow the definition above and the proofs below:

L1 : C1 L2 : C ′1 C ′′
1

L2 : C2 L1 : C ′2 C ′′
2

assume im

R

im assume

R R
R

L1 : C1 C0

L2 : C2 L1 : C ′2 C0

deoptimize

R

im

R
deoptimize

Any pair of configurations that are not over either L1 or L2 come from the case (3), so they are

identical and it is immediate that they match each other. The interesting cases are for matching

pairs of configurations over L1 or L2.
In the case where no deoptimization happens, the reductions in P2 are either C2

τ
−→ C ′

2
, where

both configurations are related to C1, or C ′2
τ
−→ C ′′

2
which is matched by C1

τ
−→ C ′

1
. The reductions

in P1 are either C1

τ
−→ C ′

1
, which is matched by C2

τ
−→ C ′

2

τ
−→ C ′′

2
and C ′

2

τ
−→ C ′′

2
, or C ′

1

τ
−→ C ′′

1
,

which are both related to C ′′
2
.

In the case where a deoptimization happens, the only reduction in P1 is C1

τ
−→ C0, which is

matched by C2

τ
−→ C ′

2

τ
−→ C0 and C ′

2

τ
−→ C0. The reductions in P2 are C2

τ
−→ C ′

2
, which are

matched by the empty reduction on C1 and C ′
2

τ
−→ C0 are matched by C1

τ
−→ C0.

Finally, we show preservation of the assumption transparency invariant. We have to establish

the invariant for P2, assuming the invariant for P2. We have to show that C0 and C ′
2
are bisimilar.

C0 is bisimlar to C1 (this is the transparency invariant on P1), and C1 and C ′
2
are bisimilar because

they are related by the bisimulation R. □

6.5 Predicate Hoisting
Hoisting predicates takes a version V1, an expression e, and two labels L1, L2, such that the in-

struction at L1, L2 are both assume instructions and e is a part of the predicate list at L1. The pass
copies e from L1 to L2, if all variables mentioned in e are in scope at L2. If, after this step the e can
be constant folded to true at L1 by the optimization from Section 4.1, then it is removed from L1,
otherwise the whole version stays unchanged.

Lemma 6.7. Let V2 be the result of hoisting e from L1 to L2 in V1. V1 and V2 are bisimilar.

Proof. Copying is bisimilar due to the assumption transparency invariant and to the fact that

the constant-folded version is bisimilar due to Lemma 6.2. □

6.6 Assume Composition
Let V1,V2,V3 be three versions of a function F with instruction streams I1, I2, I3, and L1, L2, L3
labels, such that I1 (L1) = assume e1 else F .V2.L2 VA1 and I2 (L2) = assume e2 else F .V3.L3 VA2.

The composition pass creates a new program P2 from P1 identical but the assume P2 (F .V1.L1) is
replaced by assume e1, e2 else F .V3.L3 VA2 ◦ VA1 where ([x1 = e1, .. , xn = en] ◦ VA) is defined as

[x1 = e1{
VA(y )
y ∀y ∈ VA}, ..,xn = en {

VA(y )
y ∀y ∈ VA}].

Lemma 6.8. Let P2 be the result of composing assume instructions at L1 and L2. P1 and P2 are
bisimilar.

Proof. For C1

τ
−→ C ′

1
, C2

τ
−→ C ′

2
over L1 in P1, P2, we distinguish four cases:

(1) If e1 and e2 both hold, the assume does not deoptimize in P1 and P2 and they behave identically.
(2) If e1 and e2 both fail, the original program deoptimizes twice; the modified P2 only once.

Assuming deoptimizing under the combined varmap M E VA2 ◦ VA1 ⇝ E′′ produces an
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environment equivalent to M E VA1 ⇝ E′ and M E′ VA2 ⇝ E′′ the final configuration is

identical. Since the extra intermediate step is silent, both programs are bisimilar.

(3) If e1 fails and e2 holds, we deoptimize to V3 in P2, but to V2 in P1. As we have shown in case (2)

the deoptimized configuration C ′
2
over L3 is equivalent to a post-deoptimization configuration

of C ′
1
, which, due to assumption transparency is bisimilar to C ′

1
itself.

(4) If e1 holds and e2 fails, we deoptimize to V3 in P2 but not in P1. Again C ′
2
is equivalent to a

post-deoptimization state, which is, transitively, bisimilar to C ′
1
.

Since a well-formed assume has only unique names in the deoptimization metadata, it is simple to

show the assumption in (2) with a substitution lemma. □

7 DISCUSSION
Our formalization of speculative optimizations raises new questions and makes apparent certain

design choices. In this section, we present applications of sourir as well as insights into the design
space for JIT implementations.

7.1 The Cost of Assuming

. . .

Lloop branch z , 0 Lbody Ldone
Lbody call x = mystery( )

var y = x + 13
. . .

assume e else F .V .L [x = x, y = x + 13]
. . .

drop y
goto Lloop

Ldone . . .

Fig. 17. Deoptimization points keep variables alive.
Loop-invariant assumptions should be hoisted, to re-
move assume instructions in loops.

Assumptions restrict optimizations. Obviously,

variables referenced by the deoptimization meta-

data must be kept alive. Consider the following

example in Figure 17, where we have an assume
at the end of a loop. If y is never used in this

version, we can safely remove it, since we have

enough information to synthesize it if needed.

On the other hand, we have no hope of synthesiz-

ing x out of thin air. We cannot reconstruct the

result of a possibly side-effecting call, or func-

tion arguments. This dilemma is similar to when

compiler writers need to decide how much of

the local state is still available when debugging

an optimized binary. Additionally, the assume
instructions restrict code motion in two cases.

First, side-effecting code cannot be moved over an assume. Second, we cannot hoist assume in-
structions over instructions that modify variables mentioned in the metadata. It is not hard to move

assume forward, since data dependencies can be resolved by taking a snapshot of the environment

at the original location. For the reverse effect, we support hoisting the predicate from one assume
to another (see Section 4.5). Moving assume instructions up is tricky and also unnecessary, since in

combination those two primitives allow moving checks to any position. In the above example, if

e is invariant in the loop body and there is an assume before Lloop, the predicate can be hoisted

out of the loop. If the predicate is only relevant for a subset of the instructions after the current

location, it can be moved down as a whole.

7.2 Lazy Deoptimization and Dependencies
There is also a runtime cost to an assume imposed by checking the predicates, which is compounded

if it is inside a loop. Suppose we speculate that the contents of an array remain the same during

the execution of a loop. Such a guard would have to check every single element of the array. This

eager strategy, where we check if the assumption still holds and deoptimize otherwise, is needlessly

wasteful. It would bemore efficient for an external event, such as awrite to the array, to invalidate the
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assumption, a strategy sometimes known as lazy deoptimization. We could implement dependencies

by separating assumptions from runtime checks. Specifically, we let GUARDS[13] = true be the
runtime check, where the global array GUARDS is a collection of all remote assumptions that

can be invalidated by external events, such as an array assignment. In terms of correctness, both

eager and lazy deoptimization are similar; however, we would need to prove correctness of the

dependency mechanism that modifies the global array.

7.3 Jumping Into Optimized Code

stuck( )
Vbase

call debug = debug( )
. . .

Lh branch x < 1000000 Lo Lrt
Lo branch debug Lslow Lfast
Lslow . . .

Lfast . . .

goto Lh
Lrt . . .

Fig. 18. Long running execution is stuck in
poorly optimized code.

continuation(x)
Vopt
Lh branch x < 1000000 Lfast Lrt
Lfast . . .

goto Lh
Lrt . . .

Fig. 19. Using CPS a continuation allows
switching to optimized code from within the
loop.

Most of our discussions concerns transferring control

out of optimized code and into a less optimized version.

We can also consider the inverse transition, where we

jump into more optimized code from a less optimized

version. Consider executing a long running loop in an

unoptimized function, such as in Figure 18. The value

of debug is constant inside the loop, yet we are stuck

inside the long running function and must branch on

each iteration.

A JIT can compile an optimized version that spec-

ulates on debug, but it can only be used on the next

invocation. Ideally we would like to transfer with execu-

tion still in the first invocation, while stuck in the loop;

this is an operation known as hot loop transfer. Specif-
ically, the next time we reach Lo of the unoptimized

code, we want to transfer to an equivalent location in

the optimized version. To do so, continuation-passing

style (CPS) can be used to compile a staged continuation

function from the beginning of the loop where debug
is known to be false. The optimized continuation we

jump into might look like continuation in Figure 19. In

some sense, this is easier than deoptimization because

we strengthen our assumptions instead of weakening

them and all the values needed to construct the state

at the target version are readily available. Another ap-

proach, that should be explored in future work, would

be to support some kind of bidirectional deoptimiza-

tion metadata, such that transfer of control is always

possible in both directions.

7.4 Fine-Grained Deoptimization
Instead of blindly removing all assumptions of a version on deoptimization, it is possible to undo

only failing assumptions while preserving the rest. As shown in the example in Figure 20, if e2 fails
in version Vspec123, we jump to the last version that did not rely on this assumption predicate. By

deoptimizing to version Vspec1, we are forced to also discard assumption e3. However, e1, e3 still
hold, so we would like to preserve optimizations based on those assumptions. Using the technique

mentioned in Section 7.3 we continue executing in a version Lspec13 that reintroduces e3. The
overall effect is that we remove only the invalidated assumption and its optimizations. We are not

aware of an existing implementation that explores such a strategy.
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undo( )
Vspec123
L0 assume e1, e2, e3 else undo.Vspec12.L0 [. . .]

Vspec12
L0 assume e1, e2 else undo.Vspec1.L0 [. . .]

Vspec1
L0 assume e1 else undo.Vbase.L0 [. . .]

Vbase . . .

e1,e2,e3

e1

e1,e2 e1,e3

Fig. 20. Undoing an isolated assumption predicate e2 by re-adding e3.

7.5 Simulating a Tracing JIT
A tracing JIT [Bala, Duesterwald, and Banerjia 2000; Gal, Eich, Shaver, Anderson, Mandelin,

Haghighat, Kaplan, Hoare, Zbarsky, Orendorff, Ruderman, Smith, Reitmaier, Bebenita, Chang, and

Franz 2009] records the sequence of instructions that are executed at runtime, called a trace. Typi-

cally, a trace corresponds to a path through a frequently executed loop. On subsequent runs the trace

is executed instead. The JIT implementation must ensure that execution follows the same path again,

otherwise we must deoptimize out of the trace and into the original version of the program. In this

context Guo and Palsberg [2011] develop a framework for reasoning about optimizations applied to

traces. One of their

. . .

Lloop branch e Lbody Ldone
Lbody x← 0

. . .

goto Lloop
Ldone . . .

Fig. 21. Loop with a dead store to x.

results is that dead store elimination is unsound, be-

cause the trace is only a partial view of the entire

program. For example, a variable x might be assigned

to within a trace, but never used. However, it is un-

sound to remove the assignment, because x might be

used outside the trace. We can simulate their tracing

formalism in sourir. Consider a variant of their run-
ning example shown in Figure 21, a trace of the loop

while e (x ← 0; . . .) embedded in a larger context.

Instead of a runtime that records a sequence of instructions (i.e., a tracing JIT), we expect a

runtime that records which branch targets are taken. For this example, suppose we recorded the

two targets Lbody and Ldone, which means we executed the loop body once and then exited. In

other words, the loop condition e was true the first time we checked it and false the second time.

Therefore we unroll the loop twice and assert e for the first iteration and ¬e for the second iteration
(left). Then we apply unreachable code elimination to get the following result, which resembles a

trace (right):

. . .

assume e else F.Vbase.Lloop [x = x, . . .]
branch e Lbody0 Ldone

Lbody0 x← 0

. . .

assume ¬e else F.Vbase.Lloop [x = x, . . .]
branch e Lbody1 Ldone

Lbody1 x← 0

. . .

goto Lloop
Ldone . . .

. . .

assume e else F.Vbase.Lloop [x = x, . . .]
x← 0

. . .

assume ¬e else F.Vbase.Lloop [x = x, . . .]
. . .
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Say x is not accessed after the store in this optimized version. In sourir, it is obvious why dead

store elimination of xwould be unsound: the deoptimization metadata indicates that x is still needed
when we deoptimize and we can only remove the store if we can replay it then. In this specific

example, a constant propagation pass could update the metadata to materialize the write of 0, only

when deoptimizing at the second assume. But, before the code can be reduced, loop unrolling might

result in intermediate versions that are much larger than the original program. In contrast, tracing

JITs can handle this case without the drastic expansion in code size [Gal et al. 2009], but lose more

information about instructions outside of the trace.

8 CONCLUSIONS
Speculative optimizations are key to just-in-time optimization of dynamic languages. While there

is previous work on formalizations of JITs and on runtime code generation, the formalization of

speculation and deoptimization was unexplored. We formalize correctness of speculative optimiza-

tions by abstracting away orthogonal issues of JIT implementations. We introduce an intermediate

representation for a compiler with explicit assumptions and show how to build correct speculative

optimization passes. We formalize deoptimization invariants between multiple versions of the same

function and show that they enable very simple proofs for standard compiler optimizations, con-

stant folding, unreachable code elimination, and function inlining, in the presence of assumptions.

We also prove correct three optimizations that are specifically dealing with deoptimizations, namely

unrestricted deoptimization, predicate hoisting, and assume composition. Our model of JIT compi-

lation suggests future research directions, such as fine-grained, per-assumption deoptimization

and bidirectional deoptimization metadata.
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