
Deciding unique inhabitants with sums

(work in progress)

Gabriel Scherer, Didier Rémy

INRIA – Gallium

Our ongoing work focuses on types that have a unique inhabitant—modulo program equiva-
lence. If we were able to detect when such types appear in a program, we could perform program
inference to releave the programmer from the obligation to write the less-interesting parts of
the program. Unicity of inhabitant is a strong form of principality: inference cannot make a
“wrong” guess as there is only one choice. This property can be contrasted to two different
notions, inhabited types and subtyping coercions, that it respectively refines and extends:

• The usual provability notion of “having at least an inhabitant”, which is the one of concern
when using strongly-typed lambda-calculi to prove mathematical facts. In this setting,
the dynamic semantics of terms is ignored, which makes it unsuited to program inference.

• The common programming notion of erasable subtyping between two types A ≤ B: in-
ference systems for subtyping can be seen as a restrictive type system for functions whose
terms have a computational interpretation which is always the identity function—when
it is inhabited, A ≤ B has a unique inhabitant. On the contrary, some types have unique
inhabitants that are not the identity functions, such as swap : ∀AB. (A∗B)→ (B ∗A).

To decide uniqueness, we must be able to enumerate the distinct terms at a given type.
As a first step, we consider the simply-typed lambda-calculus with arrows, product and sums.
We are looking for a term enumeration process that is complete, i.e., it does not miss any
computational behavior, and canonical, i.e., it has no duplicates. We propose an approach
based on saturation, with encouraging results, although termination is still a conjecture.

Computational completeness Some existing proof calculi, such as contraction-free cal-
culi [Dyc13], make simplifications designed to make provability decision tractable, but throw
away some behaviors, loosing computational completeness. The following rule, which drops a
function after its first invocation, preserves provability even in a contraction-free calculus:

Γ, A→ B ` A Γ, B ` C
Γ, A→ B ` C

Consider a datatype A ∗ (A → (A ∗ B)) of infinite streams of B with internal state A. If
the generating function is dropped after its first result, there is exactly one proof of A ∗ (A→
(A∗B)) ` B (getting the first element of the stream), while there are infinitely many observably
distinct programs at that type.

Focusing Focusing [And92] imposes a phase discipline on derivations by distinguishing in-
vertible and non-invertible inference rules—invertible rules are those whose inverse is derivable.
In absence of sums, focused proofs are in exact correspondance to β-short η-long proof terms;
it is computationally complete. Starting from a grammar for values and neutrals:

v ::= λ(x :A) v | (v, v) | n
n ::= n v | π1 n | π2 n | x

we can define the set Val(Γ ` A) of (distinct) values of type A in the environment Γ, along
with the set Ne(Γ ` A) of neutrals at this type, by lifting notations from terms to sets of terms:

1

Deciding unique inhabitants with sums; a work in progress Gabriel Scherer

Val(Γ ` A→ B) := λ(x :A) Val(Γ, x :A ` B)
Val(Γ ` A ∗B) := (Val(Γ ` A), Val(Γ ` B))
Val(Γ ` X) := Ne(Γ ` X) (X atomic)

Ne(Γ ` Ai) ⊇ πi Ne(Γ ` A1 ∗A2)
Ne(Γ ` B) ⊇ Ne(Γ ` A→ B) Val(Γ ` A)
Ne(Γ ` N) ⊇ {x | (x :N) ∈ Γ}

Note that Val is structurally recursive on the input type; it corresponds to the invertible rules.
On the contrary, Ne corresponds to non-invertible rules, and is defined as a least fixpoint: this is
where the aforementioned termination control techniques are necessary. The following property
is key to showing that this enumeration is canonical:

Lemma 1 (Canonicity of negative neutrals). For any n1, n2 ∈ Ne(Γ ` A), if n1 and n2 are
syntactically distinct, then they are distinct for contextual equivalence.

This specification can be turned into a decision procedure; termination arguments are of
two sorts. First, the subformula property gives a finite bound on the number of types that will
be considered. Second, cycles in the equations defining Ne (in particular types with an infinite
number of distinct inhabitants, such as Church integers X → (X → X) → X) can be worked
upon using a graph-based representation in the style of Wells and Yakobowski [WY04].

Unfortunately, focusing alone does not capture the notably difficult η-equivalence for sums.
Writing δ(e1, x.e2, y.e3) for (match e1 with inlx→ e2 | inr y → e3), the two following terms
correspond to distinct, but observationally equivalent, focused proofs of (1→ A+B)→ A+B:
(λ(f) δ(f 1, x. inlx, y. inr y)) and (λ(f) δ(f 1, x. inlx, y. δ(f 1, x′. inlx′, y′. inr y′))).

Saturation Coupling an enumeration of focused proofs with an equivalence checking proce-
dure for sums [Lin07] does not work, as there may be infinitely many redundant copies. The
main idea of these algorithms is to move sum elimination as high in the term as possible. We
thus propose to eliminate sums as early as possible during term generation, by simutaneously
eliminating all neutrals of any positive type P when the goal is itself a positive Q:

Val(Γ, x : (A+B) ` C) := δ(x, y.Val(Γ, y :A ` C), z.Val(Γ, z :B ` C))

Ne(Γ ` A1 +A2) ⊇i∈{1,2} σi Ne(Γ ` Ai)

Val(Γ ` Q) := Ne(Γ ` Q) ∪ (let ∆ = (∪P Ne(Γ ` P)) in Val(Γ,∆ ` Q))

This saturation process is complete and canonical. Remarkably, it is strongly related to the
notion of “maximal multi-focusing” [CMS08]; our proofs are also maximal in this sense.

While completeness and non-duplicability are relatively simple, termination is still a conjec-
ture. In addition to the “inner” non-termination related to the definition of Ne(Γ ` A) (infinite
number of distinct terms), there is now an “outer” termination problem of infinite alternance
of Val and Ne layers. Previous approaches gave either completeness and termination (focus-
ing, with duplicates) or canonicity and termination (incomplete provability calculi), while this
presentation is naturally complete and canonical, but not yet proved terminating.

References

[And92] Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. J. Log. Comput.,
2(3):297–347, 1992.

[CMS08] Kaustuv Chaudhuri, Dale Miller, and Alexis Saurin. Canonical sequent proofs via multi-
focusing. In IFIP TCS, pages 383–396, 2008.

[Dyc13] Roy Dyckhoff. Intuitionistic decision procedures since gentzen. In Advances in Proof Theory,
2013.

[Lin07] Sam Lindley. Extensional rewriting with sums. In TLCA, pages 255–271, 2007.

[WY04] J. B. Wells and Boris Yakobowski. Graph-based proof counting and enumeration with appli-
cations for program fragment synthesis. In LOPSTR, pages 262–277, 2004.

2

