Complexity Classes Beyond Elementary

Sylvain Schmitz

LSV, ENS Cachan & CNRS & INRIA

Queen Mary, December 11, 2013

ReacHard logo

Hitchhiker's Guide to Galactic Complexity

Don't panic

Complexity Classes

  • classify problems
  • master problems and reductions
  • hierarchies

$\CC{P}$

$\CC{NP}$

$\text{co-NP}$

SAT

3SAT

Tree Automata Emptiness

$\CC{P}$

$\Sigma_1^p$

$\Pi_1^p$

$\Pi_2^p$

$\Sigma_2^p$

$\Delta_2^p$

$\CC{PH}\\~~\vdots$

$\CC{PSpace}$

$\CC{EXP}$

$\CC{NEXP}$

$\text{co-NEXP}$

$\CC{ExpSpace}$

$\CC{R}$

$\CC{Elementary}$

$\vdots$

Lossy Channel System Reach. LCS

Safety MTL Sat. SMTL

Lossy Counter Machine Reach. LCM

MTL Finite Sat. FMTL

Post Embedding Problems PEP

WS1S Sat. WS1S

Equivalence of SF Exprs. SFEq

β-Equ. of Simply-Typed λ Terms SλEq

Extended Grzegorczyk Hierarchy

[Löb & Wainer, 1970]

$\begin{aligned} F_0(x)&\eqdef x+1 & \!\!\!\!\!\!F_1(x)&=2x+1\\ F_{\alpha+1}(x)&\eqdef F^{x+1}_\alpha(x) &\!\!\!\!\!\!F_2(x)&=2^{x+1}(x+1)-1\\ F_\lambda(x)&\eqdef F_{\lambda(x)}(x) &\!\!\!\!\!\!F_3(x)&\text{ non elementary}\\ &&\!\!\!\!\!\!F_\omega(x)&\text{ Ackermannian}\end{aligned}\\\begin{aligned} \FGH{\alpha}&\eqdef\bigcup_{c<\omega}\CC{FDTime}\left(F_\alpha^c(n)\right)\\ \FGH{<\alpha}&\eqdef\bigcup_{\beta<\alpha}\FGH{\beta} \end{aligned}$

$\CC{Multiply-Recursive}=\FGH{<\omega^\omega}^\ast$

$\CC{Primitive-Recursive}=\FGH{<\omega}^\ast$

$\CC{Elementary}=\FGH{2}^\ast$

$\CC{HAck}\eqdef\FC{\omega^\omega}$

$\CC{Ack}\eqdef\FC{\omega}$

$\CC{Tower}\eqdef\FC{3}$

Fast-Growing Complexity Classes

$\FC{\alpha}\eqdef\bigcup_{p\in\FGH{\lt\alpha}}\!\!\CC{DTime}\left(F_\alpha(p(n))\right)$

Example: $\CC{Tower}$

$\begin{aligned}\CC{Tower}\eqdef\FC{3}&=\bigcup_{p\in\FGH{2}}\CC{DTime}\left(F_3(p(n))\right)\\&=\bigcup_{p\in\CC{FElem}}\CC{Space}\left(\mathrm{tower}(p(n))\right)\\&\supsetneq\CC{Elem}=\bigcup_k k\CC{-ExpTime}\end{aligned}$

Example: $\CC{Ack}$

$\begin{aligned}\CC{Ack}\eqdef\FC{\omega}&=\bigcup_{p\in\FGH{<\omega}}\CC{DTime}\left(F_\omega(p(n))\right)\\&=\bigcup_{p\in\CC{FPR}}\CC{Space}\left(\mathrm{Ack}(p(n))\right)\\&\supsetneq\CC{PR}=\bigcup_k \FC{\,k}\end{aligned}$

LCM Reachability

lossy counter machines
Minksy machines with a lossy semantics for steps over $Q\times\mathbb{N}^C$:

$(q,\!\vec{v})\!\to_{\mathrm{lossy}}\!(q'\!,\!\vec{v}'\!)$ if $(q,\!\vec{v})\geq(q,\vec u)\!\to_{\mathrm{Minsky}}\!(q'\!,\!\vec{u}'\!)\geq(q'\!,\!\vec v')$

decidability of $\sigma\to^\ast_{\mathrm{lossy}}\tau$
  • witness: backward steps

    $\tau=\sigma_0\leftarrow_{\mathrm{lossy}}\cdots\leftarrow_{\mathrm{lossy}}\sigma_n=\sigma$

  • minimal:

    $\sigma_{i+1}\in\min\{\sigma\mid \sigma\to_{\mathrm{lossy}}\sigma_i\}$

  • shortest minimal witnesses are bad: $\forall i<j.\sigma_i\not\leq\sigma_j$
  • Dickson's Lemma: $\leq$ is a wqo, thus
    1. bad sequences are finite
    2. minimal bases are finite

LCM Reachability: Upper Bound

length function theorem
  • minimal witnesses are controlled:

    $\|\sigma_{i+1}\|_\infty\leq 1+\|\sigma_i\|_\infty$

  • maximal length of a bad controlled witness: bounded by

    $\ell=F_{\omega}(p(\max\{\|\tau\|_\infty,|Q|,|C|\}))$

    for some polynom $p$
combinatorial algorithm
  1. compute $\ell$
  2. nondeterministically guess forward steps

    $\sigma=\sigma_0\to_{\mathrm{lossy}}\cdots\to_{\mathrm{lossy}}\sigma_n=\tau$

    with $n\leq\ell$

LCM Reachability: Lower Bound

Computation snapshot for $F_{n+1}(n)$:

$F^{k_n}_n(F^{k_{n-1}}_{n-1}(\cdots F^{k_0}_0(B)\cdots))$

Strictness

For $c\in\mathbb{N}$ let

$\FC{\alpha}^c\eqdef\bigcup_{p\in\FGH{\lt\alpha}}\!\!\CC{DTime}\left(F^c_\alpha(p(n))\right)$

Then for all $c$, $2\leq\beta<\alpha$ and limit $\lambda$,

$\begin{aligned}\FC{\beta}^c&\subsetneq\FC{\beta}^{c+1}\\ \FGH{\beta}^\ast&=\bigcup_{c}\FC{\beta}^c\subsetneq\FC{\alpha}\\ \FGH{<\lambda}^\ast&=\bigcup_{\beta<\lambda}\FC{\beta}\subsetneq\FC{\lambda} \end{aligned}$

As a corollary, there are no $\FGH{\alpha}$-complete nor $\FGH{<\alpha}$-complete problems. In particular, no $\CC{Elementary}$ nor $\CC{Primitive-Recursive}$ complete problems.

A Catalog of Problems

... in wordle form for $\CC{Ack}=\FC{\omega}$:

wordle

Concluding Remarks