Deciding unique inhabitants with sums
(work in progress)

Gabriel Scherer, Didier Rémy

Gallium = INRIA

Does a given type have a unique inhabitant (modulo program
equivalence)?
Setting: STLC, +, %, abstract base types.

Does a given type have a unique inhabitant (modulo program
equivalence)?
Setting: STLC, +, %, abstract base types.

(A(x) t) u—p tlu/x] (t:A—= B) =, A\(x)t x

7T,'(t1,t2) —3 ti (t:A*B) = (7T1 t, mo t)

Does a given type have a unique inhabitant (modulo program
equivalence)?
Setting: STLC, +, %, abstract base types.

(A(x) t) u—p tlu/x] (t:A—= B) =, A\(x)t x
7T,'(t1,t2) —g ti (t:A*B) = (7T1 t, mo t)
(5(0’,’ t, x1.U1, X2.U2) —3 U,'[t'/X,']

V(K[Al + A2] : B), K[t] =n 5(t, X1.K[O'1 Xl], X2.K[0'2 X2])

Why?
If the type of a program hole has a unique inhabitant, we can guess it.

This could be extremely convenient for:
@ over-specified program components, such as

> highly parametric ML libraries, eg. monadic call/cc
» dependently-typed programs (see DTP'13 talk)

@ trivial program glue: | forgot the parameter order, but only one choice
is typeable

Current such “tactics” are inhabitation-oriented, not unicity.
Good for proving, disappointing for programming.

(Related work on program/composition synthesis, Rehof et al.)

What do we already know?

Solved: Deciding inhabitation: provability in propositional intuitionistic
logic. [Dyc13]

Solved: Normalizing a term, deciding equivalence between two terms.
[ADHS01, BCF04, Lin07]

Instead of one or two terms, we want to work on all inhabitants at once.

Solved: in absence of abstract base types, types are finitely inhabited, and
we can enumerate them [AUO4].

Objectives

We want an algorithm to produce a sequence of inhabitants of [- A that
is:

e complete: no program is missing (modulo =3,)
@ canonical: no two programs are equivalent

e terminating: you get the next element (or end) in finite time

Most of the work on inhabitation throws away computational
completeness. Example: subsumption optimization in forward methods.

Too Simple
First idea:

@ use any reasonable term enumeration procedure (with possible
duplicates): focused proof search, or Herbelin's LJT

@ then use equivalence testing to remove duplicates

(You could also discard non-normalized terms; non-locality issues)

Too Simple

Problem: you may get infinitely many equivalent terms before the first
different one — if any.

Too Simple

Problem: you may get infinitely many equivalent terms before the first
different one — if any.

f:(1-A+B)FA+B
f1

Too Simple

Problem: you may get infinitely many equivalent terms before the first
different one — if any.

f(l>A+B)FA+B
f1
(5(f]_, X1.01 X1, yl.f 1)

Too Simple

Problem: you may get infinitely many equivalent terms before the first
different one — if any.

f:(1-A+B)FA+B

f1
(5(f]_, X1.01 X1, yl.f 1)
o(f 1, x1.01 x1, y1.0(f 1, xp.01 x2, yo.f 1))

Too Simple

Problem: you may get infinitely many equivalent terms before the first
different one — if any.

f:(1-A+B)FA+B

f1

(5(f]_, X1.01 X1, yl.f 1)

o(f 1, x1.01 x1, y1.0(f 1, xp.01 x2, yo.f 1))

(S(f]_, X1.01 X1, yld(f]_7 X2.01 X2, y2(5(f 17 X3.01 X3, y3....)))

Not terminating — unless you embed more knowledge of sum equivalence
in the enumeration procedure.

Our approach: Saturation

Normalization /equivalence for sums has a non-local component:
“move sum eliminations as early in the term as possible”

When enumerating terms top-down, this suggests a saturation approach:
eliminate all sums as soon as possible.

“To find all elements of ' = A, find all C; such that I = C;, and look at
trivial proofs of I, Gy,...,C, F A"

This sounds impractical, but also pleasantly general.

Enumerating distinct terms — first without sums

Values and neutrals:

v = Ax:A)v | (v,v) | n

= nv T n ! ™2 n |

Enumerating values and neutrals:

Val(F+-A— B) = Ax:A)val(l,x:AF B)
Val(lF AxB) = (vVal(l'+ A), val(l' + B))
val(l - X) = Ne(l'F X) (X atomic)

Ne(TFB) D Ne(T+A— B)Val(l - A)

Ne(THA;)) D miNe(l' A xAy)

Ne(TEN) 2 {x]|(x:N)erl} (N negative: — %)

All such elements are in n-long B-normal form: canonicity.

Termination |

Of course some sets may be infinite: watch for cycles.

X, X > XFX

7‘ Ne(T F X)
val(l - X) AC@P/

val(l - X — X)

[WY04]

Val(TFA— B) = Ax:A)val(l,x:AF B)
Val(lF AxB) = (Val(l'+ A), val(l B))
val(l - X) = Ne(l' - X) (X atomic)

Ne(I F B)
Ne(I F A))
Ne(I F N)

Ne(lF'-A— B) val(l - A)
i Ne(I' = Ag % Ap)
{x](x:N)eTl} (N negative: — %)

U 1U U

You may have recognized the rules of a focused proof system.
Focusing suggests how to extend to sums.

10

Val(TFA— B) = Ax:A)val(l,x:AF B)
Val(lF AxB) = (Val(l'+ A), val(l B))
val(l - X) = Ne(l' - X) (X atomic)

Ne(I F B)
Ne(I F A))
Ne(I F N)

Ne(lF'-A— B) val(l - A)
i Ne(I' = Ag % Ap)
{x](x:N)eTl} (N negative: — %)

U 1U U

You may have recognized the rules of a focused proof system.
Focusing suggests how to extend to sums.

Ne(r FAL+ A2) :_>i€{1,2} o Ne(r F A,')

Val(l,x:(A+ B)F C) :=§(x, y.val(l,y:AF C), zval(l,z: B+ C))

10

Val(TFA— B) = Ax:A)val(l,x:AF B)
Val(lF AxB) = (Val(l'+ A), val(l B))
val(l - X) = Ne(l' - X) (X atomic)

Ne(I F B)
Ne(I F A))
Ne(I F N)

Ne(lF'-A— B) val(l - A)
i Ne(I' = Ag % Ap)
{x|(x:N)eTl} (N negative: — %)

U 1U U

You may have recognized the rules of a focused proof system.
Focusing suggests how to extend to sums.

Ne(r FAL+ A2) :—>i€{1,2} o Ne(r F A,)

Val(l,x:(A+ B) - C) :=d(x, y.val(l,y:At C), z.val(l,z: B+ C))

This set of rules is not complete yet: 1,(1 = X+ Y)F X+ Y

10

Saturation, more precisely

We need the “all at once” counterpart of the focused rules
(P, Q positives)

r l_noninv Q r7 Q I_inv P

r l_noninv P
=iy P

=iy P

(or a single multi-focusing rule)

11

Saturation, more precisely

We need the “all at once” counterpart of the focused rules
(P, Q positives)

r l_noninv Q F, Q I_inv P r l_noninv P
=iy P =iy P

(or a single multi-focusing rule)

Sat(l) > T
Val(l' - P) := Ne(Sat(l') - P) Sat(l) 2 UgNe(l'- Q)
Sat(l) O sat(Sat(lN))

11

Termination Il

Sat(lN) > T
val(l' - P) := Ne(Sat(l') - P) Sat(l) 2 UgNe(l'- Q)
Sat(l) O sat(Sat(l))

We don't really need to consider all Q. Sub-formula property.
Finitely many Q of interest: if we erase multiplicity, saturation terminates.

X, (X = (X+Y)F...

We could erase multiplicities to (0, 1, many).
Terminates, but | suspect it over-approximates.

12

Conclusion

Claim: unicity is an interesting problem.

We have a clear idea of what we want.

We are complete, canonical, but termination is unclear.

Fruitful links with (multi-)focusing.

Hopefully appliable.

13

ﬁ Thorsten Altenkirch, Peter Dybjer, Martin Hofmann, and Philip J. Scott.
Normalization by evaluation for typed lambda calculus with coproducts.
In LICS, pages 303-310, 2001.

[3 Thorsten Altenkirch and Tarmo Uustalu.

Normalization by evaluation for lambda™2.

In FLOPS, pages 260-275, 2004.

ﬁ Vincent Balat, Roberto Di Cosmo, and Marcelo P. Fiore.
Extensional normalisation and type-directed partial evaluation for typed lambda
calculus with sums.
In POPL, pages 64-76, 2004.

[@ Roy Dyckhoff.
Intuitionistic decision procedures since gentzen.
In Advances in Proof Theory, 2013.

ﬁ Sam Lindley.
Extensional rewriting with sums.
In TLCA, pages 255-271, 2007.

ﬁ J. B. Wells and Boris Yakobowski.
Graph-based proof counting and enumeration with applications for program
fragment synthesis.
In LOPSTR. pages 262—277. 2004.

