
Mining opportunities for unique inhabitants in dependent programs

Gabriel Scherer, PhD student, Gallium (INRIA Paris-Rocquencourt)

1 Research Background

My ongoing work focuses on types that have a unique inhabitant – modulo program equivalence. If we were
able to detect when such types appear in a program, we could infer the corresponding code, releaving the
programmer from the obligation to write the less-interesting parts of the program.

The long-term goal is to be able to detect types with unique inhabitants, and provide programmers of
typed languages with a new feature, a joker that can be used as a term (of any type), and is given a meaning
after the program has been type-checked. If the expected type at this point has a unique inhabitant, elaborate
into it, otherwise fail by warning the programmer of the ambiguity. Note the contrast with proof-assistant
automation that is only concerned with inhabitation, as the dynamic identity of proof witnesses is neglected.

Our speculation is that this feature would be particularly useful for the “boring” parts of a program,
the glue that is around the places where the real semantics is expressed; when you feel bored at the idea of
writing some part of your code, it’s probably because the compiler could write it for you.

We think that the availability of this feature, and a correspondingly adapted type-system design , would
promote di↵erent programming styles, alternating code and type inference, with more types with unique in-
habitant than in existing code. Before investing considerable e↵orts in this direction, however, it is important
to look at the existing codebases to check that this wouldn’t remain purely anecdotical.

2 Proposed talk

In this talk I propose to discuss the occurrence (or lack thereof) of types with unique inhabitants in existing
dependently-typed programs. I spent some time looking at the research literature for examples of programs
written in dependently typed languages (mostly Coq and Agda, but not only), looking at whether program
fragments could have been inferred by our hypothetical joker.

The conclusions are that it very much depends on the programming style. In broad strokes, we could
say there is a split between programs that are ”implemented, then proved correct”, and those that are
”implemented correctly” in a single step. The former will not necessarily have much stronger types than in
a ML or Haskell implementation, and draw their safety from an adjoined lemma. The latter will use refined
types directly in the implementation, providing strong invariants, and more opportunities of types with a
unique inhabitant. There is an ongoing debate and experimentation about which of these styles should be
preferred when writing programs – and more generally software engineering principles for dependently typed
programming. We think program-inference tools could add an interesting perspective.

Finally, we were surprised to find allies among the seemingly “less dependent” layered languages of the
LF tradition, in particular VeriML. In those languages, the most powerful typing features are restricted
to a second class of ”logic objects” which do not include the general computation mechanisms of the host
language. A consequence of this layering is that the mathematical assertions expressible in the language do
not talk about the computations defined in the same program; the first style of implementing then proving
correct is not available.

For this reason, VeriML programs are troves of opportunities for code inference directed by types with
unique inhabitants — restricted by the type of type witnesses built along computations. Interestingly, the
VeriML designers have not considered code inference from the logical types, but instead emphasized the
possiblity of stronger type inference in the future; relying on the witness construction code (that we would
allow to omit) to remove type annotations.

1



(This page contains non-essential appendices that can be skipped for review.)

A Sources

We would like to demonstrate concrete examples taken from existing dependently typed programs, as de-
scribed in the following papers. There is a definite tropism towards programs that manipulate programs
(type checkers, syntax representation, proof automation...), which we think comes from the available litera-
ture rather than a selection bias.

References

[BHKM09] Nick Benton, Chung-Kil Hur, Andrew Kennedy, and Conor McBride. Strongly Typed Term
Representation in Coq. 2009.

[Cha08] James Chapman. Type Theory should eat itself. 2008.

[Jef12] Alan Je↵rey. LTL types FRP. 2012.

[Sta13] Antonios Stampoulis. VeriML: A dependently-typed, user-extensible and language-centric ap-
proach to proof assistants. 2013.

B Related work, and a quote

There is existing work in the setting of interactive tooling (IDEs, etc.), doing type-directed name completion
for example. In these works, the idea is more to provide lots of di↵erent suggestions, using the right scoring
heuristics so that the user’s final choice is, on average, in the first few results. This is vastly di↵erent from our
principled (and correspondingly less often applicable) inference, based on absolute certitude of the correction
of the choice, which also makes it suitable in non-interactive workflows, or without user validation: we are not
*required* to show to the programmer the skeleton elaborated by our joker before the program execution.

We are aware that using types for code inference is an existing idea that is maybe part of the folklore
of the dependent type community, as eloquently described by Conor McBride in 2011 – quote attached
below. However, to our knowledge, the work on unique inhabitants is sparse, and has not yet found practical
applications for program writing, in dependently typed systems or otherwise.

Conor McBride, ”Why do programming languages use type system?”
http://www.quora.com/Why-do-programming-languages-use-type-systems

Whilst I don’t want to gainsay the importance of types as a source of corrective raspberry-
blowing, I would like to o↵er the prospect that types might have an active role to play, structuring
the process of program inference. Overloading allows you to get rid of boring lumps of code if
it can be figured out from types. Datatype-generic programming uses representations of the
structure of types to calculate specific instances of algorithm-schemes. Dependent type systems
often allow run-time-relevant values to be inferred silently from type information.

This position constitutes a change of viewpoint in the purpose of types. If programs worked
just the same with the types rubbed out, then types would represent a form of piety often
inadequate with respect to testing. It’s when types contribute information to algorithm selection,
design statements which program definitions need merely refine, that they constitute a significant
win.

To be fair, even in last century’s typed languages, types had a beneficial organisational e↵ect
on programmers. This century, it’s just possible types will have a comparable e↵ect on programs.
Types are concepts and now mechanisms supporting program-discovery as well as error-discovery.

2


