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» upper bounds
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» complexity classes

this talk: focus on one problem
» reachability in vector addition systems



Decompositiol

)
=>
L
T
wn
>
n
Z
O
=
a
a
<
04
T
O~
L
>

Vector Addition




orithm

lg

A

Decomposition

Yy

)
=>
L
T
wn
>
n
Z
O
=
a
a
<
04
T
O~
L
>

Vector Addition Sys




VECTOR ADDITION SYSTEMS

SPRINGFIELD POWER PLANT o
17
©

1) A 2
. E
produce electricity =}
=
©
1 .
=

recycle uranium

)0
12/
electricity




VECTOR ADDITION SYSTEMS

SPRINGFIELD POWER PLANT o
17
o
@y A 2
£ O
produce electricity =}
E O
B
S =0
recycle uranium
(0,1)
(1-2 34
electricity

Can we produce unbounded electricity with no left-
over uranium waste?



VECTOR ADDITION SYSTEMS

SPRINGFIELD POWER PLANT q_)’
2
@y A 2
E O/
produce electricity 3
= O/ 0
B
3 O/ 0
( O/ O 0/ 009 0 0
recycle uranium 2
(m)({O’OOOOOO
(1-2 34
_ = = = — — —
electricity

Can we produce unbounded electricity with no left-
over uranium waste?



IMPORTANCE OF THE PROBLEM

REACHABILITY PROBLEM
input: a vector addition system and two
configurations source and target
question: source —* target?

DiscRETE RESOURCES

» modelling: items, money, energy, molecules, ...
» distributed computing: active threads in thread pool

» data: isomorphism types in data logics and data-centric
systems



IMPORTANCE OF THE PROBLEM

REACHABILITY PROBLEM
input: a vector addition system and two
configurations source and target
question: source —* target?

CENTRAL DEcIsION PROBLEM [invited survey S., SIGLOG'16]
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IMPORTANCE OF THE PROBLEM

REACHABILITY PROBLEM
input: a vector addition system and two

configurations source and target
question: source —* target?

THEOREM (Minsky’67)

Reachability is undecidable in 2-dimensional

Minsky machines (vector addition systems with
zero tests).




IMPORTANCE OF THE PROBLEM
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[Mayr'81, Kosaraju'82, Lambert'92]

can we build a simple run?

G WF)

-0 OO0 OO0

decompose

uses coverability trees [Karp & Miller'69]
which use Dickson’s Lemma [Dickson, 1913]

no
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TERMINATION

“Finally the checker has to verify that
the process comes to an end. Here
again he should be assisted by the
programmer giving a further definite
assertion to be verified. This may
take the form of a quantity which is
asserted to decrease continually and
vanish when the machine stops. To
the pure mathematician it is natural to
give an "

[Turing’49]
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DEMYSTIFYING REACHABILITY

IN VECTOR ADDITION SYSTEMS
[Leroux & S., LICS'15; S., 2017]

UpPPER BOUND THEOREM
Reachability in vector addition systems is in quadratic
Ackermann.
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(X, <) wqo iff all bad sequences
are finite
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CONTROLLED BAD SEQUENCES

Over a qo (X, <) with |-l
X0,X1,... iIsbad if Vi <j.x; ﬁXj

(X, <) wqo iff all bad sequences
are finite

by g:IN — IN and =
neNifVi.|xi|| < g'(n)

[Cichon & Tahhan Bittar'98]

ExAMPLE (OVER N wiTHN = 2 AND g(n) =n + 1)



CONTROLLED BAD SEQUENCES

Over a qgo (X, <) with norm || - ||
> Xo,X1,... IS bad ifVi<]'.Xi£Xj

» (X, <) wqo iff all bad sequences
are finite

> by g:IN — IN and
ncINif¥i. ||x < g'(n)
[Cichor & Tahhan Bittar’98]
PRrRoOPOSITION
Assuming {x € X| ||x|| < n} finite Vn, controlled bad
sequences have
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Descending sequences over w“’2 controlled by
Ackermannian functions are of at most quadratic
Ackermannian length.
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Descending sequences over W’

are of at most quadratic
Ackermannian length.
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LENGTH FUNCTION THEOREM (FOR DICKSON’S LEMMA
[Figueira, Figueira, S. & Schnoebelen, LICS'11])

Bad sequences over N4 controlled by primitive recursive
functions are of at most Ackermannian length.
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FAsT-GROWING FUNCTIONS

ACKERMANN FUNCTION
A(Zln) - 211 ,
A(3,n) = tower(n) = 2" }ntimes

def . eae .
» ackermann(n) = A(n,n) not primitive recursive

> function F 2: 3-arguments variant
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[S., ToCT'16]

MuLTIPLY RECURSIVE

PRIMITIVE RECURSIVE

ELEMENTARY

ExAMPLES OF TOWER-COMPLETE PROBLEMS:

satisfiability of first-order logic on words [Meyer75]
B-equivalence of simply typed A terms [Statman'79]
model-checking higher-order recursion schemes [Ong06]
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CoMPLEXITY CLASSES BEYOND ELEMENTARY

[S., ToCT'16]

MuLTIPLY RECURSIVE

PRIMITIVE RECURSIVE

ELEMENTARY

ExAMPLES OF ACKERMANN-COMPLETE PROBLEMS:
> reachability in lossy Minsky machines [Urquhart'98, Schnoebelen'02]
> satisfiability of safety Metric Temporal Logic [Lazi¢ et al.16]
> satisfiability of Forward XPath [Figueira'12]
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SUMMARY

well-quasi-orders (wqo):
» proving algorithm termination

thesis: a toolbox for wqo complexity

» upper bounds: length function theorems
(for ordinals, Dickson’s Lemma, Higman's
Lemma, and combinations)

» lower bounds
» complexity classes: (Fy)q

this talk: focus on one problem

» reachability in vector addition systems
inF 2
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1. complexity gap for VAS reachability
» ExPSPACE-hard [Lipton'76]
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» find better parameters with tight bounds? [Kristiansen & Niggl'04]
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» complexity?
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» decidable in VAS with hierarchical zero tests [Reinhardt’08]
» what about
» branching VAS
» unordered data Petri nets
» pushdown VAS



DEMYSTIFYING REACHABILITY

IN VECTOR ADDITION SYSTEMS
[Leroux & S., LICS'15; S., 2017]

IDEAL DECOMPOSITION THEOREM
The Decomposition Algorithm computes the ideal
decomposition of the set of runs from source to target.
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IDEALS OF WELL-QUASI-ORDERS (X, <)

» Canonical decompositions
[Bonnet'75]

if D C X is |-closed, then
D — Il U e U In

for (maximal) ideals I,..., I

» Effective representations

[Goubault-Larrecq et al.’17]

ExAMPLE (OVER IN?)
D =[(2,00)]U U[[(oo0,4)]
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ADHERENCE MEMBERSHIP

» lis adherent to Runs if
[ C J(INRuns)

» semantic equivalent to
© condition

v

undecidable for arbitrary ideals

\ 4

decidable for the ideals arising in
the decomposition algorithm

I adherent
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SUMMARY

well-quasi-orders
ubiquitous in termination
proofs

complexity toolbox
upper & lower bounds,
fast-growing complexity
classes

application
VAS reachability

PERSPECTIVES

. complexity gap

for VAS reachability

. parameterisations

for counter systems

. beyond wqgos

FAC orders, Noetherian spaces

. reachability in VAS extensions
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