
GADTs meet Subtyping

Gabriel Scherer, Didier Rémy

Gallium – INRIA

2014

Gabriel Scherer, Didier Rémy (Gallium – INRIA) GADTs meet Subtyping 2014 1 / 21

A reminder on GADTs

GADTs are algebraic data types that may carry type equalities. Think of
the following simple type:

type expr =

| Int of int

| Bool of bool

It can be turned into the more finely typed:

type α expr =

| Int of int with α = int

| Bool of bool with α = bool

type α expr =

| Int : int -> int expr

| Bool : bool -> bool expr

We can now write the following:

let eval : ∀α. α expr→ α = function

| Int n -> n (* α = int *)

| Bool b -> b (* α = bool *)

Gabriel Scherer, Didier Rémy (Gallium – INRIA) GADTs meet Subtyping 2014 2 / 21

A reminder on GADTs

GADTs are algebraic data types that may carry type equalities. Think of
the following simple type:

type expr =

| Int of int

| Bool of bool

It can be turned into the more finely typed:

type α expr =

| Int of int with α = int

| Bool of bool with α = bool

type α expr =

| Int : int -> int expr

| Bool : bool -> bool expr

We can now write the following:

let eval : ∀α. α expr→ α = function

| Int n -> n (* α = int *)

| Bool b -> b (* α = bool *)

Gabriel Scherer, Didier Rémy (Gallium – INRIA) GADTs meet Subtyping 2014 2 / 21

A reminder on GADTs

GADTs are algebraic data types that may carry type equalities. Think of
the following simple type:

type expr =

| Int of int

| Bool of bool

It can be turned into the more finely typed:

type α expr =

| Int of int with α = int

| Bool of bool with α = bool

type α expr =

| Int : int -> int expr

| Bool : bool -> bool expr

We can now write the following:

let eval : ∀α. α expr→ α = function

| Int n -> n (* α = int *)

| Bool b -> b (* α = bool *)

Gabriel Scherer, Didier Rémy (Gallium – INRIA) GADTs meet Subtyping 2014 2 / 21

Motivating variance

Subtyping: σ ≤ τ means “all values of σ are also values of τ”.
Checked by set of decidable and incomplete inference rules.

σ1 ≥ σ′1 σ2 ≤ σ′2
(σ1 → σ2) ≤ (σ′1 → σ′2)

Variance annotations lift subtyping to type parameters.

type (-α, =β, +γ) t = (α ∗ β)→ (β ∗ γ)

α ≥ α′ β = β′ γ ≤ γ′

(α, β, γ) t ≤ (α′, β′, γ′) t

For simple types, this is easy to check.

Gabriel Scherer, Didier Rémy (Gallium – INRIA) GADTs meet Subtyping 2014 3 / 21

Variance for GADT: harder than it seems
Ok?

type +α expr =

| Val : ∀α. α→ α expr

| Prod : ∀βγ. β expr ∗ γ expr→ (β ∗ γ) expr

And this one?

type file_descr = private int (* file descr ≤ int *)

val stdin : file_descr

type +α t =

| File : file_descr -> file_descr t

let o = File stdin in

let o’ = (o : file_descr t :> int t)

Breaks abstraction!

let project : ∀α. α t→ (α→ file descr) = function

| File _ -> (fun x -> x)

project o’ : int -> file_descr

Gabriel Scherer, Didier Rémy (Gallium – INRIA) GADTs meet Subtyping 2014 4 / 21

Variance for GADT: harder than it seems
Ok?

type +α expr =

| Val : ∀α. α→ α expr

| Prod : ∀βγ. β expr ∗ γ expr→ (β ∗ γ) expr

And this one?

type file_descr = private int (* file descr ≤ int *)

val stdin : file_descr

type +α t =

| File : file_descr -> file_descr t

let o = File stdin in

let o’ = (o : file_descr t :> int t)

Breaks abstraction!

let project : ∀α. α t→ (α→ file descr) = function

| File _ -> (fun x -> x)

project o’ : int -> file_descr

Gabriel Scherer, Didier Rémy (Gallium – INRIA) GADTs meet Subtyping 2014 4 / 21

Variance for GADT: harder than it seems
Ok?

type +α expr =

| Val : ∀α. α→ α expr

| Prod : ∀βγ. β expr ∗ γ expr→ (β ∗ γ) expr

And this one?

type file_descr = private int (* file descr ≤ int *)

val stdin : file_descr

type +α t =

| File : file_descr -> file_descr t

let o = File stdin in

let o’ = (o : file_descr t :> int t)

Breaks abstraction!

let project : ∀α. α t→ (α→ file descr) = function

| File _ -> (fun x -> x)

project o’ : int -> file_descr

Gabriel Scherer, Didier Rémy (Gallium – INRIA) GADTs meet Subtyping 2014 4 / 21

Proving an example correct

type +α expr =

| Val : ∀α. α→ α expr

| Prod : ∀βγ. β expr ∗ γ expr→ (β ∗ γ) expr

When σ ≤ σ′, I know it’s safe to assume σ expr ≤ σ′ expr.
Because I could almost write that conversion myself.

let coerce (α ≤ α′) : α expr ≤ α′ expr = function

| Val (v : α) -> Val (v :> α′)
| Prod β γ ((b, c) : β expr ∗ γ expr) ->

(* α = (β ∗ γ), α ≤ α′; Prod? *)

(* if β ∗ γ ≤ α′, then α′ is of the form

β′ ∗ γ′ with β ≤ β′ and γ ≤ γ′ *)
Prod β′ γ′ ((b :> β′ expr), (c :> γ′ expr))

Upward closure for τ [α]:
If τ [σ] ≤ τ ′, then τ ′ is also of the form τ [σ′] for some σ′.

Holds for α ∗ β, but fails for file descr = private int.

Gabriel Scherer, Didier Rémy (Gallium – INRIA) GADTs meet Subtyping 2014 5 / 21

Proving an example correct

type +α expr =

| Val : ∀α. α→ α expr

| Prod : ∀βγ. β expr ∗ γ expr→ (β ∗ γ) expr

When σ ≤ σ′, I know it’s safe to assume σ expr ≤ σ′ expr.
Because I could almost write that conversion myself.

let coerce (α ≤ α′) : α expr ≤ α′ expr = function

| Val (v : α) -> Val (v :> α′)
| Prod β γ ((b, c) : β expr ∗ γ expr) ->

(* α = (β ∗ γ), α ≤ α′; Prod? *)

(* if β ∗ γ ≤ α′, then α′ is of the form

β′ ∗ γ′ with β ≤ β′ and γ ≤ γ′ *)
Prod β′ γ′ ((b :> β′ expr), (c :> γ′ expr))

Upward closure for τ [α]:
If τ [σ] ≤ τ ′, then τ ′ is also of the form τ [σ′] for some σ′.

Holds for α ∗ β, but fails for file descr = private int.

Gabriel Scherer, Didier Rémy (Gallium – INRIA) GADTs meet Subtyping 2014 5 / 21

Proving an example correct

type +α expr =

| Val : ∀α. α→ α expr

| Prod : ∀βγ. β expr ∗ γ expr→ (β ∗ γ) expr

When σ ≤ σ′, I know it’s safe to assume σ expr ≤ σ′ expr.
Because I could almost write that conversion myself.

let coerce (α ≤ α′) : α expr ≤ α′ expr = function

| Val (v : α) -> Val (v :> α′)
| Prod β γ ((b, c) : β expr ∗ γ expr) ->

(* α = (β ∗ γ), α ≤ α′; Prod? *)

(* if β ∗ γ ≤ α′, then α′ is of the form

β′ ∗ γ′ with β ≤ β′ and γ ≤ γ′ *)
Prod β′ γ′ ((b :> β′ expr), (c :> γ′ expr))

Upward closure for τ [α]:
If τ [σ] ≤ τ ′, then τ ′ is also of the form τ [σ′] for some σ′.

Holds for α ∗ β, but fails for file descr = private int.

Gabriel Scherer, Didier Rémy (Gallium – INRIA) GADTs meet Subtyping 2014 5 / 21

Proving an example correct

type +α expr =

| Val : ∀α. α→ α expr

| Prod : ∀βγ. β expr ∗ γ expr→ (β ∗ γ) expr

When σ ≤ σ′, I know it’s safe to assume σ expr ≤ σ′ expr.
Because I could almost write that conversion myself.

let coerce (α ≤ α′) : α expr ≤ α′ expr = function

| Val (v : α) -> Val (v :> α′)
| Prod β γ ((b, c) : β expr ∗ γ expr) ->

(* α = (β ∗ γ), α ≤ α′; Prod? *)

(* if β ∗ γ ≤ α′, then α′ is of the form

β′ ∗ γ′ with β ≤ β′ and γ ≤ γ′ *)
Prod β′ γ′ ((b :> β′ expr), (c :> γ′ expr))

Upward closure for τ [α]:
If τ [σ] ≤ τ ′, then τ ′ is also of the form τ [σ′] for some σ′.

Holds for α ∗ β, but fails for file descr = private int.

Gabriel Scherer, Didier Rémy (Gallium – INRIA) GADTs meet Subtyping 2014 5 / 21

In the general case

Consider a GADT α t with a constructor of the form

| K of ∃β[α = T [β]]. τ [β]

Imagine I have a value v of type σ t, and I know σ ≤ σ′. Can I convert
this σ t into a σ′ t? Let’s write the coercion code again:

match v : σ t with

...

| K arg -> (arg : τ [ρ] :> τ [?])

We can type-check this coercion term when σ ≤ σ′ if and only if

∀ρ, σ = T [ρ] =⇒ ∃ρ′, σ′ = T [ρ′] ∧ τ [ρ] ≤ τ [ρ′]

This extends both upward-closure and the usual variance check on τ .

Gabriel Scherer, Didier Rémy (Gallium – INRIA) GADTs meet Subtyping 2014 6 / 21

The semantic criterion

A GADT declaration for vα t is correct if, for each constructor K of type
∃β[D[α, β]].τ [β], we have

∀σσ′ρ, σ t ≤ σ′ t ∧ D[σ, ρ] =⇒ ∃ρ′, D[σ′, ρ′] ∧ τ [ρ] ≤ τ [ρ′]

How can we check this?
What does it even mean?

Our job: get something syntactic out of this semantic criterion, that
compilers and humans can understand and use.

Gabriel Scherer, Didier Rémy (Gallium – INRIA) GADTs meet Subtyping 2014 7 / 21

The plan

We will first explain how to check variance of type variables by a judgment
Γ ` τ : v .
Resembles previous work with a twist.

We will then extend it to a judgment Γ ` τ : v ⇒ v ′ to check closure
properties.

From there it’s not too hard (but not too easy either) to derive the final
syntactic formulation of the correctness criterion.

Gabriel Scherer, Didier Rémy (Gallium – INRIA) GADTs meet Subtyping 2014 8 / 21

Variances

+ : only positive occurences

− : only negative occurences

= : both positive and negative

on : no occurence at all

= aa

+

==

−

on

σ ≺+ τ := σ ≤ τ
σ ≺− τ := σ ≥ τ
σ ≺= τ := σ = τ

If α has variance v in (α t), and β variance w in (β u),
what is the variance of α in ((α t) u)?

v .w = + − on w
= = = = on
+ = + − on
− = − + on
on on on on on
v

Gabriel Scherer, Didier Rémy (Gallium – INRIA) GADTs meet Subtyping 2014 9 / 21

Variances

+ : only positive occurences

− : only negative occurences

= : both positive and negative

on : no occurence at all

= aa

+

==

`` −

on

>>

σ ≺+ τ := σ ≤ τ
σ ≺− τ := σ ≥ τ
σ ≺= τ := σ = τ
σ ≺on τ := true

If α has variance v in (α t), and β variance w in (β u),
what is the variance of α in ((α t) u)?

v .w = + − on w
= = = = on
+ = + − on
− = − + on
on on on on on
v

Gabriel Scherer, Didier Rémy (Gallium – INRIA) GADTs meet Subtyping 2014 9 / 21

Variances

+ : only positive occurences

− : only negative occurences

= : both positive and negative

on : no occurence at all

= aa

+

==

`` −

on

>>

σ ≺+ τ := σ ≤ τ
σ ≺− τ := σ ≥ τ
σ ≺= τ := σ = τ
σ ≺on τ := true

If α has variance v in (α t), and β variance w in (β u),
what is the variance of α in ((α t) u)?

v .w = + − on w
= = = = on
+ = + − on
− = − + on
on on on on on
v

Gabriel Scherer, Didier Rémy (Gallium – INRIA) GADTs meet Subtyping 2014 9 / 21

Γ ` τ : v
We manipulate contexts Γ of variables with variances: (−α,=β,+γ).
Γ ` τ : v means that “if the variables vary according to their variance, τ
varies along v”.

−α,=β,+γ ` (α ∗ β)→ (β ∗ γ) : (+)

=α,=β,=γ ` (α ∗ β)→ (β ∗ γ) : (=)

wα ∈ Γ w ≥ v

Γ ` α : v

Γ ` wα t ∀i , Γ ` σi : v .wi

Γ ` σ t : v

For instance, in the arrow case:

Γ ` σ1 : v .− Γ ` σ2 : v .+

Γ ` (σ1 → σ2) : v

Gabriel Scherer, Didier Rémy (Gallium – INRIA) GADTs meet Subtyping 2014 10 / 21

Γ ` τ : v
We manipulate contexts Γ of variables with variances: (−α,=β,+γ).
Γ ` τ : v means that “if the variables vary according to their variance, τ
varies along v”.

−α,=β,+γ ` (α ∗ β)→ (β ∗ γ) : (+)

=α,=β,=γ ` (α ∗ β)→ (β ∗ γ) : (=)

wα ∈ Γ w ≥ v

Γ ` α : v

Γ ` wα t ∀i , Γ ` σi : v .wi

Γ ` σ t : v

For instance, in the arrow case:

Γ ` σ1 : v .− Γ ` σ2 : v .+

Γ ` (σ1 → σ2) : v

Gabriel Scherer, Didier Rémy (Gallium – INRIA) GADTs meet Subtyping 2014 10 / 21

Closure properties in depth

In our system, α ∗ β is upward-closed. This is because the head type
constructor, (∗), is closed.

For α t→ (β ∗ γ) to be upward-closed, α t must be downward-closed. In
the general case, we recursively check closure, according to variance.

What about variables?

Gabriel Scherer, Didier Rémy (Gallium – INRIA) GADTs meet Subtyping 2014 11 / 21

What about variables?

[Reminder] Upward closure: If τ [σ] ≤ τ ′, then τ ′ = τ [σ′] for some σ′.

β ∗ β is not closed : (file descr ∗ file descr) ≤ (file descr ∗ int).
Repeating a variable twice is dangerous.

Yet, (β ref) ∗ (β ref) is closed... because all occurences are invariant.

We capture those subtleties through a partial variance operation v1 & v2.
Defined only when two occurences at variances v1 and v2 can be soundly
combined.

v & w = + − on w
= = =
+ +
− −
on = + − on
v

Gabriel Scherer, Didier Rémy (Gallium – INRIA) GADTs meet Subtyping 2014 12 / 21

What about variables?

[Reminder] Upward closure: If τ [σ] ≤ τ ′, then τ ′ = τ [σ′] for some σ′.

β ∗ β is not closed : (file descr ∗ file descr) ≤ (file descr ∗ int).
Repeating a variable twice is dangerous.

Yet, (β ref) ∗ (β ref) is closed... because all occurences are invariant.

We capture those subtleties through a partial variance operation v1 & v2.
Defined only when two occurences at variances v1 and v2 can be soundly
combined.

v & w = + − on w
= = =
+ +
− −
on = + − on
v

Gabriel Scherer, Didier Rémy (Gallium – INRIA) GADTs meet Subtyping 2014 12 / 21

What about variables?

[Reminder] Upward closure: If τ [σ] ≤ τ ′, then τ ′ = τ [σ′] for some σ′.

β ∗ β is not closed : (file descr ∗ file descr) ≤ (file descr ∗ int).
Repeating a variable twice is dangerous.

Yet, (β ref) ∗ (β ref) is closed... because all occurences are invariant.

We capture those subtleties through a partial variance operation v1 & v2.
Defined only when two occurences at variances v1 and v2 can be soundly
combined.

v & w = + − on w
= = =
+ +
− −
on = + − on
v

Gabriel Scherer, Didier Rémy (Gallium – INRIA) GADTs meet Subtyping 2014 12 / 21

Γ ` τ : v ⇒ v ′

We can finally extend the judgment Γ ` τ : v to capture closure properties.
We want to say that Γ ` τ is v -closed if:

∀τ ′, σ, τ [σ] ≺v τ
′ =⇒ ∃σ′, τ [σ′] = τ ′

We need a generalization:

∀τ ′, σ, τ [σ] ≺v τ
′ =⇒ ∃σ′, τ [σ′] ≺v ′ τ ′

This is our Γ ` τ : v ⇒ v ′ judgment.

Gabriel Scherer, Didier Rémy (Gallium – INRIA) GADTs meet Subtyping 2014 13 / 21

Inference rules for the show

They rely on closure information for type constructors, and & to merge
contexts of subterms.

Triv
v ≥ v ′ Γ ` τ : v

Γ ` τ : v ⇒ v ′

Var
wα ∈ Γ w = v

Γ ` α : v ⇒ v ′

Constr
Γ ` wα t : v -closed Γ = &i Γi ∀i , Γi ` σi : v .wi ⇒ v ′.wi

Γ ` σ t : v ⇒ v ′

Gabriel Scherer, Didier Rémy (Gallium – INRIA) GADTs meet Subtyping 2014 14 / 21

Inference rules for the show

They rely on closure information for type constructors, and & to merge
contexts of subterms.

Triv
v ≥ v ′ Γ ` τ : v

Γ ` τ : v ⇒ v ′

Var
wα ∈ Γ w = v

Γ ` α : v ⇒ v ′

Constr
Γ ` wα t : v -closed Γ = &i Γi ∀i , Γi ` σi : v .wi ⇒ v ′.wi

Γ ` σ t : v ⇒ v ′

Gabriel Scherer, Didier Rémy (Gallium – INRIA) GADTs meet Subtyping 2014 14 / 21

How do you check those rules?

Theorem

Γ ` τ : v holds if and only if ∀σ, σ′, σ ≺Γ σ
′ =⇒ τ [σ] ≺v τ [σ′]

Simple.

Theorem

Γ ` τ : v ⇒ (=) holds if and only if Γ ` τ : v and
∀ρ, τ ′, τ [ρ] ≺v τ

′ =⇒ ∃ρ′, τ [ρ′] = τ ′

Soundness (syntactic =⇒ semantic): routine.
Completeness (semantic =⇒ syntactic): surprisingly hard.

Gabriel Scherer, Didier Rémy (Gallium – INRIA) GADTs meet Subtyping 2014 15 / 21

How do you check those rules?

Theorem

Γ ` τ : v holds if and only if ∀σ, σ′, σ ≺Γ σ
′ =⇒ τ [σ] ≺v τ [σ′]

Simple.

Theorem

Γ ` τ : v ⇒ (=) holds if and only if Γ ` τ : v and
∀ρ, τ ′, τ [ρ] ≺v τ

′ =⇒ ∃ρ′, τ [ρ′] = τ ′

Soundness (syntactic =⇒ semantic): routine.
Completeness (semantic =⇒ syntactic): surprisingly hard.

Gabriel Scherer, Didier Rémy (Gallium – INRIA) GADTs meet Subtyping 2014 15 / 21

Back to the check

From these primitives, we can devise a syntactic check for our initial
semantic criterion. Assume we have the variances vα and a constructor
declaration of the form (∃β

[∧
i∈I αi = Ti [β]

]
. τ [β]). Remember the

sophisticated semantic criterion:

∀σ, σ′, ρ, σ t ≤ σ′ t ∧ (σi = Ti [ρ])i∈I =⇒
∃ρ′, (σ′i = Ti [ρ

′])i∈I ∧ τ [ρ] ≤ τ [ρ′]

Theorem (Algorithmic criterion)

The soundness criterion above is equivalent to

∃Γ, (Γi)i∈I , Γ ` τ : (+) ∧ Γ = &
i∈I

Γi ∧ ∀i ∈ I , Γi ` Ti : vi ⇒ (=)

(Oral explanation)

Gabriel Scherer, Didier Rémy (Gallium – INRIA) GADTs meet Subtyping 2014 16 / 21

Back to the check

From these primitives, we can devise a syntactic check for our initial
semantic criterion. Assume we have the variances vα and a constructor
declaration of the form (∃β

[∧
i∈I αi = Ti [β]

]
. τ [β]). Remember the

sophisticated semantic criterion:

∀σ, σ′, ρ, σ t ≤ σ′ t ∧ (σi = Ti [ρ])i∈I =⇒
∃ρ′, (σ′i = Ti [ρ

′])i∈I ∧ τ [ρ] ≤ τ [ρ′]

Theorem (Algorithmic criterion)

The soundness criterion above is equivalent to

∃Γ, (Γi)i∈I , Γ ` τ : (+) ∧ Γ = &
i∈I

Γi ∧ ∀i ∈ I , Γi ` Ti : vi ⇒ (=)

(Oral explanation)

Gabriel Scherer, Didier Rémy (Gallium – INRIA) GADTs meet Subtyping 2014 16 / 21

Phew !

That was the formal side of things.

This criterion raises interesting design issues: private definitions make all
OCaml types non-downward-closed.
Should we restrict those? The opposite of OOP’s final keyword.

Gabriel Scherer, Didier Rémy (Gallium – INRIA) GADTs meet Subtyping 2014 17 / 21

Phew !

That was the formal side of things.

This criterion raises interesting design issues: private definitions make all
OCaml types non-downward-closed.
Should we restrict those? The opposite of OOP’s final keyword.

Gabriel Scherer, Didier Rémy (Gallium – INRIA) GADTs meet Subtyping 2014 17 / 21

Another solution

We showed, through hard work, how to check that equality constraints are
upward-closed.

With subtyping in constructor types, variance is easy to check

type +α expr =

| Val : ∀β ≥ α. β → α expr

| Prod : ∀βγ [α ≥ (β ∗ γ)]. β expr ∗ γ expr→ α expr

Now pattern-matching only knows a subtyping relation:

let eval : ∀α. α expr→ α = function

| Int n -> (n :> α) (* α ≥ int *)

| Bool b -> (b :> α) (* α ≥ bool *)

Less convenient: use of subtyping must be annotated explicitly, while
equations where implicit.

Gabriel Scherer, Didier Rémy (Gallium – INRIA) GADTs meet Subtyping 2014 18 / 21

Future work:

Completeness of the S&P criterion: type inhabitation.

Verify behavior through type abstraction.

Does this also happen with inductive dependent types?

Gabriel Scherer, Didier Rémy (Gallium – INRIA) GADTs meet Subtyping 2014 19 / 21

Conclusion

GADT variance checking: suprisingly less obvious than we thought.

Not anecdotal: raises deeper design questions.

We have a sound criterion that can be implemented easily in a type
checker.

Gabriel Scherer, Didier Rémy (Gallium – INRIA) GADTs meet Subtyping 2014 20 / 21

Bonus Slide: Variance and the value restriction

type (=’a) ref = { mutable contents : ’a }

In a language with mutable data, generalizing any expression is unsafe
(because you may generalize data locations):

let test = ref [];;

val test : ’_a list ref

Solution (Wright, 1992): only generalize values (fun () -> ref [], or
[]).

Painful when manipulating polymorphic data structures:

let test = id [] (* not generalized? *)

OCaml relies on variance for the relaxed value restriction covariant data is
immutable, so covariant type variables may be safely generalized. Very
useful in practice.

let test = id [];;

val test : ’a list = []

Gabriel Scherer, Didier Rémy (Gallium – INRIA) GADTs meet Subtyping 2014 21 / 21

