GADTs meet Subtyping

Gabriel Scherer, Didier Rémy

Gallium – INRIA

2014

Gabriel Scherer, Didier Rémy (Gallium – INR

GADTs meet Subtyping

2014 1 / 21

くほと くほと くほと

A reminder on GADTs

GADTs are algebraic data types that may carry *type equalities*. Think of the following simple type:

```
type expr =
   | Int of int
   | Bool of bool
```

A B F A B F

A reminder on GADTs

GADTs are algebraic data types that may carry *type equalities*. Think of the following simple type:

type expr =
 | Int of int
 | Bool of bool

It can be turned into the more finely typed:

```
type \alpha expr =type \alpha expr =| Int of int with \alpha = int| Int : int -> int expr| Bool of bool with \alpha = bool| Bool : bool -> bool expr
```

A reminder on GADTs

GADTs are algebraic data types that may carry *type equalities*. Think of the following simple type:

```
type expr =
  | Int of int
  | Bool of bool
```

It can be turned into the more finely typed:

```
type \alpha expr =type \alpha expr =| Int of int with \alpha = int| Int : int -> int expr| Bool of bool with \alpha = bool| Bool : bool -> bool expr
```

We can now write the following:

let eval : $\forall \alpha. \ \alpha \text{ expr} \rightarrow \alpha = \text{function}$ | Int n -> n (* $\alpha = \text{int } *$) | Bool b -> b (* $\alpha = \text{bool } *$)

Motivating variance

Subtyping: $\sigma \leq \tau$ means "all values of σ are also values of τ ". Checked by set of decidable and incomplete inference rules.

$$\frac{\sigma_1 \ge \sigma_1' \quad \sigma_2 \le \sigma_2'}{(\sigma_1 \to \sigma_2) \le (\sigma_1' \to \sigma_2')}$$

Variance annotations lift subtyping to type parameters.

type (-
$$\alpha$$
, = β , + γ) t = ($\alpha * \beta$) \rightarrow ($\beta * \gamma$)
$$\frac{\alpha \ge \alpha' \quad \beta = \beta' \quad \gamma \le \gamma'}{(\alpha, \beta, \gamma) t \le (\alpha', \beta', \gamma') t}$$

For simple types, this is easy to check.

Variance for GADT: harder than it seems Ok?

```
type +\alpha expr =

| Val : \forall \alpha. \ \alpha \to \alpha expr

| Prod : \forall \beta \gamma. \ \beta expr * \gamma expr \to (\beta * \gamma) expr
```

4 3 4 3 4

Variance for GADT: harder than it seems Ok?

```
type +\alpha expr =
     | Val : \forall \alpha. \ \alpha \to \alpha \text{ expr}
     | Prod : \forall \beta \gamma. \beta \exp \gamma * \gamma \exp \gamma \to (\beta * \gamma) \exp \gamma
And this one?
  type file_descr = private int (* file_descr < int *)
  val stdin : file descr
  type +\alpha t =
     | File : file_descr -> file_descr t
  let o = File stdin in
  let o' = (o : file_descr t :> int t)
```

Variance for GADT: harder than it seems Ok?

```
type +\alpha expr =
      | Val : \forall \alpha. \ \alpha \to \alpha \text{ expr}
      | Prod : \forall \beta \gamma. \beta \exp \gamma * \gamma \exp \gamma \to (\beta * \gamma) \exp \gamma
And this one?
   type file_descr = private int (* file_descr < int *)
   val stdin : file descr
   type +\alpha t =
      | File : file_descr -> file_descr t
   let o = File stdin in
   let o' = (o : file_descr t :> int t)
Breaks abstraction!
  let project : \forall \alpha. \ \alpha t \rightarrow (\alpha \rightarrow \text{file}_{-}\text{descr}) = \text{function}
      | File \_ \rightarrow (fun x \rightarrow x)
   project o' : int -> file_descr

    A = A = A = ØQQ
```

 $\begin{array}{l} \texttt{type } + \alpha \; \texttt{expr } \texttt{=} \\ | \; \texttt{Val} \; : \; \forall \alpha. \; \alpha \to \alpha \; \texttt{expr} \\ | \; \texttt{Prod} \; : \; \forall \beta \gamma. \; \beta \; \texttt{expr} * \gamma \; \texttt{expr} \to (\beta * \gamma) \; \texttt{expr} \end{array}$

When $\sigma \leq \sigma'$, I know it's safe to assume $\sigma \exp s \leq \sigma' \exp s$. Because I could *almost* write that conversion myself.

$$\begin{array}{l} \texttt{type } \texttt{+}\alpha \texttt{ expr } \texttt{=} \\ \texttt{| Val } : \ \forall \alpha. \ \alpha \to \alpha \texttt{ expr} \\ \texttt{| Prod } : \ \forall \beta \gamma. \ \beta \texttt{ expr } \ast \gamma \texttt{ expr } \to (\beta \ast \gamma) \texttt{ expr} \end{array}$$

When $\sigma \leq \sigma'$, I know it's safe to assume $\sigma \exp r \leq \sigma' \exp r$. Because I could *almost* write that conversion myself.

let coerce
$$(\alpha \leq \alpha')$$
 : $\alpha \exp r \leq \alpha' \exp r$ = function
| Val (v : α) -> Val (v :> α')
| Prod $\beta \gamma$ ((b, c) : $\beta \exp r * \gamma \exp r$) ->
(* $\alpha = (\beta * \gamma)$, $\alpha \leq \alpha'$; Prod? *)

< 3 > < 3 >

type +
$$\alpha$$
 expr =
| Val : $\forall \alpha. \ \alpha \to \alpha$ expr
| Prod : $\forall \beta \gamma. \ \beta$ expr * γ expr $\to (\beta * \gamma)$ expr
/ben $\sigma \leq \sigma'$ | know it's safe to assume σ expr $\leq \sigma'$ ex

When $\sigma \leq \sigma'$, I know it's safe to assume $\sigma \exp r \leq \sigma' \exp r$. Because I could *almost* write that conversion myself.

$$\begin{array}{l} \texttt{let coerce } (\alpha \leq \alpha') \ : \ \alpha \ \texttt{expr} \leq \alpha' \ \texttt{expr} \ \texttt{= function} \\ \texttt{| Val } (\texttt{v} \ : \ \alpha) \ \texttt{-> Val } (\texttt{v} \ : \ \alpha \ \alpha') \\ \texttt{| Prod } \beta \ \gamma \ (\texttt{(b, c)} \ : \ \beta \ \texttt{expr} \ \ast \ \gamma \ \texttt{expr}) \ \texttt{->} \\ (\ast \ \alpha = (\beta \ast \gamma), \ \alpha \leq \alpha'; \ \textit{Prod? } \ast) \\ (\ast \ if \ \beta \ast \gamma \leq \alpha', \ \textit{then } \alpha' \ \textit{is of the form} \\ \beta' \ast \gamma' \ \textit{with } \beta \leq \beta' \ \textit{and} \ \gamma \leq \gamma' \ \ast) \\ \texttt{Prod } \beta' \ \gamma' \ (\texttt{(b :>} \beta' \ \texttt{expr}), \ \texttt{(c :>} \gamma' \ \texttt{expr})) \end{array}$$

$$\begin{array}{l} \texttt{type } \texttt{+}\alpha \texttt{ expr } \texttt{=} \\ \texttt{| Val }: \ \forall \alpha. \ \alpha \to \alpha \texttt{ expr} \\ \texttt{| Prod }: \ \forall \beta \gamma. \ \beta \texttt{ expr } \ast \gamma \texttt{ expr} \to (\beta \ast \gamma) \texttt{ expr} \end{array}$$

When $\sigma \leq \sigma'$, I know it's safe to assume $\sigma \exp r \leq \sigma' \exp r$. Because I could *almost* write that conversion myself.

let coerce
$$(\alpha \leq \alpha')$$
 : $\alpha \exp r \leq \alpha' \exp r$ = function
| Val (v : α) -> Val (v :> α')
| Prod $\beta \gamma$ ((b, c) : $\beta \exp r * \gamma \exp r$) ->
(* $\alpha = (\beta * \gamma), \ \alpha \leq \alpha'; \ Prod? *$)
(* if $\beta * \gamma \leq \alpha'$, then α' is of the form
 $\beta' * \gamma'$ with $\beta \leq \beta'$ and $\gamma \leq \gamma' *$)
Prod $\beta' \gamma'$ ((b :> $\beta' \exp r$), (c :> $\gamma' \exp r$))

Upward closure for $\tau[\overline{\alpha}]$: If $\tau[\overline{\sigma}] \leq \tau'$, then τ' is also of the form $\tau[\overline{\sigma}']$ for some $\overline{\sigma}'$. Holds for $\alpha * \beta$, but fails for file_descr = private int.

In the general case

Consider a GADT α t with a constructor of the form | K of $\exists \overline{\beta} [\alpha = T[\overline{\beta}]]$. $\tau[\overline{\beta}]$

Imagine I have a value v of type σ t, and I know $\sigma \leq \sigma'$. Can I convert this σ t into a σ' t? Let's write the coercion code again: match v: σ t with ...

| K arg -> (arg :
$$\tau[\overline{\rho}]$$
 :> $\tau[?]$)

We can type-check this coercion term when $\sigma \leq \sigma'$ if and only if

$$\forall \overline{\rho}, \quad \sigma = T[\overline{\rho}] \implies \exists \overline{\rho}', \ \sigma' = T[\overline{\rho}'] \land \ \tau[\overline{\rho}] \leq \tau[\overline{\rho}']$$

This extends both upward-closure and the usual variance check on τ .

- 本間 ト 本 ヨ ト - オ ヨ ト - ヨ

The semantic criterion

A GADT declaration for $\overline{v\alpha}$ t is correct if, for each constructor K of type $\exists \overline{\beta}[D[\overline{\alpha},\overline{\beta}]].\tau[\overline{\beta}]$, we have

$$\forall \overline{\sigma} \overline{\sigma'} \overline{\rho}, \quad \overline{\sigma} \ \mathtt{t} \leq \overline{\sigma'} \ \mathtt{t} \ \land \ D[\overline{\sigma}, \overline{\rho}] \implies \exists \overline{\rho'}, \ D[\overline{\sigma'}, \overline{\rho'}] \ \land \ \tau[\overline{\rho}] \leq \tau[\overline{\rho'}]$$

How can we check this? What does it even mean?

Our job: get something *syntactic* out of this semantic criterion, that compilers *and* humans can understand and use.

The plan

We will first explain how to check variance of type variables by a judgment $\Gamma \vdash \tau : v$.

Resembles previous work with a twist.

We will then extend it to a judgment $\Gamma \vdash \tau : v \Rightarrow v'$ to check closure properties.

From there it's not too hard (but not too easy either) to derive the final syntactic formulation of the correctness criterion.

イロト 不得下 イヨト イヨト 二日

Variances

- + : only positive occurences
- \bullet : only negative occurences

• = : both positive and negative

$$\sigma \prec_+ \tau \qquad := \qquad \sigma \le \tau$$

$$\sigma \prec_{-} \tau \qquad := \qquad \sigma \geq \tau$$

$$\sigma \prec_= \tau \qquad := \qquad \sigma = \tau$$

Variances

- + : only positive occurences
- \bullet : only negative occurences

- \bullet = : both positive and negative
- Ino occurrence at all

$$\sigma \prec_+ \tau \qquad := \qquad \sigma \leq \tau$$

$$\sigma \prec_{-} \tau \qquad := \qquad \sigma \ge \tau$$

$$\sigma \prec_= \tau \qquad := \qquad \sigma = \tau$$

 $\sigma \prec_{\bowtie} \tau \quad := \quad \texttt{true}$

Variances

- + : only positive occurences
- - : only negative occurences

- = : both positive and negative
- : no occurence at all

$$\sigma \prec_+ \tau \qquad := \qquad \sigma \leq \tau$$

$$\sigma \prec_{-} \tau \qquad := \qquad \sigma \ge \tau$$

$$\sigma \prec_= \tau \qquad := \qquad \sigma = \tau$$

$$\sigma \prec_{\bowtie} \tau \quad := \quad \texttt{true}$$

If α has variance v in (αt) , and β variance w in (βu) , what is the variance of α in $((\alpha t) u)$?

$\Gamma \vdash \tau : v$

We manipulate contexts Γ of variables with variances: $(-\alpha, =\beta, +\gamma)$. $\Gamma \vdash \tau : v$ means that "if the variables vary according to their variance, τ varies along v".

$$-\alpha, =\beta, +\gamma \vdash (\alpha * \beta) \to (\beta * \gamma) : (+)$$
$$=\alpha, =\beta, =\gamma \vdash (\alpha * \beta) \to (\beta * \gamma) : (=)$$

- 4 回 ト - 4 回 ト

$\Gamma \vdash \tau : v$

We manipulate contexts Γ of variables with variances: $(-\alpha, =\beta, +\gamma)$. $\Gamma \vdash \tau : v$ means that "if the variables vary according to their variance, τ varies along v".

$$-\alpha, =\beta, +\gamma \vdash (\alpha * \beta) \rightarrow (\beta * \gamma) : (+)$$
$$=\alpha, =\beta, =\gamma \vdash (\alpha * \beta) \rightarrow (\beta * \gamma) : (=)$$
$$\underline{w\alpha \in \Gamma \quad w \ge v}{\Gamma \vdash \alpha : v} \qquad \qquad \frac{\Gamma \vdash \overline{w\alpha} t \quad \forall i, \ \Gamma \vdash \sigma_i : v.w_i}{\Gamma \vdash \overline{\sigma} t : v}$$

For instance, in the arrow case:

$$\frac{\Gamma \vdash \sigma_1 : \mathbf{v} - \Gamma \vdash \sigma_2 : \mathbf{v} + \mathbf{v}}{\Gamma \vdash (\sigma_1 \to \sigma_2) : \mathbf{v}}$$

伺下 イヨト イヨト

Closure properties in depth

In our system, $\alpha*\beta$ is upward-closed. This is because the head type constructor, (*), is closed.

For $\alpha t \to (\beta * \gamma)$ to be upward-closed, αt must be downward-closed. In the general case, we recursively check closure, according to variance.

What about variables?

What about variables?

[Reminder] Upward closure: If $\tau[\overline{\sigma}] \leq \tau'$, then $\tau' = \tau[\overline{\sigma}']$ for some $\overline{\sigma}'$.

 $\beta * \beta$ is not closed : (file_descr * file_descr) \leq (file_descr * int). Repeating a variable twice is dangerous.

What about variables?

[Reminder] Upward closure: If $\tau[\overline{\sigma}] \leq \tau'$, then $\tau' = \tau[\overline{\sigma}']$ for some $\overline{\sigma}'$.

 $\beta * \beta$ is not closed : (file_descr * file_descr) \leq (file_descr * int). Repeating a variable twice is dangerous.

Yet, $(\beta \text{ ref}) * (\beta \text{ ref})$ is closed... because *all* occurences are invariant.

What about variables?

[Reminder] Upward closure: If $\tau[\overline{\sigma}] \leq \tau'$, then $\tau' = \tau[\overline{\sigma}']$ for some $\overline{\sigma}'$.

 $\beta * \beta$ is not closed : (file_descr * file_descr) \leq (file_descr * int). Repeating a variable twice is dangerous.

Yet, $(\beta \text{ ref}) * (\beta \text{ ref})$ is closed... because *all* occurences are invariant.

We capture those subtleties through a partial variance operation $v_1 \uparrow v_2$. Defined only when two occurences at variances v_1 and v_2 can be soundly combined.

・ 同 ト ・ 三 ト ・ 三 ト

$\Gamma \vdash \tau : \mathbf{v} \Rightarrow \mathbf{v}'$

We can finally extend the judgment $\Gamma \vdash \tau : v$ to capture closure properties. We want to say that $\Gamma \vdash \tau$ is v-closed if:

$$\forall \tau', \overline{\sigma}, \ \tau[\overline{\sigma}] \prec_{\mathsf{v}} \tau' \implies \exists \overline{\sigma}', \ \tau[\overline{\sigma}'] = \tau'$$

We need a generalization:

$$\forall \tau', \overline{\sigma}, \ \tau[\overline{\sigma}] \prec_{\mathsf{v}} \tau' \implies \exists \overline{\sigma}', \ \tau[\overline{\sigma}'] \prec_{\mathsf{v}'} \tau'$$

This is our $\Gamma \vdash \tau : v \Rightarrow v'$ judgment.

Inference rules for the show

They rely on closure information for type constructors, and $\boldsymbol{\uparrow}$ to merge contexts of subterms.

- 4 B M 4 B M

Inference rules for the show

They rely on closure information for type constructors, and \uparrow to merge contexts of subterms.

$$\frac{\begin{array}{c} \text{TRIV} \\ \underline{v \geq v'} \quad \Gamma \vdash \tau : v \\ \overline{\Gamma \vdash \tau : v \Rightarrow v'} \end{array} \qquad \begin{array}{c} \text{VAR} \\ \underline{w\alpha \in \Gamma} \quad w = v \\ \overline{\Gamma \vdash \alpha : v \Rightarrow v'} \end{array}$$

$$\frac{\begin{array}{c} \text{CONSTR} \\ \overline{\Gamma \vdash \overline{w\alpha} \ t : v \text{-closed}} \quad \Gamma = \bigwedge_{i} \Gamma_{i} \quad \forall i, \ \Gamma_{i} \vdash \sigma_{i} : v . w_{i} \Rightarrow v' . w_{i} \\ \overline{\Gamma \vdash \overline{\sigma} \ t : v \Rightarrow v'} \end{array}$$

T 7 . -

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

How do you check those rules?

Theorem

$\Gamma \vdash \tau : v \text{ holds if and only if } \forall \overline{\sigma}, \overline{\sigma}', \ \overline{\sigma} \prec_{\Gamma} \overline{\sigma}' \implies \tau[\overline{\sigma}] \prec_{v} \tau[\overline{\sigma}']$

Simple.

How do you check those rules?

Theorem

$$\Gamma \vdash \tau : v \text{ holds if and only if } \forall \overline{\sigma}, \overline{\sigma}', \ \overline{\sigma} \prec_{\Gamma} \overline{\sigma}' \implies \tau[\overline{\sigma}] \prec_{v} \tau[\overline{\sigma}']$$

Simple.

Theorem

$$\begin{array}{l} \Gamma \vdash \tau : \mathbf{v} \Rightarrow (=) \text{ holds if and only if } \Gamma \vdash \tau : \mathbf{v} \text{ and} \\ \forall \overline{\rho}, \tau', \ \tau[\overline{\rho}] \prec_{\mathbf{v}} \tau' \implies \exists \overline{\rho}', \ \tau[\overline{\rho}'] = \tau' \end{array}$$

Soundness (syntactic \implies semantic): routine. Completeness (semantic \implies syntactic): surprisingly hard.

Back to the check

From these primitives, we can devise a syntactic check for our initial semantic criterion. Assume we have the variances $\overline{v\alpha}$ and a constructor declaration of the form $(\exists \overline{\beta} [\bigwedge_{i \in I} \alpha_i = \mathcal{T}_i[\overline{\beta}]] \cdot \tau[\overline{\beta}])$. Remember the *sophisticated* semantic criterion:

$$\begin{array}{ll} \forall \overline{\sigma}, \overline{\sigma}', \overline{\rho}, & \overline{\sigma} \ t \leq \overline{\sigma}' \ t \ \land \ (\sigma_i = T_i[\overline{\rho}])_{i \in I} \implies \\ \exists \overline{\rho}', & (\sigma_i' = T_i[\overline{\rho}'])_{i \in I} \ \land \ \tau[\overline{\rho}] \leq \tau[\overline{\rho}'] \end{array}$$

Back to the check

From these primitives, we can devise a syntactic check for our initial semantic criterion. Assume we have the variances $\overline{v\alpha}$ and a constructor declaration of the form $(\exists \overline{\beta} [\bigwedge_{i \in I} \alpha_i = T_i[\overline{\beta}]] \cdot \tau[\overline{\beta}])$. Remember the *sophisticated* semantic criterion:

$$\begin{aligned} \forall \overline{\sigma}, \overline{\sigma}', \overline{\rho}, \quad \overline{\sigma} \mathsf{t} \leq \overline{\sigma}' \mathsf{t} \land (\sigma_i = T_i[\overline{\rho}])_{i \in I} \implies \\ \exists \overline{\rho}', \quad (\sigma_i' = T_i[\overline{\rho}'])_{i \in I} \land \tau[\overline{\rho}] \leq \tau[\overline{\rho}'] \end{aligned}$$

Theorem (Algorithmic criterion)

The soundness criterion above is equivalent to

$$\exists \Gamma, (\Gamma_i)_{i \in I}, \quad \Gamma \vdash \tau : (+) \quad \land \quad \Gamma = \underset{i \in I}{\uparrow} \Gamma_i \quad \land \quad \forall i \in I, \ \Gamma_i \vdash T_i : v_i \Rightarrow (=)$$

(Oral explanation)

That was the formal side of things.

イロト イ団ト イヨト イヨト

That was the formal side of things.

This criterion raises interesting design issues: private definitions make all OCaml types non-downward-closed. Should we restrict those? The opposite of OOP's final keyword.

Another solution

We showed, through hard work, how to check that equality constraints are upward-closed.

With subtyping in constructor types, variance is easy to check

 $\begin{array}{l} \texttt{type } \texttt{+}\alpha \texttt{ expr } \texttt{=} \\ \texttt{I Val } : \ \forall \beta \geq \alpha. \ \beta \rightarrow \alpha \texttt{ expr} \\ \texttt{I Prod } : \ \forall \beta \gamma \left[\alpha \geq (\beta \ast \gamma) \right]. \ \beta \texttt{ expr } \ast \gamma \texttt{ expr } \rightarrow \alpha \texttt{ expr} \end{array}$

Now pattern-matching only knows a subtyping relation:

Less convenient: use of subtyping must be annotated explicitly, while equations where implicit.

- ▲ 同 ▶ ▲ 目 ▶ → 目 → のへの

Future work:

- Completeness of the S&P criterion: type inhabitation.
- Verify behavior through type abstraction.
- Does this also happen with inductive dependent types?

Conclusion

GADT variance checking: suprisingly less obvious than we thought.

Not anecdotal: raises deeper design questions.

We have a sound criterion that can be implemented easily in a type checker.

Bonus Slide: Variance and the value restriction

type (='a) ref = { mutable contents : 'a }

In a language with mutable data, generalizing any expression is unsafe (because you may generalize data locations):

let test = ref [];; val test : '_a list ref Solution (Wright, 1992): only generalize values (fun () -> ref [], or []).

Painful when manipulating polymorphic data structures:

let test = id [] (* not generalized? *)

OCaml relies on variance for the *relaxed value restriction* covariant data is immutable, so covariant type variables may be safely generalized. Very useful in practice.

```
# let test = id [];;
val test : 'a list = []
```

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで