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Why?
If the type of a program hole has a unique inhabitant, we can guess it.

This could be extremely convenient for:
@ over-specified program components, such as

> highly parametric ML libraries, eg. monadic call/cc
» dependently-typed programs (see DTP'13 talk)

@ trivial program glue: | forgot the parameter order, but only one choice
is typeable

Current such “tactics” are inhabitation-oriented, not unicity.
Good for proving, disappointing for programming.

(Related work on program/composition synthesis, Rehof et al.)



What do we already know?

Solved: Deciding inhabitation: provability in propositional intuitionistic
logic. [Dyc13]

Solved: Normalizing a term, deciding equivalence between two terms.
[ADHS01, BCF04, Lin07]

Instead of one or two terms, we want to work on all inhabitants at once.

Solved: in absence of abstract base types, types are finitely inhabited, and
we can enumerate them [AUO4].



Objectives

We want an algorithm to produce a sequence of inhabitants of [ - A that
is:

e complete: no program is missing (modulo =3,)
@ canonical: no two programs are equivalent

e terminating: you get the next element (or end) in finite time

Most of the work on inhabitation throws away computational
completeness. Example: subsumption optimization in forward methods.



Too Simple
First idea:

@ use any reasonable term enumeration procedure (with possible
duplicates): focused proof search, or Herbelin's LJT

@ then use equivalence testing to remove duplicates

(You could also discard non-normalized terms; non-locality issues)
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Too Simple

Problem: you may get infinitely many equivalent terms before the first
different one — if any.

f:(1-A+B)FA+B

f1

(5(f ]_, X1.01 X1, yl.f 1)

o(f 1, x1.01 x1, y1.0(f 1, xp.01 x2, yo.f 1))

(S(f ]_, X1.01 X1, yld(f ]_7 X2.01 X2, y2(5(f 17 X3.01 X3, y3.... )))

Not terminating — unless you embed more knowledge of sum equivalence
in the enumeration procedure.



Our approach: Saturation

Normalization /equivalence for sums has a non-local component:
“move sum eliminations as early in the term as possible”

When enumerating terms top-down, this suggests a saturation approach:
eliminate all sums as soon as possible.

“To find all elements of ' = A, find all C; such that I = C;, and look at
trivial proofs of I, Gy,...,C, F A"

This sounds impractical, but also pleasantly general.



Enumerating distinct terms — first without sums

Values and neutrals:

v = Ax:A)v | (v,v) | n

= nv T n ! ™2 n |

Enumerating values and neutrals:

Val(F+-A— B) = Ax:A)val(l,x:AF B)
Val(lF AxB) = (vVal(l'+ A), val(l' + B))
val(l - X) = Ne(l'F X) (X atomic)

Ne(TFB) D Ne(T+A— B)Val(l - A)

Ne(THA;)) D miNe(l' A xAy)

Ne(TEN) 2 {x]|(x:N)erl} (N negative: — %)

All such elements are in n-long B-normal form: canonicity.



Termination |

Of course some sets may be infinite: watch for cycles.

X, X > XFX

7‘ Ne(T F X)
val(l - X) AC@P/

val(l - X — X)

[WY04]
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You may have recognized the rules of a focused proof system.
Focusing suggests how to extend to sums.

Ne(r FAL+ A2) :—>i€{1,2} o Ne(r F A,)

Val(l,x:(A+ B) - C) :=d(x, y.val(l,y:At C), z.val(l,z: B+ C))

This set of rules is not complete yet: 1,(1 = X+ Y)F X+ Y
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Saturation, more precisely

We need the “all at once” counterpart of the focused rules
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Sat(l) O sat(Sat(lN))

11



Termination Il

Sat(lN) > T
val(l' - P) := Ne(Sat(l') - P) Sat(l) 2 UgNe(l'- Q)
Sat(l) O sat(Sat(l))

We don't really need to consider all Q. Sub-formula property.
Finitely many Q of interest: if we erase multiplicity, saturation terminates.

X, (X = (X+Y)F...

We could erase multiplicities to (0, 1, many).
Terminates, but | suspect it over-approximates.
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Conclusion

Claim: unicity is an interesting problem.

We have a clear idea of what we want.

We are complete, canonical, but termination is unclear.

Fruitful links with (multi-)focusing.

Hopefully appliable.
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