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We say that an imperative data structure is snapshottable or supports snapshots if we can efficiently capture its

current state, and restore a previously captured state to become the current state again. This is useful, for

example, to implement backtracking search processes that update the data structure during search.

Inspired by a data structure proposed in 1978 by Baker, we present a snapshottable store, a bag of mutable

references that supports snapshots. Instead of capturing and restoring an array, we can capture an arbitrary set

of references (of any type) and restore all of them at once. This snapshottable store can be used as a building

block to support snapshots for arbitrary data structures, by simply replacing all mutable references in the

data structure by our store references. We present use-cases of a snapshottable store when implementing

type-checkers and automated theorem provers.

Our implementation is designed to provide a very low overhead over normal references, in the common

case where the capture/restore operations are infrequent. Read and write in store references are essentially as

fast as in plain references in most situations, thanks to a key optimisation we call record elision. In comparison,

the common approach of replacing references by integer indices into a persistent map incurs a logarithmic

overhead on reads and writes, and sophisticated algorithms typically impose much larger constant factors.

The implementation, which is inspired by Baker’s and the OCaml implementation of persistent arrays by

Conchon and Filliâtre, is both fairly short and very hard to understand: it relies on shared mutable state in

subtle ways. We provide a mechanized proof of correctness of its core using the Iris framework for the Coq

proof assistant.

CCS Concepts: • Theory of computation→ Data structures design and analysis; Program verification;
• Software and its engineering→ Functional languages.
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1 Introduction
1.1 Snapshots as a Library
Consider an implementation of the Union-Find data structure offering the following interface:

type 'a node

val node : 'a -> 'a node

val find : 'a node -> 'a node
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val union : ('a -> 'a -> 'a) -> 'a node -> 'a node -> unit

val equal : 'a node -> 'a node -> bool

val get : 'a node -> 'a

A Union-Find graph lets the user incrementally specify an equivalence relation between its nodes,

and efficiently query information about the equivalence classes. In our API, each equivalence class

carries a value at some type 'a. The user can grow the equivalence relation by unifying two nodes

(union), providing a merge function for the carried values. Unification is a destructive operation; it

modifies the nodes in-place. We can ask for a representative in each equivalence class (find), check
if two nodes belong to the same class (equal), and ask for the value carried by the class (get).
A typical implementation would use a data structure such as follows:

type 'a node = 'a data ref
type 'a data =

| Link of 'a node

| Root of { rank: int; v : 'a }

A node is just a mutable reference to some data, which indicates whether it currently is the

representative of its equivalence class, or points to another node closer to the representative. The

rank integer is used to decide who to elect as the new representative when merging two nodes.

Union-Find is a central data structure in several algorithms. For example, it is at the core of ML

type inference, which proceeds by repeated unification between type variables. Union-Find can

also be used to track equalities between type constructors, as introduced in the typing environment

when type-checking Guarded Algebraic Data Types (GADTs) for example.

When using a Union-Find data structure to implement a type system, it is common to need

backtracking, which requires the inference state to be snapshottable. For example:

(1) A single unification between two types during ML type inference translates into several

unifications between type variables, traversing the structure of the two types. If we discover

that the two types are in fact incompatible, we fail with a type error. However, we may want

to revert the unifications that were already performed, so that the error message shown to

the user does not include confusing signs of being halfway through the unification, or so

that the interactive toplevel session can continue in a clean environment.

(2) Production languages unfortunately have to consider backtracking to implement certain less

principled typing rules: try A, and if it fails revert to a clean state and try B instead.

(3) GADT equations are only added to the typing environment in the context of a given match

clause, and must then be rolled back before checking the other clauses.

We have encountered requirements (1) and (2) in the implementation of the OCaml type-checker,

and (1) and (3) in the development of Inferno [Pottier, 2014], a prototype type-inference library

implemented in OCaml that aims to be efficient.

Now a question for the reader: how would you change the Union-Find implementation above to

support snapshots? The API needs to change a bit to let users talk about the whole Union-Find

graph – otherwise, they cannot even ask to go back to a previous version of the graph. The following

would be suitable, while still retaining the imperative flavor of the existing API:

type graph

type 'a node

val node : graph -> 'a -> 'a node

val get : graph -> 'a node -> 'a

val union : graph -> ('a -> 'a -> 'a) -> 'a node -> 'a node -> unit
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val equal : graph -> 'a node -> 'a node -> bool

type snapshot

val capture : graph -> snapshot

val restore : graph -> snapshot -> unit

A first idea to approach our question is to browse the scientific literature for implementations of

Union-Find with backtracking, for example looking at Apostolico, Italiano, Gambosi, and Talamo

[1994]. You would learn that there are algorithms in 𝑂 (log𝑛/log log𝑛) amortized running times,

and then deal with the rewarding but sizeable work of turning a dense 40 pages algorithmic paper

from the 90s into runnable code. (This works because Union-Find is a well-studied problem, you

would be less lucky with the same question on another, less common mutable data structure.)

Unfortunately, we are too lazy to do this. We would like a generic approach to add snapshots to an

imperative data structure, that does not require expert-level data structure knowledge.

There are two standard generic solutions that can be implemented with relatively little effort.

Full copy : take a snapshot by doing a full copy of the Union-Find graph.

This approach performs well in the case where snapshots are rare – in the extreme case

where no snapshots are taken, there is zero overhead. But it can become a performance

disaster when snapshots become more frequent, and the number of nodes modified between

two snapshots is small – you copy all the nodes, but only touch a few of them. In one of our

use-cases using Inferno, this approach makes type-inference 50× slower.

Full persistence : implement the graph on top of a pure, persistent data structure. A standard

approach is to change the type 'a data ref to become just an int index into a persistent

integer map. Implementing capture/restore is then trivial, a snapshot is just the persistent

map itself. See for example the Haskell library disjoint-set. However, this adds a logarithmic

overhead to each access or modification. In Inferno, we observed that this typically makes

type inference about 3× slower, even in cases where no backtracking is used. (Performance

is the reason why we stick to an imperative API instead of providing a functional API where

modification leaves the input state unchanged and returns an updated state.)

We present a new Store library, which provides generic snapshottability while performing well

in all situations. “Snapshots: easy and cheap”. Unlike full persistence, it introduces no overhead

when backtracking is absent or infrequent. Unlike full copy, it performs well when backtracking

sections touch only a small subset of the structure.

Using our library for Union-Find requires changing the datatype definitions as follows:

type 'a node = 'a data Store.Ref.t

type 'a data =

| Link of 'a node

| Root of { rank: int; v : 'a }

The only change here is to replace the standard 'a ref type of OCaml mutable references by the

type 'a Store.Ref.t of store references in our Store library, which supports snapshots. In the

rest of the code, our Union-Find implementation would need to keep a store in its graph value, and

pass this store to the get and set operations on store references. These are trivial changes.

Summary. Our Store library introduces a notion of store, a bag of mutable references that lets you

capture and restore the state of all its references at once. Store can be used to easily make arbitrary

mutable data structures snapshottable, by replacing their mutable pointers by store references.
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1.2 Notions of Persistence
The standard notion of persistence used in the algorithmics literature is one where modification

operations return a different version of the data structure, without modifying the version provided

in input. There are in fact many nuances to persistence, described below.

functional data structures are fully immutable, as is idiomatic in functional programming

languages. (Demaine, Langerman, and Price [2008] call them functional, one may also call

them pure data structures.) They typically rely on sharing immutable substructures between

different versions, and copying the paths from those shared substructures to the root of the

structure.

Functional data structures have the advantage that they are thread-safe by construction: they

can be accessed in parallel without any synchronization.

persistent data structures may be implemented using mutable state; a typical example would

be the Splay-tree data structure that performs imperative rebalancing under the hood. They

may not be thread-safe. In the case of our store, our persistent snapshots are persistent in this

sense, and in particular they are not thread-safe – we cannot support restoring two snapshots

in parallel.

partial persistence is a weaker notion of persistence where only the “last” version of the data

structure may be updated, but read-only queries may be performed on arbitrary versions

of the structure. We could expose this capability for our backtracking stores, but we do not

have a clear use-case that would justify the additional implementation complexity.

confluent persistence is a stronger notion of persistence where two independent instances

of a persistent data structure may be merged together – for example, merging two persistent

sets or maps together. Some persistent data structures cannot offer confluence at a reasonable

cost. We have not implemented confluence for our stores; the user has to plan in advance

and allocate the separate data structures in the same underlying store.

semi-persistence is a weaker notion of persistence where only a linear chain of versions is

maintained at any point in time, rather than a tree of versions in the general case: acting on

a past version invalidates all the versions that are “after” this past version, and we cannot

access them anymore.

Our store provides persistent snapshots and also exposes a semi-persistent API based on

transactions that we describe in Section 4. This brings moderate performance benefits for use-

cases that do not need full persistence; we observed no improvement on some benchmarks,

5%-10% speedups in others, and larger gains for some very specific workloads.

Use cases for persistence and semi-persistence. A semi-persistent approach suffices whenever we

only ever restore ancestors of the current version. This is the case for most backtracking problems.

For example, in a SAT/SMT solver, backtracking (when a conflict is found) goes back to a time

when fewer decisions were made, it never jumps “forward” into a saved search state where more

decisions had been made.

Some search algorithms do not perform a full depth-first search, they explore several positions

in the tree in parallel, iteratively refining the more promising positions, and they may “fork” new

search branches from the same promising position several times. Those require persistent snapshots.

Another trite example is saves in video games, where players can load previous saves to move

forward in game time, or go back to parallel/divergent play histories.

The original persistence use-case of Baker [1978] was the implementation of efficient dynamic

binding in a Lisp interpreter. Efficient Lisp interpreters at the time would have a semi-persistent

store for the dynamic environment, with a stack structure mirrorring the dynamic call stack of

the program – on function return they would “undo” bindings performed within the body of the
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function, to return to the dynamic binding environment of the caller. But this approach does not

work when returning functions as first-class values, as the body of the functions (when called later)

should be evaluated in the dynamic environment where it was defined, whose definitions have

been undone in the meantime. Instead, Baker implemented a persistent store for its environments;

first-class functions would capture a snapshot at their definition site, to be restored at call-time.

1.3 Performance Model
Following Baker [1978], we implement Store as a “journaled” data structure; the current version
of the store is represented in memory just like normal references, but we also keep a record of

past operations to be able to go back to previous versions. If the log of operations between two

snapshots 𝐴 and 𝐵 has size Δ, then the space cost of the log is 𝑂 (Δ), and restoring the state of 𝐴

when we are currently at 𝐵 takes times 𝑂 (Δ).
One may expect the number Δ of operations recorded to be exactly the number of operations

performed between the two snapshots. For Union-Find problems the number of reference updates

remains relatively small, but in general this number of operations may be large, much larger than

the size of the data structure itself. We introduce a key optimization, record elision, where we

record at most one operation per store location updated between two consecutive snapshots. As a

result, our bound Δ is the number of distinct locations modified between the two snapshots, which

could be much smaller than the total number of operations. Record elision does not just improve

asymptotics, it is key to low-overhead implementation of set for store references.

We can benefit from record elision because our interface requires users to be explicit about where

they take snapshots, that is, where the backtracking points are in their programs. Record elision is

not available to the more elegant, more convenient and more functional interface of a persistent

store, which corresponds to taking a snapshot after each update operation.

In the specific case where each snapshot is restored at most once – this is a common property of

backtracking workloads, and enforced by our semi-persistent interface – one can amortize the cost

of snapshot restoration over each operation after the snapshot is taken, so restoring a snapshot

has 𝑂 (1) amortized complexity. This amortization does not work in the general case of persistent

snapshots; for example, one could keep alternating between two snapshots without performing

any operation in between. This bad interaction between persistence and amortized bounds is

a well-known problem in the algorithms literature, typically solved by sophisticated rebuilding
techniques [Chuang, 1994, 1992]. We do not solve it, as our current use-cases do not need it.

When discussing our design choices, we mention constant factors a lot. Imagine that you are

implementing a type checker (with type inference) for your programming language, and suddenly

you realize that an oddball new feature 𝐹 that you want requires backtracking inference decisions,

which you did not need previously. You have to move your type-checker state to different data

structures that support snapshots. You need this new capability only for programs that use feature

𝐹 , but you pay the cost of the data structure all the time.
1
If you are not careful about constant

factors, this implementation change could make your type-checker 2×, 5× or log(𝑛)× slower for

all programs, whether they use your new feature or not. This is not acceptable.

Contributions
We report on the implementation of snapshottable stores, a bag of mutable references that support

efficiently capturing and restoring its state to implement backtracking. This abstraction can be used

to easily add snapshots to complex imperative data structures. The implementation (1) is expressive,

1
You could think of dynamically switching from one data structure to another when feature 𝐹 occurs. This increases

implementation complexity, and you still have the problem of not-too-slow type inference for programs that do use 𝐹 .
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it provides persistent and not just semi-persistent snapshots, (2) is efficient, as demonstrated by

benchmarks, and (3) its core mechanism is formally proved correct.

We claim the following contributions:

(1) The concept of “snapshottability” as a service worth providing in a reusable, generic way as

a small software library. When we looked at existing library ecosystems (in OCaml but also

Haskell, Scala, etc.) we found a few implementations of snapshottable stores in the wild, but

almost always as part of a larger program that uses it exclusively, not as a shared library.

(2) An efficient OCaml implementation of a store with persistent snapshots [Clément and Scherer,

2023]. The implementation, extending the journaled approach of Baker [1978], is short and

subtle. It is heterogeneous, references of different types can be tracked by the same store.

(3) The record elision optimization which is key to an almost-zero overhead on the set operation
on set-heavy workloads. Forms of record elision exist in previous semi-persistent implemen-

tations, but combining persistent snapshots and record elision is challenging and Store is the
first implementation to do so.

(4) A mechanized proof of correctness of persistent snapshots in the presence of record elision,

using the Iris separation logic framework in the Coq proof assistant [Allain, 2024].

(5) An additional API of semi-persistent snapshots, which restricts ourselves to a linear history

of snapshots for further efficiency benefits.

(6) Benchmarks comparing the performance of our implementation with other approaches,

demonstrating that Store performs well on a broad variety of workloads.

2 A Core Store
2.1 Baker’s Version Trees
The starting point of our implementation is Baker’s version trees introduced in Baker [1978]. Baker’s

trick has been reused or rediscovered many times since, mostly in the context of implementing

persistent arrays: homogeneous structures indexed by small integers. O’Neill and Burton [1997]

give a pleasant survey of approaches to persistent arrays. It lists three works that reinvented Baker’s

trick in the late 80s.

In Baker’s work, the programmer can refer to many different persistent versions of a data

structure, but one is the “current version” on which access and update operations operate as usual

in constant time. The “current version” uses its standard representation – for example, the current

version of a Baker array is just an array. Older versions are represented by nodes in a version graph

(in fact a rooted tree), whose root is the current version, and where edges log operations that were

performed. Any older version can be restored by applying a “rerooting” operation on its node (it

becomes the new root of the graph) which reverts all the updates that happened between that older

version and the current version.

Consider the following Store user program:

let s = Store.create () in
let r = Store.Ref.make s 0 in
let snap0 = Store.snapshot s in
let () = Store.Ref.set s r 1 in
let () = Store.restore s snap0 in
let () = Store.Ref.set s r 2

At the point of let r = Store.Ref.make s 0, our version tree (shown in Figure 1a) has a

single node where the reference r has value 0. The mapping {𝑟 ↦→ 0} is not stored within the node

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 248. Publication date: August 2024.
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𝐴 {r ↦→ 0}

(a)

𝐴

𝐵 {r ↦→ 1}

r = 0

(b)

𝐴 {r ↦→ 0}

𝐵

r = 1

(c)

𝐴

𝐵

𝐶 {r ↦→ 2}

r = 1

r = 0

(d)

Fig. 1. Version trees in the example program

𝐴, it describes the current state of the reference 𝑟 in the current state. We place it on 𝐴 to indicate

that 𝐴 is the current root of the version tree, which is also indicated by the darker background.

Calling Store.snapshot s at this point does not change the version tree. The snapshot returned

is basically just a pointer to the current root of the graph, 𝐵.

Calling Store.Ref.set s r 1 creates a second node 𝐵 in the version tree, which describes the

new current state (see Figure 1b). The node 𝐴 now points to 𝐵, with information on how to revert

to 𝐴 if desired – one should restore r to 0.
Calling Store.restore s snap0 reroots the version tree to have root 𝐴 again – 𝐴 was the

current node at the time where snap0 was captured (see Figure 1c). We do this by starting from the

snapshot node 𝐴, updating the current state by using the information stored on the edges. Note

that the edge between 𝐴 and 𝐵 has changed direction (now 𝐵 points to the new current root 𝐴),

and the information on the edge now describes how to restore the state of 𝐵 from the state of 𝐴.

At this point, calling Store.set s r 2 creates a new node 𝐶 from 𝐴, which becomes the new

current root, as shown in Figure 1d.

This representation provides constant-time access to the current state of the store, with the exact

same constant factors as OCaml native references – r can in fact just be a native reference.

A snapshot is just a node in the version tree. Restoring the snapshot means rerooting the tree

so that the snapshot node becomes the new current root – and the current state gets updated

accordingly. We sketch our implementation in Section 2.3. It is linear in the length of the path from

the snapshot node to the current root node. The length of this path is the number of operations

that happened “after” the snapshot node, in a sense that is made precise in the next section.

2.2 A Whiff of Graph Theory
In graph theory, an (undirected) tree is a certain kind of (undirected) graph: a graph that is acyclic

(no cycle in the graph) and connected (all nodes are reachable from each other). In other words, an

undirected tree is an undirected graph where there exists a unique path between all pairs of nodes.

The notion of "tree" that is common in programming corresponds to the notion of rooted tree in
graph theory, a tree with a designated root node. The choice of root uniquely determines a parent
relation that relates 𝐴 to 𝐵 when the parent of 𝐴 is 𝐵. There is at most one parent, and the root is

the only node with no parents. If we look at a given undirected tree 𝑇 , and two different choices of

root𝑀 and 𝑁 , there is a simple relation between the parent relations of the𝑀-rooted and 𝑁 -rooted

trees: all nodes have the same parent in both trees, except on the (unique) path from𝑀 to 𝑁 where

the parent relations are mutual inverses.

Over our version trees, there are two rooted trees (two choices of root) of interest:

(1) The current tree, whose root corresponds to the current state of the structure – 𝐶 at the end

of our example above.
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(2) The historic tree, whose root is the initial node created when the store was created – 𝐴 in our

example. (This is a slight simplification, there is a version tree node before r was created that
we are not showing in the version tree for simplicity.)

We call history of a node the path from this node to the historic root. The complexity of rerooting

from the current tree 𝐴 to a given snapshot tree 𝐵 is exactly the length of the unique path from 𝐴

to 𝐵 in the version tree.

2.3 Implementing Version Trees
We learned of Baker’s trick from Conchon and Filliâtre [2007], which use it to define persistent

arrays, on top of which they build a persistent Union-Find, with OCaml code fairly close to what

we show in this section. The core of Store, described here, has the following API:

type store

val create : unit -> store

module Ref : sig
type 'a t

val make : store -> 'a -> 'a t

val get : store -> 'a t -> 'a

val set : store -> 'a t -> 'a -> unit

end

type snapshot

val capture : store -> snapshot

val restore : store -> snapshot -> unit

The Ref module implements mutable references inside the store. The store must be passed

as argument to all operations on references, and it is an unchecked programming error to use a

reference with a store it does not belong to. The snapshot type represents persistent snapshots of

the state of the store at a given point in time. New snapshots for the current state are created with

capture, and the store state can be later reset to the snapshot state using restore.
The version tree is a graph of mutable nodes, whose value can be Mem to indicate that they are

the current root – the state of this node is stored in memory – or Diff if they log a reference write.

type node = data ref and data = Mem | Diff : 'a Ref.t * 'a * node -> data

If𝐴 has 𝐵 as parent in the current tree, its data must be Diff(r, v,𝐵), where r is a reference and v
is the value of r, in 𝐴.

Finally, the store is just a mutable reference to the current root of the version tree, and a snapshot

remembers which node was the current root when it was captured
2
.

type store = { mutable root : node; } type snapshot = { root : node; }

Easy parts. Creating a new store or taking a snapshot are the obvious things:

let create = { root = ref Mem }

let capture store : snapshot = { root = store.root }

2
In the actual implementation, we also remember the store, in order to fail at runtime if the user tries to use a snapshot

with another store.
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References have the same representation and get operation as standard OCaml references:

module Ref = struct
type 'a t = { mutable value : 'a; }

let make v = { value = v }

let get _s r = r.value

let set s r v = ... (* to be detailed below *)

end

The two difficult operations are Ref.set, which grows the version tree with a new node, and

restore, which reroots the version tree to a snapshot node.

Update operation: Ref.set. When we call set s r v, the current root of the version tree, which

was previously a Mem node, becomes a Diff node pointing to a new current root. The Diff node
carries the previous value of the reference, to be able to restore the reference to its previous value

later on.

let set s r new_val =

let old_val = r.value in
let new_root = ref Mem in
let old_root = s.root in
r.value <- new_val;

old_root := Diff(r, old_val, new_root);

s.root <- new_root

The code is short, but reasoning about it is difficult. It helps to define a model of the current
store, and a model of each node in the version tree. A node 𝐴 is modelled by a functional mapping,
denoted ⟦𝐴⟧, from references to their values. The model of the store is the current model, the model

of the current root. The model of each node is defined as follows:

(1) The mapping of the Mem node maps each store reference to its current value.

(2) The mapping of a Diff(r, v, n) node is ⟦n⟧[r ↦→ v].
In other words, if 𝐵 is the parent of 𝐴 in the current tree, then the edge from 𝐴 to 𝐵 (stored in

𝐴’s data in the OCaml representation) records how to transform ⟦𝐵⟧ into ⟦𝐴⟧.
If we look at Ref.set again, we can now check that, given a current mapping𝑚, set s r v will

move us to a new current mapping𝑚[r ↦→ v] (with r.value <- new_val). Furthermore, since

old_val stores the value𝑚(r), the mapping of the old root (and hence of the existing version tree)

is preserved as it becomes𝑚[r ↦→ new_val] [r ↦→ old_val] =𝑚[r ↦→𝑚(r)] =𝑚.

Reroot, restore. The operation reroot(𝐴) makes an arbitrary node 𝐴 the new root of the current

tree – without changing the model of any snapshot node in the tree. A “simple” implementation of

reroot is shown in Figure 2.

Our actual (verified) implementation contains two improvements over this “simple” version.

(1) In this version, every recursive call in the Diff(r, v, n') case writes the data of both the

node n and of its parent node n' – which becomes its child in the modified version tree. This

means that the data of most nodes is written twice, first to Mem and then to their final data.

Our implementation avoids these redundant modifications by writing Mem only once at the

end, at the cost of a more complex specification for the recursive function.

(2) reroot reverts and reverses Diff nodes from the root of the version tree to the snapshot node.

This corresponds to undoing operations from themost recent operation to the oldest operation,

as it should be. The simple version does this via a non-tail-recursive call reroot n' on the
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let rec reroot n =

match !n with
| Mem -> ()

| Diff (r, v, n') ->

reroot n';

let old_v = r.value in
r.value <- v;

n := Mem;

n' := Diff (r, old_v, n)

Before the call, n points to its parent node n',
and ⟦n⟧ = ⟦n′⟧[r ↦→ v].

At this point, the current model is ⟦n′⟧.

The current model becomes ⟦n′⟧[r ↦→ v] = ⟦n⟧.

n becomes the current root,

matching the current model.

The model of n' becomes

⟦n⟧[r ↦→ old_v] = ⟦n′⟧ again.

Fig. 2. Reroot (simple version)

parent node n' before it handles the child n. To avoid stack overflows our implementation

uses a tail-recursive variant where we first accumulate Diff nodes in a list, most recent

operation at the head, and then traverse the list in order.

Finally, restore can be easily defined from reroot:

let restore (store : store) snapshot =

reroot snapshot.root;

store.root <- snapshot.root

Remark. This concludes our retelling of the core algorithm of Baker [1978], with an OCaml

realization inspired by Conchon and Filliâtre [2007]. We consider what follows as original work.

2.4 Record Elision
Record elision is a key optimization that changes the qualitative performance profile of the library.

The idea is simple: if we have already performed a set operation on some reference r in “the

current version” (since the last snapshot), we have created a Diff node with the value before that

operation; so if we perform a set on that reference again, there is no need to log anything, as the

older Diff node will already reset the reference to its previous value. This optimization is only

valid if no snapshot was taken after the previous Diff node, otherwise that snapshot would get the
wrong value of r on rerooting.

We do not wish to search the history on each set to check this property. In fact we cannot check

it with the previous definitions, as there is no trace in our graph data structure of which nodes have

been captured as snapshots. We solve both issues by introducing a notion of generation, an integer

that counts the number of snapshots taken in the history of a node. In particular, if two nodes

belong to the same history and have the same generation, there is no snapshot between them.

We keep track of generations in the store graph (the generation of the current root), in snapshots

(the generation of the snapshot node), in references (the generation of the last Diff node on this

reference), and Diff nodes.

type store = { mutable root : node; mutable generation : int; }

type 'a Ref.t = { mutable value : 'a; mutable generation : int; }

type snapshot = { store : store; root : node; generation : int; }

type node = data ref
and data = Mem | Diff : 'a Ref.t * 'a * int * node -> data
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Creating a new snapshot increments the generation of the store:

let capture s =

let snap = { store = s; root = s.root; generation = s.generation; } in
s.generation <- s.generation + 1;

snap

All the magic happens in the Ref.set function which updates a store reference. (We use a lighter

gray color for code that is identical to the previous version.)

let set (s : store) (r : 'a Ref.t) (new_val : 'a) : unit =

if s.generation = r.generation

then r.value <- new_val

else
let old_val = r.value in
let old_gen = r.generation in
let new_root = ref Mem in
let old_root = s.root in
r.value <- new_val;

r.generation <- s.generation;

old_root := Diff(r, old_val, old_gen, new_root);

s.root <- new_root

By comparing the two integers s.generation and r.generation, we check whether a snapshot
was captured between the last recorded write to the reference and the current root. If no snapshot

was taken, then we do not record the new update in the version tree – it is useless, as any restore
call will restore an older value of the reference from the recorded write. We call this a record elision.
If a snapshot was taken, we update the generation of the reference: we have just recorded the write,

so we can elide all records for that reference until the next snapshot is taken.

In terms of model, calls to set r v where record elision takes place are harder to reason about,

because they mutate the mapping of existing nodes in the version tree: for all the nodes from the

current root (included) to the last Diff node on this reference excluded, their mapping is from

some𝑚 to𝑚[r ↦→ v]. In the absence of record elision, the mapping of all version tree nodes was

persistent: the data on the node may change but its mapping remained unchanged. Record elision

relaxes this property: the mapping of nodes that are captured by a snapshot is persistent, but other
nodes, in fact the nodes between the last snapshot and the current root, may see their mapping

changed by later operations. This weaker guarantee suffices, as we only provide persistent snapshots
to users, they cannot observe the mapping change for other nodes.

Performance impact. Record elision has a transformative performance impact on workflows that

use Ref.set heavily and snapshot capture rarely. (We generally assume that backtracking is rare

relative to reads and writes, but many workflows are rather dominated by reads so record elision

matters less.) Indeed, a record-elided Ref.set is just an integer comparison and a write, which is

basically the same as a write: in OCaml, polymorphic writes go through a write barrier, so the cost

of the write dominates the generation test. In the regime where most writes are elided, Ref.set is

essentially as fast as OCaml primitive references, providing the almost-zero overhead we advertised.

On the other hand, a non-elided set performs an extra write and an allocation. On a get/set
microbenchmark with 16 get for each set, disabling record elision made the test 6× slower.

Record elision also has a transformative effect on the asymptotic complexity of store operations.

As we detailed in the introduction (Section 1.3), the key complexity parameter of Store is the size Δ
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of the log between two consecutive snapshots. Without record elision, Δ is the number of write

operations that happened since the previous snapshot, which can grow arbitrarily large. Record

elision reduces Δ to the number of distinct memory locations touched since the previous snapshot.

Notes. If one tries to implement persistent data structures on top of Store by capturing a snapshot
after each write operation, then record elision never applies. This explains why we are not offering

a persistent API for Store. It also probably explains why we have not found a description of this

simple idea in the existing literature on more-or-less-persistent data structures.

It is tempting to think of generations as unique timestamps for snapshots, and indeed the two

concepts overlap in semi-persistent implementations. Scaling record elision to the persistent setting

required a more precise definition of generations that need not be unique. Preserving uniqueness in
the persistence setting would be an instance of the order maintenance problem, which has amortized

constant-time solutions (Bender, Cole, Demaine, Farach-Colton, and Zito [2002]; but think of the

constant factors!) and is a common ingredient in persistent data structure design.

2.5 Liveness
An important consideration in our choice of data structure design is liveness. In garbage-collected

languages, the memory footprint of a data structure is determined by what other portions of

memory it references, keeps alive. Suppose for example that a user captures a snapshot of the

store, and then later drops all references to this snapshot. Can the memory corresponding to this

snapshot be collected, or is it kept alive by the global Store data structure?
The version tree structure inherited from Baker [1978] has excellent liveness properties: pointers

in the data representation coincide with the parent relation of the current tree, so that referencing

the store only keeps the current root alive. In particular, if we do not reference any snapshot, then

the whole version tree (except for the root) can be collected. Locally, only the operations that are

needed to restore a snapshot that is still referenced are kept alive. This still holds if the user forgets

a reference: as long as a snapshot mentioning it is kept alive, the reference will be kept alive (one

could use weak pointers and ephemerons [Hayes, 1997] to get better liveness properties there, at

significant complexity and runtime cost). On the other hand, if the user forgets all the snapshots

mentioning a reference, then it can be collected. This is a common situation in realistic workloads

such as type-checking: we typically forget all the references and all the snapshots created when

typing a given subterm.

Another case where our implementation can “leak” values is when forgetting intermediate

snapshots: if there are three consecutive snapshots 𝐴, 𝐵 and 𝐶 with the same reference 𝑟 being

written both between 𝐴 and 𝐵 and between 𝐵 and 𝐶 , forgetting 𝐵 will still keep the value of 𝑟 in 𝐵

alive even though we can never restore 𝐵 again. We could consider an implementation using weak

pointers and finalizers to notice this and compress the log, but suspect that the cost in performance

and code complexity would not be worth it for most applications. Our semi-persistent interface (see

Section 4) provides a commit operation that does remove some (but not all) such unneeded records.

Most other implementation choices have worse liveness properties. Semi-persistent implemen-

tations based on a centralized journal often cannot forget any snapshot. Implementations based

on functional or imperative maps (with copy) can never forget references. Another common im-

plementation choice for persistent structures, the so-called fat nodes approach, keeps a list of all
past values in the reference itself. This makes it impossible to forget past versions or siblings, but it

allows the user to forget references.

We considered liveness properties seriously in our design, and it helped guide some implementa-

tion choices. We believe that the liveness properties of our implementation are adequate, and that
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Create

{True} create () {𝜆𝑠. store 𝑠 ∅}
Ref

{store 𝑠 𝜎} ref 𝑠 𝑣 {𝜆𝑟 . ⌜𝑟 ∉ dom(𝜎)⌝ ∗ store 𝑠 ( [𝑟 :=𝑣]𝜎)}

Get

𝑟 ∈ dom(𝜎) 𝜎 (𝑟 ) = 𝑣

{store 𝑠 𝜎} get 𝑠 𝑟 {𝜆𝑣 ′ . ⌜𝑣 ′ = 𝑣⌝ ∗ store 𝑠 𝜎}

Capture

{store 𝑠 𝜎} capture 𝑠 {𝜆𝑡 . store 𝑠 𝜎 ∗ snapshot 𝑠 𝑡 𝜎}

Set

𝑟 ∈ dom(𝜎)
{store 𝑠 𝜎} set 𝑠 𝑟 𝑣 {𝜆(). store 𝑠 ( [𝑟 :=𝑣]𝜎)}

Restore

{store 𝑠 𝜎 ∗ snapshot 𝑠 𝑡 𝜎′} restore 𝑠 𝑡 {𝜆(). store 𝑠 𝜎′}

Fig. 3. Interface of our Coq store

it does make a positive difference in practice with respect to implementation approaches that keep

all store operations alive – in the type-checking use-case, for example.

3 A Coq Store
In this section, we use separation logic to specify and verify the core of our approach: an implemen-

tation of snapshottable stores with record elision but without transactions. After introducing the

formal setting (Section 3.1), we present the specification (Section 3.2) and the high-level ideas of the

proof (Section 3.3). Our results are entirely mechanized in the Coq proof assistant [Allain, 2024].

3.1 Formal Setting
Formally, we use the Iris separation logic framework [Jung, Krebbers, Jourdan, Bizjak, Birkedal,

and Dreyer, 2018]. We write our programs in an untyped call-by-value 𝜆-calculus with mutable

state, similar to the HeapLang language that comes with Iris.

In the following, we write 𝑃 for an Iris assertion, 𝑃1 ∗ 𝑃2 for separating conjunction, 𝑃1 −∗ 𝑃2 for
separating implication and ⌜𝜙⌝ for the embedding of a pure (meta-level) proposition 𝜙 . To specify

an expression 𝑒 , we use a Hoare triple {𝑃} 𝑒 {𝜆𝑣 .𝑄}, where 𝑃 is the precondition, meta-variable 𝑣

captures the resulting value and 𝑄 is the postcondition.

3.2 Specification
Figure 3 presents the specification of our Coq store. To describe a store 𝑠 at the logical level, we

use the assertion store 𝑠 𝜎 denoting that 𝑠 is modeled by the (partial) mapping 𝜎 from references to

values. We write 𝜎 (𝑟 ) for the value associated to reference 𝑟 in 𝜎 , [𝑟 :=𝑣]𝜎 the functional update

of 𝜎 with the mapping 𝑟 ↦→ 𝑣 , and dom(𝜎) the domain of 𝜎 (the set of created references). We first

present the specification of the functions create, ref, get and set. We then turn our attention to the

functions involving snapshots, namely capture and restore.
Create asserts that create () has trivial precondition and returns a store 𝑠 with an empty model.

Ref asserts that ref 𝑠 𝑣 creates a new reference. The precondition consumes an assertion store 𝑠 𝜎
and the postcondition produces an assertion store 𝑠 ( [𝑟 :=𝑣]𝜎), where 𝑟 is the returned reference.

The postcondition also asserts that 𝑟 is fresh. Get asserts that get 𝑠 𝑟 returns the value associated
to 𝑟 in the model of 𝑠 . The precondition consumes an assertion store 𝑠 𝜎 , and requires that 𝑟 is in

the domain of 𝜎 and is mapped to the value 𝑣 . The postcondition asserts that the function returns

the value 𝑣 , and restores the assertion store 𝑠 𝜎 . Set asserts that set 𝑠 𝑟 𝑣 correctly sets the value

associated to 𝑟 to 𝑣 in the model of 𝑟 . The precondition consumes an assertion store 𝑠 𝜎 and requires

that 𝑟 is in the domain of 𝜎 . The postcondition produces an assertion store 𝑠 ( [𝑟 :=𝑣]𝜎).
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𝐴 𝐵 𝐶 𝐷

𝐸 𝐹

𝐺

𝐻 𝐼

(a)

𝐴 𝐷

𝐹

𝐼

𝐵,𝐶

𝐸

𝐻

(b)

Fig. 4. Graph of nodes and its corresponding subgraph of captured nodes. Squares represent captures nodes
and circles non-captured nodes. Gray node identifies the root.

To describe a snapshot 𝑡 at the logical level, we introduce the assertion snapshot 𝑠 𝑡 𝜎 . It asserts
that 𝑡 is a valid snapshot of the store 𝑠 , whose model was 𝜎 when the capture occurred. Crucially,

the assertion snapshot 𝑠 𝑡 𝜎 is persistent [Jung, Krebbers, Jourdan, Bizjak, Birkedal, and Dreyer,

2018, §2.3]. A persistent assertion is in particular duplicable, meaning that the following entailment

holds: snapshot 𝑠 𝑡 𝜎 −∗ (snapshot 𝑠 𝑡 𝜎 ∗ snapshot 𝑠 𝑡 𝜎).
Capture asserts that capture 𝑠 creates a new snapshot. The precondition requires that 𝑠 is a

valid store of model 𝜎 . The postcondition asserts that the store was preserved and that the function

returned a snapshot 𝑡 such that snapshot 𝑠 𝑡 𝜎 holds. Restore shows that indeed, restore 𝑠 𝑡 updates
the model of 𝑠 to the model captured by 𝑡 . The precondition consumes the assertion store 𝑠 𝜎 and

snapshot 𝑠 𝑡 𝜎 ′
, and the postcondition produces the updated assertion store 𝑠 𝜎 ′

. Notice that there

is no need to repeat the assertion snapshot 𝑠 𝑡 𝜎 ′
in the postcondition. Thanks to persistence, the

user can duplicate the assertion before applying Restore.

3.3 High-Level Ideas of the Proof
We wrote two different proofs of correctness of Store. In the first iteration, we used the graph

structure discussed so far and present in-memory in our implementation, with a mapping 𝜎 for

each node of the graph. We were able to prove the specification, but without generations and record

elision. As we explained in Section 2.4, record elision mutates the mapping of the nodes between

the last captured node and the current root, and our attempts to formalize this ran into a wall.

The second iteration of the proof, which supports generations and record elision, relies on a more

structured presentation of the graph: the subgraph of captured nodes. More precisely, captured

nodes induce a coherent subgraph in which two captured nodes are connected by a chain of

non-captured nodes. Consider, for example, the graph of Figure 4a. In the corresponding subgraph

shown in Figure 4b, we only retain captured nodes 𝐴, 𝐷 , 𝐹 . We track separately the root 𝐼 and the

chain leading to it from the last captured node. Even in the presence of record elision, writes only

affect the chain to the root, the mappings of the captured nodes remain persistent.

4 Semi-Persistence Through Transactions
4.1 Introduction
The capture and restore API presented in Section 2.3 is low-level in the sense that users have

to create persistent snapshots, keep track of them, and restore them manually. For some common

workloads, we provide high-level wrappers that are more convenient but also less expressive.

val temporarily : store -> (unit -> 'a) -> 'a

val tentatively : store -> (unit -> 'a) -> 'a
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These wrappers call the provided function, then restore the state of the Store to the state it had

prior to the call either unconditionally (temporarily) or if an exception is raised (tentatively).
Both functions can be implemented by capturing a snapshot before calling f, and restoring it

after the call if necessary. Snapshots created by these wrappers have interesting properties: not

only are they restored at most once, but their use follows a rigid structure dictated by scoping rules.

This corresponds exactly to the notion of semi-persistence in the data-structure literature: there is a

stack of versions, and versions that are removed from the stack are no longer accessible. Imposing

such a linear (or affine) discipline on snapshots makes reasoning about the implementation easier,

and avoids the aliasing of mutable state that makes the implementation of restore so subtle

(Section 2.3).

One could provide an entirely different implementation of Store that only provides a semi-

persistent API. It can be expected to be slightly faster, perhaps simpler to implement, but would

provide less functionality than the persistent API of Store. Instead, we describe in this section

an extension of the Store API with semi-persistence in the same implementation, providing a

combination of both capabilities. We call this API transactional, because each semi-persistent

snapshot (or transaction) is terminated by either keeping (commit) or discarding (rollback) the

changes within. Users are expected to stick to the simple persistent API and the convenience

wrappers temporarily and tentatively, which are implemented using the semi-persistent API

for performance. In more advanced scenarios, users can directly use the transactional API, which is

more difficult to use but can bring additional performance improvements.

4.2 Transactions for Semi-Persistence
Besides the high-level wrappers mentioned earlier, the transactional API is as follows:

type transaction

val transaction : store -> transaction

val rollback : store -> transaction -> unit

val commit : store -> transaction -> unit

A transaction represents an interval in the program execution during which an ephemeral

copy of the store is preserved. The transaction is created by calling transaction, and terminated

by calling either rollback or commit. rollback is similar to restore in the persistent API: it

resets the state of the store to the one it had when the transaction started. commit terminates

transaction, but the state of the store is unchanged – it merely discards the ephemeral snapshot.

Transactions can be nested following a stack-like discipline. Transactions are valid when created,

and terminating a transaction invalidates it and all the transactions that were created while it

was valid. Using an invalid transaction is a programming error and raises an Invalid_argument
exception.

As a simple example of use of transactions, we can implement the tentatively convenience
wrapper using the transactional API:

let tentatively store f =

let trans = Store.transaction store in
match f () with
| v -> Store.commit store trans; v

| exception exn -> Store.rollback store trans; raise exn
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𝐴

(a) Initial state

𝐴 𝑇𝐴

(b) After transaction

𝐴 𝑇𝐴 𝐵

(c) Before rollback

Fig. 5. Version graph during a transaction

4.3 Combining the Persistent and Semi-Persistent APIs
It is possible to write and reason about programs that combine both APIs by viewing the transaction

stack as a part of the capturable state of the store. Using a transaction while it is not part of the

current transaction stack is a programming error, but persistent snapshots can be used to move

freely between states with different transaction stacks. Terminating a transaction invalidates all

transactions and snapshots that contains it in their transaction stack, weakening the persistence of

snapshots inside transactions: snapshots are only persistent until one of their enclosing transactions

is terminated.

It would be simpler to prevent the capture or restore of persistent snapshots as long as one

transaction is active, that is, to allow transactions only at the “leaves” of the search tree. Our more

flexible discipline allows many combinations that would be ruled out by such a restriction, in

particular the two following important use-cases:

Arbitrary search in the current context. Within a transaction or any amount of nested

transactions, it is possible to call a function that implements its own search sub-procedure

using the full Store API (persistent or semi-persistent), without using any of the snap-

shots or transactions in the ambient context. The validity of the pre-existing snapshots and

transactions is unchanged by this local search.

Moving to a different context and then coming back. At any point during a Store-using
computation, it is possible to take a persistent snapshot 𝑆 of the current store state, restore a

different snapshot 𝑆 ′ (an older state in the store history, or a sibling state), perform arbitrary

store operations there, and restore 𝑆 to continue the search as if nothing happened. This is

valid as long as the operations performed outside 𝑆 preserve the validity of the transactions

in the stack of 𝑆 .

4.4 Implementing Transactions
Transactions are implemented by adding a new kind of information in the graph, transaction nodes.
Starting a transaction when the current root of the version tree is 𝐴 (shown in Figure 5a) creates a

new transaction node 𝑇𝐴 that tracks the transaction (shown in Figure 5b). This does not affect the

values of references: node 𝑇𝐴 has the same mapping as node 𝐴.

When the transaction is rolled back, arbitrary nodes may have been added, as shown in Figure 5c.

We remove the transaction node 𝑇𝐴 from the graph – that is, we mark the node as invalid. We also

remove (invalidate) all historic descendants of 𝑇𝐴, so in particular the correctness of the version

tree is preserved. The initial state is restored: 𝐴 becomes the current root again (Figure 5a). This

is only valid if the current root of the version tree was “inside” the transaction, that is, if it is a

node that is a current descendant of 𝑇𝐴. We keep track of that information in the transaction node

(it is updated by reroot) and fail if the current root is not inside the transaction; otherwise, the

transformation would end up with two root nodes in the version tree, the previous root and 𝐴.

“Removing” a node is implemented by marking it, or one of its current descendants, as Invalid.
Which nodes to mark is an implementation detail; it suffices to mark enough nodes that, when called

on an invalid snapshot or transaction, restore, commit, and rollback encounter an invalid node
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and fail before they modify the current state. Our current implementation marks each transaction

node – 𝑇𝐴 and any child transaction – as well as the current root 𝐵.

Calling restore on a persistent snapshot must update the current state to apply the Diff nodes

along the path, but also revert the edges of those Diff nodes and update their data to allow restoring

in the other direction later. For transactions, rollback only updates the current state without

touching the Diff nodes, leading to a small but measurable efficiency gain.

5 Testing and Benchmarks
5.1 Testing Store with Monolith
We used Monolith [Pottier, 2021], an OCaml testing framework that implements a specific form of

state-based property-based testing called model-based testing. It takes a description of the API to

be tested, a reference implementation (model) of the API, generates random sequences of API calls

and checks that the real implementation matches the model.

To test Store, we wrote a reference implementation, designed to be as simple and clear as possible

without any efficiency requirement; one could consider it an executable specification. The property

we ask Monolith to check is that the real and reference implementations agree. The reference

implementation represents functional mappings as a persistent map from unique integer indices

(representing references). This is a homogeneous representation (all references must have the

same value type) for simplicity: we only use integer values in tests. Each snapshot carries such a

functional mapping, as well as a list of transactions that it depends on (as described in Section 4.3).

A transaction is a snapshot, with a mutable boolean flag indicating whether it is still valid. Finally, a

store is represented by a mutable reference to a snapshot; the active transactions are the transactions

that the current snapshot depends on. The data definitions of our reference implementation are as

follows:

type 'a sref = { key : int; default : 'a }

type 'a mapping = 'a Map.Make(Int).t

type 'a snapshot = { state : 'a mapping;

transactions : 'a transaction list; }

and 'a transaction = { snapshot : 'a snapshot;

mutable terminated : bool; }

and 'a store = 'a snapshot ref

We mention our testing approach explicitly because we have found it unreasonably effective. The
fuzzer we get from Monolith behaves, in our experience, exactly like a correctness oracle. After

any code change, you run the fuzzing test, and either it finds a bug in a few seconds or the code is

correct. If it finds a bug, it starts looking for a smaller test sequence that also fails, and waiting for

about 10 seconds will consistently produce a small, readable sequence of operations that can be

replayed to understand what is going on.

Writing complex code with a correctness oracle at hand is a liberating experience. Wondering

about why a particular line of code is necessary? Remove it, run the testsuite, and you see. Thinking

of reordering two state changes and wondering if there is an interaction between them? Just try it.

We believe that model-based testing is unreasonably useful for Store because (1) we have a

relatively small and simple API, so all interesting interactions are covered by random search and

(2) we gave a lot of thought to expressing clear specifications, which in turn make it easy to write a

precise reference implementation.
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5.2 Microbenchmarks
We studied the performance of our Store library on synthetic microbenchmarks that let us simulate

a variety of different usage scenarios. These benchmarks perform almost only operations on

references, so they magnify the performance differences between implementations compared to

real-world programs – where most of the time is typically spent elsewhere. We would typically

consider overheads of up to 30% as small – unlikely to be noticeable in real-world programs, 2×-5×
as moderate, and above 10× as large.

Our main goal is to establish that if users need some form of backtracking in a (possibly small) part

of their program, using Store is always a good choice, they will not suffer a noticeable performance

degradation compared to a library that supports fewer features, in particular compared to third-

party libraries specialized for semi-persistence, and compared to built-in OCaml references when

no backtracking at all is used. Before our work on Store, when François Pottier needed a Union-

Find implementation with (non-nested) backtracking, he implemented the union-find library as a

functor over a store-like interface, so that users that do not need backtracking do not pay a cost

– they instantiate the functor with built-in references. We want to encourage users to drop this

parametrization strategy and use Store unconditionally, by showing that Store has best-in-class

performance for all relevant workloads.

Implementations. We compare the following implementations:

Store Our implementation.

Ref Native OCaml references; they do not support backtracking of any kind, and they are the

gold standard for “raw” get/set operations.

TransactionalRef A “journaled” store by François Pottier, implemented in union-find for the

needs of Inferno, that only supports non-nested (semi-persistent) transactions.

BacktrackingRef An earlier “journaled” implementation of Store that we wrote, that only
supports semi-persistence. A single dynamic array (the “log”) stores all antioperations, and

ephemeral snapshots are denoted by positions inside this array. BacktrackingRef performs

a record elision optimization.

Facile The backtrackable (semi-persistent) references of the Facile library, a well-established

constraint-programming framework for OCaml, written with performance in mind.
3

Facile uses a “journaled” implementation with record elision, similar to ours. (Record elision

is easier to implement for semi-persistent implementations; our combination of persistent

snapshots and record elision is the novelty.)

Colibri2 The original backtrackable (semi-persistent) references of the Colibri2 constraint-
programming and SMT solver, written in OCaml. Colibri2 uses a “fat node” representation

where the previous values of each reference are stored within the reference itself and the work

of restoring an earlier version is done lazily on access, providing a constant-time rollback
operation. This implementation has better memory-liveness properties, due to history being

stored locally within each reference, but as evidenced by this section the on-demand approach

has a noticeable overhead due to the extra check in the performance-critical get operation.
We discussed this with the authors of Colibri2 who changed their implementation to be

similar to ours in January 2024 (the numbers in this section correspond to the previous,

distinctive implementation).

3Facile was written in 2005, and found to be comparable with state-of-the-art constraint solvers of the time: slower than

Ilog Solver 4.3, faster than ECLiPSe 5.2.
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Map An implementation using persistent maps (the Mapmodule of the OCaml standard library):

𝑂 (log𝑛) get/set, but 𝑂 (1) capture/restore. This corresponds to the “full persistence” ap-

proach we mentioned in the introduction. We expect it to be quite slow due to the logarithmic

factor.

Vector an implementation using dynamic arrays, provided by the union-find library, where

backtracking operations copy the array. This corresponds to the “full copy” approach we men-

tioned in the introduction. It has fast get/set operations (𝑂 (1)), but very slow capture/restore

operations (𝑂 (𝑛) in the number of references).

We expect Vector to be a solid baseline for the use-cases we had in mind when implementing

Store – infrequent backtracking operations so get/set dominate performance.

Benchmarks. We consider the following synthetic benchmarks.

Raw creates 1024 references, then performs a series of 32 reads and 4 writes per reference in a

loop repeated 1000 times.

Transactional (abort) creates 1024 references, then perform a series of reads and writes in a

loop. Each iteration of the loop is performed in a failed (aborted) transaction.

We run the following variants, to simulate a variety of workloads:

get 128 reads per reference, no writes, 200 iterations

set few no reads, only 64 references are written to (once) in total, that is only
1

16
of all

references, 40000 iterations

set 1 no reads, each reference is written exactly once, 6400 iterations

set 16 no reads, each reference is written 16 times, 600 iterations

We also run the “set few” version in a successful (rather than failed) transaction with the

same parameters, marked with “(commit)“.

Capture-heavy is the same as Transactional, but with different parameters to test the case

where backtracking operations are much more frequent, with only a few reference accesses

per transaction. We perform 16 writes and 64 reads per transaction in total, spread over 4

references in the “small” version (all references are touched in a single transaction) and 1024

references in the “large” version (most references are untouched in each transaction).

Backtracking is the same as Raw, except that each iteration of the loop starts a new nested
transaction level. All transactions are failed (rolled back) once the loop completes. The loop

is repeated 1000 times, which is also the nesting depth.

Results summary. The results of the microbenchmarks are summarized in Figure 6. The results

are normalized relative to the Store implementation to show relative performance in the different

tasks. The absolute benchmarks results are available in the appendices.

For reasons of space, we only provide a high-level summary of the results here. Detailed analyses

of each benchmark are included in Appendix C.

Our general conclusion is that TransactionalRef, BacktrackingRef, Facile and Store are

the best implementations, they perform very reliably over all benchmarks, with essentially no

overhead over built-in references in the Raw benchmark. With the exception of the “set 1” variant

where Vector shines, they are always the best implementations. For the benchmarks where they

are supported they have very close performance.

BacktrackingRef and Facile are able to perform as well as TransactionalRef despite sup-

porting nested transactions, and Store performs as well as those two despite supporting both

persistent snapshots and semi-persistent transactions.
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Fig. 6. Micro-benchmark results

Colibri2 is consistently slower than the other backtrackable implementations. This is due to

the high runtime cost of its on-demand approach, incurring additional costs on each get and set
operation.

This suggests that our objective for Store of always being a good choice – despite supporting

more features – is reached. It also shows the advantage of providing snapshottable stores as an

independent library that can be optimized once.

Note on API safety. The API provided by Store is very explicit not only about the store, but

also about the state represented by backtracking levels (transaction objects). On the other hand,

both Colibri2 and Facile use a mix of explicit (pop in Colibri2 and cut in Facile both take an

explicit backtracking level) and implicit state (push implicitly creates a new backtracking level in

Colibri2 and backtrack implicitly operates on the last non-cut backtracking level in Facile).
This makes using their APIs outside of the solvers they were designed for error-prone; in fact, we

initially used both APIs incorrectly when writing the benchmarks.

Details on Facile. Facile performs very well on the commit transactional workflow, because
its implementation trades space for time, resulting in worse liveness properties. On commit, the
diff nodes that allowed backtracking become useless, but Facile leaves them on its backtracking

stack in a disabled (Cut) state. The time complexity of commit becomes linear in the number of

checkpoints, rather than the number of modified references, but the space complexity becomes

linear in the total number of modified references, rather than the references modified in the current

history. On workflows that mix a few long-running snapshots with many short-running commit
transaction, such as Inferno in the presence of backtracking, this choice can result in arbitrary

increase in memory consumption. On a micro-benchmark (a variant of our Transactional-Commit
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benchmark, with 10,000 rounds) simulating such a workflow we observe a memory consumption

of 6Mo for Store and 645Mo for Facile.

Details on Vector. Vector performs surprisingly well, despite an extra indirection and bound

checking. But it suffers from very bad behaviors on “large support” workloads, where only a few

references are modified per transaction. Our “Capture-heavy (large)” test simulates them, and

Vector is 6× slower than Store. We believe that this is the most common situation in real-world

workloads, and have observed even worse behaviors, for example Vector is 52× slower than Store
on one of our Inferno macro-benchmarks.

The best case for Vector is when each reference is modified exactly once per transaction. Indeed,

all other implementations need to perform extra work on set that corresponds to a sort of per-

reference copy-on-write; if we set all references after a snapshot, the total copy work should be

at least as much as copying the vector on capture, with worse constant factors. We do observe

excellent performance for Vector in the “set 1” variant of Transactional, which simulates this.

But we do not know of programs in the wild with similar workloads.

If there are fewer references set per transaction, as in our “set few” variant, Vector is doing worse
than journaled implementations. (Empirically we observed a break-even point on this benchmark

when a fourth of the references are set per transaction.) On the other hand, when each reference is

modified many times per transaction, as in the “set 16” variant, then journaled implementations

benefit from record elision, reducing the advantage of Vector.

Details on Map. Map performs especially poorly in all benchmarks, except the capture-heavy

benchmarks. This is expected since capture and restore have no cost for Map, but even in these

favorable conditions Map is amongst the slowest implementations.

5.3 Macrobenchmarks
In order to validate the conclusions from microbenchmarks in more realistic scenarios, we adapted

existing programs that perform some sort of backtracking, to use the Store interface. This gives a
more realistic view of performance differences one can expect in practice. We detail the various

macro-benchmarks in Appendix B, with only a brief summary here.

Inferno re-checks the explicitly-typed programs elaborated by its type-inference engine. Our

original use-case for Store was the introduction of GADTs, which requires undoing changes to a

Union-Find of type equations.

Figure 7a measures type-checking a large explicitly-typed term that does not actually contain

GADTs (the common case). Store is noticeably faster than Vector, the previous best choice.
Figure 7b measures type-checking a small explicitly-typed GADT example. Vector behaves

terribly (this is a “large support” situation) and Store is much better than other choices.

Figure 7c measures Inferno type inference on a ML program. As mentioned earlier, Inferno uses

(non-nested) transactions to roll back partial unifications in case of unification failure, and the

TransactionalRef implementation of François Pottier was written specifically for this use-case.

Our results show that Store can replace TransactionalRef for this use-case.
Figure 7d measures the performance of a constraint-based random generator of well-typed terms,

which is an independent reimplementation distinct from the Inferno codebase. The generator

interleaves top-down program generation with constraint-solving, to quickly discard ill-typed

terms and share type-checking work across similar terms. This benchmark uses the persistent

Store API: the entire state of the generator (initially written without Store) is persistent, and was

easy to integrate with the persistent Store API. In contrast, it would be fairly difficult to use the

transactional API in a structured way.
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Time Relative

Store 0.21s 1.0x

Vector 0.28s 1.3x

Map 0.88s 4.2x

(a) Inferno type checking
(without GADTs)

Time Relative

Store 0.02s 1x

Map 0.08s 4x

Vector 1.3s 70x

(b) Inferno type checking
(GADT example)

Time Relative

T-Ref 0.03s 1x

Store 0.03s 1x

Map 0.09s 3x

Vector 1.78s 52x

(c) Inferno type inference
(short transactions)

Implementation Time Relative

Store (persistent) 262ms 1.00

Map 334ms 1.27

(d) Generator of well-typed terms

Implementation Time Relative

base (hand-optimized) 1.35s 1.00

Store 1.63s 1.20

Store (persistent) 1.76s 1.30

Vector 4.03s 2.99

(e) Sudoku solver

Fig. 7. Macro benchmarks

Finally, Figure 7e represents results on a backtracking-heavy program, an optimized Sudoku

solver implemented in OCaml by Alain Frisch in 2005. The original implementation uses a hand-

optimized “full copy” approach, taking a copy of the Sudoku board state on backtracking points.

(Our test is on a 25 × 25 board.) Our results show that replacing the hand-optimized backtracking

logic by Store only results in a 20% overhead, that using the persistent API instead is slightly

slower, and that Vector would be much worse, 3× slower than the original implementation.

6 Related Work
6.1 Snapshottable References
We searched the OCaml, Haskell, Scala and Rust ecosystems for previous libraries providing

“snapshots as a service”, and were surprised not to find any.
4
Some larger systems implement

snapshottable references internally for their own purpose, in particular SAT/SMT solvers and

constraint solvers; but they did not seem to consider releasing this as an independent library. In our

experience, designing Store as an independent library led us to consider a variety of workloads

more thoroughly, and improved our design and implementation.

Union-Find. The inspiration to think of “snapshottable store” as a library of its own came from

the union-find OCaml library, which provides a Union-Find implementation parametrized over a

“store”, a few simplistic store implementations, and the StoreTransactionalRef implementation

supporting non-nested snapshots.

Coincidentally, the closest library we found to “snapshots as a service” is the Rust crate ena, which

implements a Union-Find data structure and provides an undo_log module offering a snapshot

abstraction. This crate was extracted from the codebase of rustc, the Rust compiler, to be shared

4
The undo-redo Rust crate is the closest we found. It keeps a history of “edit events” on some structure, and can call an

“undo” callback associated to each event. It seems designed to record events at the scale of human interactions – human

modifications to a document, etc. – rather than fine-grained changes, and would be fairly inefficient for our use-cases.

It provides “record”, with a linear history (like most semi-persistent implementations) and “histories”, which allows a

branching history with a git-like model of explicit branches.
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with other Rust projects with a need for Union-Find. The implementation of undo_log5 provides a
semi-persistent interface with a transactional flavor (commit and rollback), implemented with a

global dynamic array of changes to undo. In particular, snapshots are not persistent, with dynamic

checks and explicit panics if invalid snapshots are used. It implements the simplest form of record

elision, which is to skip any logging when no valid snapshots exist.

ena supports arbitrary edit actions with undo callbacks (“custom operations”), but provides

built-in support for creating and setting references. Those references are stored in a large dynamic

array, with indices passed to the user. In consequence, a given undo log is parametrized over a

fixed type of values, and references of different types cannot be combined in a single undo log –

this makes using them more cumbersome for some applications, see our discussion of the Rust

type-checker below. In contrast, our heterogeneous store can contain references of any type.

Search monads. If we cannot find “snapshots as a service”, we looked for such code bundled into

a larger abstraction, namely a backtracking/search library. We have not found interesting code to

snapshot state in search monads or logic programming monads.

Software Transactional Memory. Software Transactional Memory libraries are designed for con-

currency rather than sequential use. In particular, their main concern is to detect races with another

transaction running concurrently. STM libraries typically do implement a form of journaling, but

with different requirements that make a comparison difficult. In particular, the implementations

that we studied
6
cannot implement record elision, as they need to track the previous and final

value of each transaction variable – they cannot elide all tracking even if the variable was already

modified by the continuation.

Bespoke implementations in types, solvers. We surveyed implementations of snapshottable stores

hidden inside type checkers (we surveyed GHC, Scala 2 and 3, Rust, OCaml), SAT/SMT solvers

(CVC5, Z3) and constraint solvers (Facile, choco-solver). For reasons of space, this content is moved

in Appendix A.

6.2 Mutable and Persistent Interfaces
Our API provides a mutable interface: mutation operations modify the input store directly:

update : store * params -> unit. Another choice would be to provide a persistent interface,
where mutation operations leave the input store unchanged, and return another store containing

the modification. We write pstore to emphasize that the store is persistent:

val update : pstore * params -> pstore

Functional programming typically encourages persistent data structures, whose transparential

referency helps for program reasoning. Using linear types (when provided by the source language)

can provide similar benefits for mutable interfaces, reformulated using a linear function that

consumes its input:

val update : store * params ⊸ store

Conversely, the mutable (or linear) interface is often preferred for performance reasons. Some

structures have efficient persistent implementations, but other structures have mutable versions

with better complexity or noticeably lower constant factors. In the case of Store, the mutable API

5
https://github.com/rust-lang/ena/blob/12584218/src/undo_log.rs

6
We studied the OCaml library kcas [Karvonen, 2024], the (C) STM implementation in the GHC runtime [Harris and Marlow,

2004], the Scala implementation in the Zio library [Goes, 2019], and the Go implementation vMVCC [Chang, 2023; Chang,

Jung, Sharma, Tassarotti, Kaashoek, and Zeldovich, 2023].
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makes snapshot capture explicit, instead of forcing the result of every update to be persistent,

enabling record elision as a key optimization.

Some implementations expose a persistent interface only, but rely on reference-counting schemes

to know when the input store is uniquely owned, and perform a mutable update in that case –

they dynamically switch to the linear API. See for example Puente [2017], Stokke [2018], or the

Functional but In-Place style popularized by Koka [Reinking, Xie, Moura, and Leijen, 2021]. This

has the potential to be a “best of both worlds” solution, but only in systems where the cost of

reference counting is already paid by the runtime or accepted as standard practice – it is a diffuse

cost that must be paid by all users to enable this capability.

6.3 Transient Views of Persistent Data Structures
Some persistent data structures provide a transient view into the data structure, on which muta-

ble updates can be applied imperatively, which can then be turned back into a persistent state:

val transient : pstate -> state

val persistent : state -> pstate

val mutably : (* higher-order combinator *)

pstate -> (state -> unit) -> pstate

The transient combinator can be used, for example, to efficiently add a lot of elements at once

into a persistent collection. This is a pattern popularized by the Clojure community [Hickey and

contributors, 2024], based on seminal ideas by Bagwell [2001]. Transient data structures can be

found in many languages. For example, transient vectors and hash-maps can be found in Scala’s

standard library, but also in the JavaScript library immutable.js [Byron, 2024], and in the Python

library pyrsistent [Gustafsson, 2023]. The C++ library immer [Puente, 2017] provides transients

Relaxed Radix Balanced (RRB) vectors.

Our interface is the other way around: we expose the mutable API by default, but our snapshots

are persistent, letting users capture persistent versions at points of interest in their code, typically

around an operation they may want to backtrack over.

The two styles are equally expressive: we can implement a persistent store API with transient

views, and conversely a mutable-with-snapshot API can be built on top of persistent-with-transient-

views APIs. Our work focuses on enabling forms of persistence for data structures that are typically

provided with a mutable API only, with an easy migration path for existing users.

6.4 State-of-the-Art Algorithms
Our work provides an easy way to equip an imperative data structure with backtracking – more

generally, persistent snapshots. We of course do not expect the result to be competitive with

specialized algorithms.

The standard complexity of a Union-Find implementation is𝑂 (𝑛𝛼 (𝑛)) for a sequence of 𝑛 union
and find operations, with a 𝑂 (log𝑛/log log𝑛) worst-case complexity for each operation in the

sequence. If we require backtracking support (an operation to undo the last union operation),

Westbrook and Tarjan [1989] prove a lower-bound of Ω(𝑛 log𝑛/log log𝑛) for 𝑛 operations, and

Apostolico, Italiano, Gambosi, and Talamo [1994] provide an optimal implementation providing an

𝑂 (log𝑛/log log𝑛) worst-case bound per union and find operation, with a total space cost of𝑂 (𝑛)
for the whole sequence of operations. Their backtrack : graph -> int -> unit operation runs

in time 𝑂 (1), and it is in fact able to undo the 𝑛 most recent union operations.
We have not implemented this algorithm, nor are we aware of existing implementations, but our

intuition is that this algorithm would have noticeably higher constant factors than the traditional

Union-Find implementation. In contrast, our approach requires no new algorithmic expertise (except

to implement our Store library once and for all), it provides a much worse complexity of 𝑂 (𝑛) for
the backtracking operation (that is infrequent in the workloads we are considering, relatively to
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find and get queries), and very low constant factor overheads for existing operations – which

are performance-critical for our workloads. Our space overhead is 𝑂 (𝑛), as with state-of-the-art

algorithms.

Demaine, Langerman, and Price [2008] present a persistent trie data structure, which is unrelated

to our current interest, but it is of interest to us for two reasons. First, to our non-expert knowledge

it presents a state-of-the-art implementation of persistent dynamic arrays (which can be resized

dynamically), using a sophisticated “rebuilding” approach to interleave resizing work with updates

– if you know of Okasaki’s technique to amortize the reversal of a list to implement a persistent

queue, think of a much harder version of this idea. Second, it contains a very useful, detailed

discussion of notions of persistence used in algorithmic research, which we tried to summarize in

our introduction. Coming back to persistent (resizable) arrays: the standard approach for persistent

arrays comes from Dietz [1989], where each access operation has cost 𝑂 (log log𝑛) in expectation

(it is randomized), where 𝑛 is the total number of operations performed so far. This dependence on

the number of operations is problematic for many use-cases, including ours – we only have such

a dependence on backtrack operations, and want to avoid them on access operations. Demaine,

Langerman, and Price [2008] lower it to 𝑂 (log logΔ), where Δ is the total size of the array.

Driscoll, Sarnak, Sleator, and Tarjan [1989] expose generic techniques to add partial persistence

and full persistence to existing data structures. These techniques are not encapsulated as libraries,

they require changing the data structure and its operations in a systematic way. They apply to

all data structures that can be seen as a graph of nodes with bounded in-degree – there is a global

bound on the number of parents of each node. They are designed to provide 𝑂 (1) access to any

version in the tree, and typically have higher constant factors than we would like. As it happens,

the usual Union-Find data structure does not have bounded in-degree, as an arbitrary number of

nodes can point to the same representative.

6.5 Static Checking and Formal Verification
Conchon and Filliâtre [2008] present a static checking discipline for semi-persistent data structures,

based on ghost updates in Why3, a programming language designed for deductive verification.

One could also use linear types or unique ownership to capture semi-persistence. Our OCaml

implementation performs no static checking, but we invalidate our data structures at runtime in

such a way that incorrect use results in a clear dynamic failure rather than unspecified behavior.

Conchon and Filliâtre [2007] propose persistent arrays and a persistent Union-Find library written

in OCaml, and verify them in Coq. (The Union-Find implementation is built on the persistent arrays,

so in particular it has bad liveness properties, it retains the memory of all nodes forever.) They

use a shallow embedding of OCaml in Coq with an explicit heap, and express specifications

using dependent types. This approach leads to verbose specifications. On the contrary, we benefit

from Separation Logic and provide simpler specifications. Conchon and Filliâtre [2007] verify the

termination of functions of the library, which we do not. We are confident that we can enhance

our specifications and proofs with time credits [Charguéraud and Pottier, 2019] to verify both the

termination and the time complexity of our implementation. Our proof does establish that the

version graph remains acyclic, which is the key argument needed for termination.

Moine, Charguéraud, and Pottier [2022] propose the only formal verification of a transient data

structure that we are aware of. They verify both functional correctness and time complexity of a

transient stack in Separation Logic, using CFML [Charguéraud, 2022]. They represent the shared

mutable state between snapshots using a dedicated assertion. Thanks to Iris support for monotone

ghost state, we do not need such an assertion: our specifications are simpler.
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7 Future Work
Verification. We verified the persistent core of Store, forcing us to build a precise model of the

subtle implementation. In order of expected difficulty, next steps are first, to include complexity

bounds in the specifications, and second, to extend the mechanized proofs to the semi-persistent

API, which requires invalidating snapshots (and transactions).

Custom operations. Store currently supports a single mutable datatype, namely references. This

is enough, as all mutable datatypes can be built on top of mutable references. For example, one can

define a snapshottable dynamic array as a store reference over an array of store references, and

build snapshottable hashtables on top of it.

We believe however that some datatypes would benefit performance-wise from being integrated

more directly into our stores, by extending our version nodes with higher-level operations – adding

a value to a dynamic array, writing a table at a given key, etc.

We are planning to use Store in the Alt-Ergo SMT solver [Bury, Clément, Coquereau, Conchon,

Contejean, Olivera, El Hara, Iguernlala, Lescuyer, Mebsout, Roux, and Villemot, 2015], which would

require support for custom operations.

One could of course hardcode such higher-level operations in the Store implementation (the

backtrackable trail of Z3 is hardcoded in this way), but we would prefer to let users define “custom

operations” following a certain abstract interface (the context-dependent objects of CVC5 provide

this). We have started working on this abstract interface and played with several iterations of this

idea; in particular, we believe that it is possible to combine custom operations with record elision.

A difficulty is to find the right balance between generality and performance: some interfaces are

more expressive than others, but they suffer from higher constant factors.

Confluence. Consider a user manipulating two snapshottable union-find graphs, each with its

own store. They may decide to “merge” the graphs together – and start unifying nodes from

both sides. We do not provide support for this. It is possible to just keep a product of stores, and

restore/capture them together (rustc does this), but better support for this use-case could be useful
in some scenarios – that we have not encountered yet.

Rebuilding. Journaled implementations, including Store, are optimized for “single-threaded”

computations where switching from one snapshot to another is rare. Their performance breaks

down if trying, for example, to evolve two different versions in lockstep. This is a limit to the

generality of our implementation. Improving on this probably requires being able to track several

copies of the “global state” simultaneously. For example, one could ask to rebuild a given snapshot, a

costly operation that would turn it into an independent copy of the state – in particular, its validity

would not depend on active transactions anymore.

The algorithmics literature studies how to perform this rebuilding implicitly, whenever edit chains

become long enough that it is worth it – see in particular Chuang [1994, 1992]. This introduces

other costs, in particular in space, and makes it harder for users to reason about performance. We

would rather keep this an explicit operation.

Our current implementation choice, where each reference really has a unique field storing its

current state – instead of being an index into a copiable structure – is in tension with rebuilding,

we do not see how to do it. It seems challenging to offer this capability without hurting constant

factors and/or our memory-liveness properties (Section 2.5).
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GHC, Scala 2 and 3, Rust, OCaml), SAT/SMT solvers (CVC5, Z3) and constraint solvers (Facile,

choco-solver).

Type checkers. The GHC type-checker does not implement backtracking of any form.
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The Scala 2 type-checker implements journaled backtracking for its type inference variables,

a simple semi-persistent implementation with a global list of undo actions.
7
. No record elision.

Interestingly, another custom undo log is maintained in the function inliner – the project could

benefit from generic snapshottability support.

The Scala 3 type-checker implements a snapshot/restore interface for the entire type-checking
state

8
, but the snapshot logic is intentionally trivial as all this state is maintained in fully persistent

data structures. (Looking for use-cases of the snapshot function shows all the places where the

type-checker resorts to backtracking.)

The Rust type-checker implements “undo logs” for its mutable state, using the undo_log module

of the ena crate we mentioned earlier. Because undo logs are homogeneous, different components

of the type-checking state are stored in different undo logs. A module in the type-checker gathers

all these logs
9
, with a single function to snapshot and restore them all at once.

The OCaml type-checker implements a snapshottability mechanism for its type variables, whose

implementation is also inspired by (or a rediscovery of) Baker.
10
. The implementation seems to

support full persistence, but it seems that it is only used in a semi-persistent way in the compiler

codebase. This implementation performs a simplified form of record elision, based on the birth

date of the reference rather than the timestamp or generation of its last write. Indeed, each type

variable has a unique identifier implemented as consecutive integers starting at 0, which can also

serve as a “birth date” for the type variable. The snapshot implementation tracks the value of the

type identifier counter when the last snapshot was taken. When performing a write on a type, it

performs record elision if the type has a higher identifier than the last snapshot – it was created

after the snapshot was taken. This heuristic is less precise than our record elision, but it comes

for free once type identifiers are there. It seems fairly effective for a type-checker due to a sort of

generational phenomenon: most type variables are modified a lot shortly after they are created,

and more rarely afterward. (Disabling this form of elision makes type-checking about 5% slower on

some files of the compiler codebase.)

Constraint solvers and SAT/SMT solvers. Based on discussions with implementors of automated

theorem projects, we conjecture that all SMT solvers include some version of a general snapshot-

table store – but of course they did not tell anyone until we explicitly asked them. The only explicit

mention we found is in the recent overview paper on CVC5 [Barbosa, Barrett, Brain, Kremer,

Lachnitt, Mann, Mohamed, Mohamed, Niemetz, Nötzli, Ozdemir, Preiner, Reynolds, Sheng, Tinelli,

and Zohar, 2022], which describes “Context-Dependent Data Structures” (Section 2.4)
11
, and cur-

rently supports context-dependent maybe/option values, append-only lists, dequeues, insert-only

hashsets, and hashmaps. Z3 simply adds support for adding arbitrary edit events on the “trail”, and

does not seem to support record elision.
12
The implementations in SMT solvers are semi-persistent,

and their API is influenced by the internal vocabulary of SAT search algorithms; typically, one does

not backtrack to a given snapshot, but to a “decision level”.

Constraint-based solvers seem to also implement semi-persistent snapshottable structures, and

we have found implementations of record elision, which is relatively natural in the semi-persistent

7
https://github.com/scala/scala/blob/2429854/src/reflect/scala/reflect/internal/tpe/TypeConstraints.scala#L26-L76

8
https://github.com/scala/scala3/blob/0e36424/compiler/src/dotty/tools/dotc/core/TyperState.scala#L29-L43

9
https://github.com/rust-lang/rust/blob/9afdb8d1/compiler/rustc_infer/src/infer/undo_log.rs#L19-L32

10
https://github.com/ocaml/ocaml/blob/572aeb5f/typing/types.ml#L490-L514, https://github.com/ocaml/ocaml/blob/572a

eb5f/typing/types.ml#L755-L759, https://github.com/ocaml/ocaml/blob/572aeb5f/typing/types.ml#L851-L874

11
https://github.com/cvc5/cvc5/blob/92caabc7/src/context/context.h

12
https://github.com/Z3Prover/z3/blob/2880ea39/src/util/trail.h
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case. We mentioned Facile, an OCaml implementation, but for example the Java constraint solver

choco-solver also has support for generic “trails”, and performs record elision
13
.

B Macrobenchmarks Details
This appendix contains the full details on the macrobenchmarks mentioned in Section 5.3.

B.1 System F Type-Checking in ttps://gitlab.inria.fr/fpottier/infernoInferno
The Inferno project implements type-inference for a small ML language, and for well-typed terms it

produces a “witness” or an “elaboration”, which is an explicitly-typed version of the input program

in a variant of System F. Inferno includes a type-checker for this explicitly language, which is much

simpler than type inference and can be used to catch bugs in the type inference machinery.

This explicit type checker uses a Union-Find data structure to check equality between types.

We worked on a prototype extension of Inferno with GADTs, which required to add backtracking

to the Union-Find graph of System F types to support local type-equality assumptions that are

undone when leaving the scope of a GADT equation.

This was our initial motivation for implementing Store, and an ideal scenario for journaled

implementations. Vector is a bad choice because we are in the “large support” worst-case: most

backtracking points (that is, pattern-matching clauses containing GADTs) are short-lived and

modify only a few Union-Find nodes. On the other hand, Map introduces an important overhead,

even when the code does not use GADTs.

Now that we have Store implemented we can replace Vector with it and compare performance.

We use Inferno’s own performance test, which is to generate a large random term (with a generator

design to produce well-typed terms), infer its type and check its explicitly-typed version.

The results in Figure 7a show that in this real program performing many other operations

than Store operations, using Vector is 1.3× slower than using our Store implementation, and

using Map is 4.2× slower. Adopting Store is easy and comes with a direct, noticeable performance

improvement.

The large random term type-checked in the test above does not contain any GADTs
14

(the

random generator does not know about them), so no snapshots are actually taken when running

this test. This is a best case for Vector – it does not suffer from the “large support” situation.

We do not have good, representative test programs that contain a reasonable frequency of GADT

constructs, but as a limit case we checked the performance of the type-checker on a small GADT

example – a very short program that only checks GADT features, checked 1000 times in a loop. The

results (below) should be taken with a grain of salt, as this is closer to microbenchmark territory

again. For this limit test shown in Figure 7b, the System F type-checker remains 4× slower with

Map than with Store, but using Vector now performs terribly, almost 70× slower, due to the “large

support” situation.

B.2 System F Type Inference with GADTs (Inferno)
The previous test measures the performance of type-checking of explicitly-typed terms in Inferno.

Inferno also uses a Union-Find data structure during inference of ML terms, performing inference

via unification as usual. As we explained previously, Inferno implements a transactional behavior

for unification of types: a single unification constraint is decomposed in many variable-variable

13
https://github.com/chocoteam/choco-solver/blob/efb697ea/solver/src/main/java/org/chocosolver/memory/trailing/En

vironmentTrailing.java, https://github.com/chocoteam/choco-solver/blob/efb697ea/solver/src/main/java/org/chocosolve

r/memory/trailing/StoredInt.java#L33-L48

14
The implementation of the type-checker must support GADTs, and thus use a snapshottable store. For this specific

benchmark without GADTs, we tried using built-in references out of curiosity, and the performance is the same as Store.
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unifications, but if any of those fail, we revert all changes to the inference state caused by this

unification constraint in order to generate clear error messages. We measure the type-inference

work for (again) a large randomly-generated ML term, with our Union-Find graph instantiated by

different store implementations.

This workload has a relatively high number of backtracking points, most of which perform little

work (most type-type unification are on small types that perform few variable-variable unifications).

This workload is a worst-case scenario for full-copy implementations such as Vector, but it is
a best case for full-persistence implementations such as Map. There are no nested transactions,

so François Pottier’s TransactionalRef implementation can be used – in fact, it was designed

precisely for this use-case, so it is the gold standard for this test.

We see in Figure 7c that Store has the same performance as TransactionalRef despite being
much more general; Map is much slower, and Vector is unacceptably slow.

B.3 Random Generation of Well-Typed Programs
This macrobenchmark comes from an independent research project, also related to type-inference

but with a codebase separate from Inferno. The program is a research prototype exploring the use

of constraint-based type inference for random generation of well-typed programs. The overall idea

is that instead of writing random generators that contain typing-checking logic to guarantee well-

typedness, we can combine a type-agnostic program generator and a random-generation-agnostic

typechecker by interleaving random generation steps with constraint-solving step. For more details,

see a preliminary technical report at Scherer [2024], which links to our prototype implementation.

In this program, the entire state of the constraint solver is persistent. We can express this

using our persistent snapshots. In contrast, it would be fairly difficult to use the semi-persistent

API in a structured way, because the random generation is provided by a search monad using

a standard interface, which does not provide callback points for backtracking operations. This

example validates the expressivity benefits of the persistent API.

The workload contains a very high number of backtracking points (one per term-former in the

AST of the generated program), with relatively few operations on the solver state in-between.

This is a best case for a full-persistence implementation such as Map, but we see in Figure 7d that

using Store instead still provides clear performance benefits: we measured a 27% performance

improvement on a specific run of the random term generator.

B.4 Sudoku Solver
We wanted to test backtracking programs that are not doing type-checking of any form. We are

interested in using Store in SAT or SMT context, but SAT/SMT engines have deeply ingrained

forms of backtracking and it is not so easy to port existing solvers to Store. Instead we looked for

Sudoku solvers written as constraint-solving programs, which are typically simpler. We found an

OCaml implementation of a Sudoku solver
15
written by Alain Frisch in 2005 with performance in

mind, and we adapted it to use Store.
A constraint-based Sudoku solver operates on a “board state”, which tracks the possible values

(the “domain”) of each board position. Whenever the domain of a board position is refined, we

propagate constraints to other positions whose domain could be refined in turn (in the same row,

column or block). Once all constraints have been propagated fully, we have to perform backtracking:

choose a yet-undetermined position, and try each of the possible value of its domain – backtracking

any state change after each attempt fails. Sudoku solvers must represent the board state efficiently

15
http://alain.frisch.fr/sudoku.html
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(this solver uses an array of integers, where integers are used as bitsets to represent the domains),

propagate constraints efficiently, and use good heuristics to decide which position to backtrack on.

Alain Frisch’s Sudoku solver uses a hand-crafted “full copy” implementation, that copies the

full board state at each backtracking point. The implementation is careful about reusing buffers to

avoid allocations when possible. The state is fixed and relatively small, so copy is cheap – we used

a test benchmark on a 25×25 sudoku board, so the state is an array of 625 integers.

base is Alain Frisch’s hand-crafted implementation, and it remains the fastest. Store adds

20% overhead. Store (persistent) uses our persistent API rather than our semi-persistent API;

it performs slightly worse at 30% overhead. Finally, Vector is 3× slower. Vector is noticeably

slower because it induces a memory representation that is less compact than the hand-written

implementation
16
and cannot reuse buffers.

Our conclusion is that even though Store does not beat a hand-crafted full-copy implementa-

tion of backtracking in this case, its low overhead remains acceptable on backtracking-intensive

programs. Using Store instead of carefully copying temporary buffers may be a good deal for some

programmers.

C Detailed Microbenchmarks Results and Analyses
We introduce our microbenchmarks in Section 5.2, but for reasons of space we only gave a high-level

summary of the results. The current appendix contains more details on our benchmarking setup,

the results of each benchmark, and a summary analysis of the results.

C.1 Methodology
Performing accurate microbenchmarks is very difficult.

We account for runtime noise by running benchmarks many times, and can provide intervals /

error estimates (we use the hyperfine tool). All the micro benchmarks are run on a machine with

an AMD Ryzen Threadripper 3990X processor and 264Go of RAM. Hyper-threading and frequency

scaling are disabled, the frequency is set to its minimum of 2.2GHz, and the benchmarks are run

sequentially on a single isolated core, so that the noise level of running the same binary repeatedly

is very low.

Other sources of measurement biases are harder to detect and control. Our general approach is

to ensure that we know how to explain the benchmark results, and carefully study each result that

we do not understand – more often than not, this comes from a measurement bias that must be

fixed to give accurate results. For example, we found performance swings of up to 10% due to code

alignment effects. (We now run our benchmarks with 16 different alignments to control this.)

In our opinion, themain threat to validity of the results below is that we have had access one noise-

controlled benchmarking machine with a specific AMD ThreadRipper processor, and that some of

the fine-grained qualitative comparisons may be different on other processors or architectures. This

is an issue with microbenchmarks, which give a very detailed view of performance but are more

sensitive to system differences. The macrobenchmark discussed in Section 5.3 are more robust in

that regard.

C.2 Benchmark Parameters
All benchmarks are purely synthetic, and they are parametrized by the following environment

variables.

16
To measure the importance of the compact memory implementation, we replaced the int array implementation of Alain

Frisch by an exactly equivalent int ref array implementation, introducing one indirection in the memory represent. This

introduces a 48% overhead, larger than Store.
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ROUNDS the benchmark does *something* in a loop, ROUNDS time; the total time should scale

linearly with this variable (but this may not be just a for loop, there may be an environment

growing from one round to the next).

NCREATE, NREAD, NWRITE : the logarithm of the number of references to create,read,write

each round.

We use three sets of parameters to simulate different workloads:

default represents our default workload where backtracking operations are rare, and reads

dominate writes. We use NCREATE=10, NREAD=16, NWRITE=12, with 4*1024 writes and

32*1024 writes per transaction. All references are touched in each transaction, so this is an

ideal case for Vector.
capture-heavy tests a limit case where backtracking operations are much more frequent, with

only a handful of get/set calls per transaction. We use NCREATE=2, NWRITE=4, NREAD=6,

with 16 writes and 64 reads per transaction (spread over 4 references).

capture-heavy-large-support is a variant of capture-heavy where there are many refer-

ences around, but only a few of them are touched by each transaction. We use NCREATE=10,

NWRITE=4, NREAD=6, with 16 writes and 64 reads per transaction (spread over 1024 refer-

ences; most references are untouched at each round).

All benchmarks where it is applicable were run in an “abort” configuration (each round is within

a failed transaction that must be rolled back) and a “commit” configuration (each round is within a

successful transaction that is not rolled back).

C.3 Per-Benchmark Results and Analysis
C.3.1 Raw.

Time (ms) Relative

Mixed get/set workload

Ref 102.9 ± 0.98 1.00 ± 0.01

BacktrackingRef 104.9 ± 0.11 1.02 ± 0.01

Store 106.6 ± 1.59 1.04 ± 0.02

Facile 109.3 ± 0.21 1.06 ± 0.01

TransactionalRef 117.0 ± 1.43 1.14 ± 0.02

Vector 166.8 ± 0.10 1.62 ± 0.02

Colibri2 287.2 ± 0.15 2.79 ± 0.03

Map 2664.4 ± 6.79 25.90 ± 0.26

Ref is the gold standard for this benchmark. Store, BacktrackingRef and Facile have a small

overhead (around 5%). TransactionalRef is a bit slower (around 15% overhead): it performs two

writes per set instead of one. Vector is even slower (60% overhead), probably due to additional

indirections and bound checks. Colibri2 is almost 3 times slower due to the extra checks on each

read. Map is an order of magnitude slower than the rest (25-27 times).

TransactionalRef has a slower set operation in the absence of backtracking (two polymorphic

writes instead of one), but it keeps the same code in the presence of backtracking (thanks to

its restriction to non-nested transactions). It will perform better (relatively to BacktrackingRef,
Facile, Store) in the Transactional benchmarks that follow.
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C.3.2 Transactional, `abort-Only. In a transactional scenario, Ref cannot be used. Store, TransactionalRef,
BacktrackingRef and Facile are the fastest and all within 5% of each other; Vector is about 40%

slower, Colibri2 is about 2× slower and Map is 22× slower.

Time (ms) Relative

Mixed get/set workload

Store 92.9 ± 0.38 1.00 ± 0.01

Facile 93.9 ± 0.15 1.01 ± 0.00

TransactionalRef 94.3 ± 0.65 1.02 ± 0.01

BacktrackingRef 96.1 ± 0.66 1.03 ± 0.01

Vector 128.4 ± 0.11 1.38 ± 0.01

Colibri2 197.7 ± 0.48 2.13 ± 0.01

Map 2014.1 ± 5.32 21.69 ± 0.11

Get-only workload. Vector is 70% slower than the other implementations on the “get” variant,

partially due to performing many unnecessary copies.

Time (ms) Relative

Get

Store 97.5 ± 0.11 1.00 ± 0.00

TransactionalRef 97.5 ± 0.10 1.00 ± 0.00

BacktrackingRef 97.5 ± 0.22 1.00 ± 0.00

Facile 97.5 ± 0.10 1.00 ± 0.00

Vector 170.6 ± 0.11 1.75 ± 0.00

Colibri2 217.6 ± 0.11 2.23 ± 0.00

Map 2680.7 ± 15.91 27.51 ± 0.17

Varying ratios of set. For set-only benchmarks we measure three different ratios of write: in

“set few”, only one out of 16 references is modified (once) at each round. In “set 1”, each reference is

modified exactly once. In “set 16”, each reference is modified 16 times.

Time (ms) Relative

Set few

TransactionalRef 58.1 ± 0.65 1.00 ± 0.02

Facile 63.4 ± 2.55 1.09 ± 0.05

Store 69.0 ± 2.08 1.19 ± 0.04

BacktrackingRef 77.6 ± 1.31 1.34 ± 0.03

Colibri2 91.5 ± 0.91 1.58 ± 0.02

Vector 168.7 ± 0.29 2.91 ± 0.03

Map 236.0 ± 1.34 4.06 ± 0.05
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Time (ms) Relative

Set 1

Vector 70.1 ± 0.42 1.00 ± 0.01

TransactionalRef 135.7 ± 4.68 1.94 ± 0.07

Facile 155.2 ± 4.21 2.21 ± 0.06

Store 168.7 ± 5.23 2.41 ± 0.08

BacktrackingRef 189.4 ± 2.29 2.70 ± 0.04

Colibri2 242.3 ± 3.38 3.46 ± 0.05

Map 714.9 ± 5.88 10.20 ± 0.10

Time (ms) Relative

Set 16

Vector 70.7 ± 0.15 1.00 ± 0.00

Store 78.4 ± 1.42 1.11 ± 0.02

BacktrackingRef 83.5 ± 0.57 1.18 ± 0.01

Facile 84.8 ± 1.37 1.20 ± 0.02

TransactionalRef 92.9 ± 0.18 1.31 ± 0.00

Colibri2 119.3 ± 0.91 1.69 ± 0.01

Map 1133.8 ± 7.29 16.04 ± 0.11

Vector shines on the “set 1” variant where it is 2× faster than other implementations. The “set

1” variant is the best-case scenario for the “full copy” approach, since all other implementations

degrade to also doing a full copy with worse constant factors. This advantage goes away if many set
operations are performed in a transaction and record elision kicks in: in the “16 set” variant, Vector
is only about 10-15% faster than the other implementations. It also goes away if only a subset of the

references are modified: in the “set few” variant, it is 3× slower than the best implementation.
17
.

The relative performance of TransactionalRef can be explained by its set implementation:

while its elided write is slower than the other journaled implementations, its non-elided write is

simpler due to not supporting nesting. This gives it a performance boost in scenarios that do not

allow record elision (the “set 1” variant and the “large” capture-heavy variant); that goes away as

the number of writes per reference increases (in the “16 set” variant and “small” capture-heavy

varieant).

More generally, the difference in performance between the journaled implementations boils

down to relative efficiency of elided and non-elided writes. The default and set 16 configurations

compare write performance, and the set and set few configurations compare non-elided write

performance. TransactionalRef has a single write implementation that is faster than non-elided

writes of other implementations but slower than their elided writes. Facile has fast non-elided
writes, but slow elided writes. Store has fast elided writes, but slow non-elided writes (with an

extra caml_modify compared to Facile). BacktrackingRef has slow elided and non-elided writes.

Colibri2 is generally slow, partially due to get operations being slower but also set operations
are slower in general.

17
In this particular benchmark, we find that the break-even point is when around one-fourth of the references are modified

per transaction.
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Capture-heavy variants. The Map implementation has a much smaller overhead in the “small”

capture-heavy variant; however, even in this ideal scenario (few references and few read/write

operations per transaction), it is still twice as slow as the journaled implementations. When the

number of references increases, the logarithmic overhead shows up, as in the “large” capture-heavy

variant – where Vector also performs much worse.

Time (ms) Relative

Capture-heavy, small support

Facile 45.5 ± 0.49 1.00 ± 0.02

Store 48.9 ± 1.07 1.07 ± 0.03

TransactionalRef 50.2 ± 0.40 1.10 ± 0.01

BacktrackingRef 51.8 ± 0.87 1.14 ± 0.02

Vector 62.7 ± 0.38 1.38 ± 0.02

Map 101.9 ± 0.37 2.24 ± 0.03

Colibri2 160.4 ± 1.11 3.52 ± 0.04

Time (ms) Relative

Capture-heavy, large support

TransactionalRef 80.6 ± 0.72 1.00 ± 0.01

Facile 85.4 ± 1.59 1.06 ± 0.02

Store 93.7 ± 2.96 1.16 ± 0.04

BacktrackingRef 98.8 ± 0.90 1.23 ± 0.02

Colibri2 133.7 ± 0.50 1.66 ± 0.02

Map 443.9 ± 3.73 5.51 ± 0.07

Vector 568.8 ± 0.75 7.06 ± 0.06

C.4 Transactional, `commit-Only
The results for commit-only transactional benchmarks are similar for most implementations, except

for Colibri2 which does not support efficient commit operations. The commit operation for Store
is marginally slower than for the other implementations, but still competitive.

Facile has a very efficient commit operation, which allows it to shine on these microbenchmarks.

This is due to an optimization made by Facile when calling commit on the first transaction in the

stack, so that no transctions remain after the call to commit: instead of walking back the transaction
stack, Facile throws it away entirely. This advantage goes away for nested transactions.

Time (ms) Relative

Mixed get/set workload

Facile 89.7 ± 0.53 1.00 ± 0.01

Store 91.8 ± 0.44 1.02 ± 0.01

TransactionalRef 93.9 ± 0.19 1.05 ± 0.01

BacktrackingRef 94.2 ± 0.88 1.05 ± 0.01

Vector 128.5 ± 0.07 1.43 ± 0.01

Colibri2 298.6 ± 0.61 3.33 ± 0.02

Continued on next page
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Time (ms) Relative

Mixed get/set workload

Map 1996.5 ± 10.18 22.27 ± 0.17

Time (ms) Relative

Get

Store 97.4 ± 0.22 1.00 ± 0.00

Facile 97.5 ± 0.09 1.00 ± 0.00

BacktrackingRef 97.5 ± 0.23 1.00 ± 0.00

TransactionalRef 97.5 ± 0.10 1.00 ± 0.00

Vector 170.6 ± 0.10 1.75 ± 0.00

Colibri2 219.1 ± 0.16 2.25 ± 0.01

Map 2398.4 ± 11.95 24.62 ± 0.13

Time (ms) Relative

Set few

Facile 43.7 ± 0.94 1.00 ± 0.03

TransactionalRef 55.3 ± 1.18 1.27 ± 0.04

BacktrackingRef 56.3 ± 1.09 1.29 ± 0.04

Store 58.9 ± 2.31 1.35 ± 0.06

Vector 166.4 ± 0.31 3.81 ± 0.08

Map 238.0 ± 2.28 5.45 ± 0.13

Colibri2 361.3 ± 1.35 8.28 ± 0.18

Time (ms) Relative

Set 1

Vector 69.4 ± 0.11 1.00 ± 0.00

Facile 111.4 ± 2.15 1.61 ± 0.03

TransactionalRef 135.4 ± 4.40 1.95 ± 0.06

Store 151.8 ± 0.63 2.19 ± 0.01

BacktrackingRef 154.7 ± 3.08 2.23 ± 0.04

Map 808.5 ± 6.12 11.65 ± 0.09

Colibri2 925.4 ± 3.59 13.34 ± 0.06

Time (ms) Relative

Set 16

Vector 70.7 ± 0.25 1.00 ± 0.01

Store 77.2 ± 0.37 1.09 ± 0.01

BacktrackingRef 80.3 ± 0.31 1.14 ± 0.01

Continued on next page
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Time (ms) Relative

Set 16

Facile 80.6 ± 0.44 1.14 ± 0.01

TransactionalRef 92.7 ± 0.22 1.31 ± 0.01

Colibri2 183.8 ± 2.39 2.60 ± 0.04

Map 1168.2 ± 8.07 16.53 ± 0.13

Time (ms) Relative

Capture-heavy, small support

Facile 45.5 ± 0.49 1.00 ± 0.02

Store 48.9 ± 1.07 1.07 ± 0.03

TransactionalRef 50.2 ± 0.40 1.10 ± 0.01

BacktrackingRef 51.8 ± 0.87 1.14 ± 0.02

Vector 62.7 ± 0.38 1.38 ± 0.02

Map 101.9 ± 0.37 2.24 ± 0.03

Colibri2 160.4 ± 1.11 3.52 ± 0.04

Time (ms) Relative

Capture-heavy, large support

Facile 60.4 ± 1.10 1.00 ± 0.03

TransactionalRef 71.0 ± 0.40 1.18 ± 0.02

Store 72.9 ± 1.71 1.21 ± 0.04

BacktrackingRef 73.0 ± 0.93 1.21 ± 0.03

Colibri2 386.0 ± 1.59 6.39 ± 0.12

Map 437.1 ± 7.06 7.23 ± 0.18

Vector 561.3 ± 1.94 9.29 ± 0.17

C.4.1 `Backtracking.

Time (ms) Relative

Implementation

Vector 216.9 ± 0.21 1.00 ± 0.00

Store 273.3 ± 0.65 1.26 ± 0.00

Facile 290.7 ± 1.11 1.34 ± 0.01

BacktrackingRef 309.5 ± 1.04 1.43 ± 0.01

Colibri2 494.3 ± 0.91 2.28 ± 0.00

Map 3464.2 ± 5.18 15.97 ± 0.03

This benchmark tests deeply nested backtracking chains, with our standard set parameters where

all references are set 4 times and read 16 time in each round. This scenario is again favorable to our

full-copy baseline Vector, with “journaled” implementations being somewhat slower at 29%-43%

overhead. Map remains very slow, 16× slower than Vector. (TransactionalRef does not support

nested transactions, so it cannot be used here.)

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 248. Publication date: August 2024.



248:38 Clément Allain, Basile Clément, Alexandre Moine, and Gabriel Scherer

C.4.2 Persistent API. Finally, we use the Backtracking benchmark, which performs deeply nested

backtracking, to measure the performance difference between the persistent and semi-persistent

operations of Store – we run the same workload with the tentatively function reimplemented

on top of capture/restore. On this test, we observe a 50% overhead for the persistent API.

Time (ms) Relative

Implementation

Backtracking-abort 275.9 ± 0.74 1.00 ± 0.00

Backtracking-persistent 413.6 ± 3.19 1.50 ± 0.01

Remark. We conclude that there are some workloads where the semi-persistent API provides a

noticeable performance difference. The difference, however, remains fairly small for a microbench-

mark, and would typically not be noticeable for many end-user applications.
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