Reachability in Vector Addition Systems is Primitive-Recursive in Fixed Dimension

Sylvain Schmitz based on joint work with Jérôme Leroux

Highlights 2019

OUTLINE

vector addition systems (VAS)

central model of computation

OUTLINE

vector addition systems (VAS)

central model of computation

reachability problem

- hard conceptually and computationally
- decision via decomposition algorithm

OUTLINE

vector addition systems (VAS)

central model of computation

reachability problem

- hard conceptually and computationally
- decision via decomposition algorithm

this talk

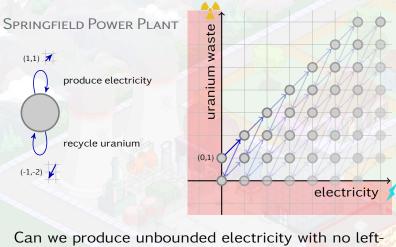
new complexity upper bounds

VECTOR ADDITION SYSTEMS (WITH STATES)

Vector Addition Systems

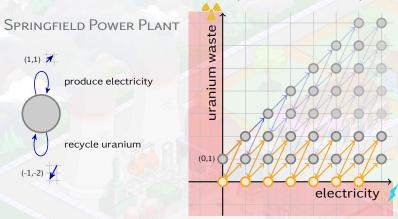
Vector Addition Systems

VECTOR ADDITION SYSTEMS (WITH STATES)



over uranium waste?

VECTOR ADDITION SYSTEMS (WITH STATES)



Can we produce unbounded electricity with no leftover uranium waste? Yes, $(\infty, 0)$ is reachable

IMPORTANCE OF THE PROBLEM

MODELLING DISCRETE RESOURCES items, money, molecules, active threads, active data domain, . . .

CENTRAL DECISION PROBLEM

Large number of problems interreducible with reachability in vector addition systems

- correctness of population protocols
- satisfiability of logics over data words
- provability of !-Horn linear logic
- **...**

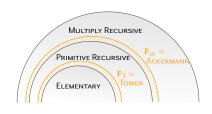
NEW UPPER BOUNDS

$$\begin{split} F_0(x) &= x+1 \\ F_1(x) &= \overbrace{F_0 \circ \cdots \circ F_0}^{x+1 \text{ times}}(x) = 2x+1 \\ F_2(x) &= \overbrace{F_1 \circ \cdots \circ F_1}^{x+1 \text{ times}}(x) \approx 2^x \\ F_3(x) &= \overbrace{F_2 \circ \cdots \circ F_2}^{x+1 \text{ times}}(x) \approx \text{tower}(x) \\ &\vdots \\ F_{\omega}(x) &= F_{x+1}(x) &\approx \text{ackermann}(x) \end{split}$$

UPPER BOUND THEOREM VAS Reachability is in F_{ω} , and in F_{d+4} in fixed dimension d

New Upper Bounds

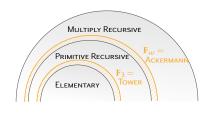
$$\begin{split} F_0(x) &= x+1 \\ F_1(x) &= \overbrace{F_0 \circ \cdots \circ F_0}^{x+1 \text{ times}}(x) = 2x+1 \\ F_2(x) &= \overbrace{F_1 \circ \cdots \circ F_1}^{x+1 \text{ times}}(x) \approx 2^x \\ F_3(x) &= \overbrace{F_2 \circ \cdots \circ F_2}^{x+1 \text{ times}}(x) \approx \text{tower}(x) \\ &\vdots \\ F_{\mathfrak{G}}(x) &= F_{x+1}(x) &\approx \text{ackermann}(x) \end{split}$$



Upper Bound Theorem VAS Reachability is in F_{ω} , and in F_{d+4} in fixed dimension d

NEW UPPER BOUNDS

$$\begin{split} F_0(x) &= x+1 \\ F_1(x) &= \overbrace{F_0 \circ \cdots \circ F_0}^{x+1 \text{ times}}(x) = 2x+1 \\ F_2(x) &= \overbrace{F_1 \circ \cdots \circ F_1}^{x+1 \text{ times}}(x) \approx 2^x \\ F_3(x) &= \overbrace{F_2 \circ \cdots \circ F_2}^{x+1 \text{ times}}(x) \approx \text{tower}(x) \\ &\vdots \\ F_{\mathfrak{W}}(x) &= F_{x+1}(x) &\approx \text{ackermann}(x) \end{split}$$



Upper Bound Theorem VAS Reachability is in F_{ω} , and in F_{d+4} in fixed dimension d

DECOMPOSITION ALGORITHM

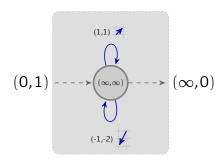
Ernst W. Mayr

S. Rao Kosaraju

Jean-Luc Lambert

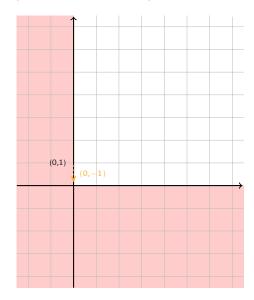
"Simple Runs" (Θ Condition)

[Mayr'81, Kosaraju'82, Lambert'92]

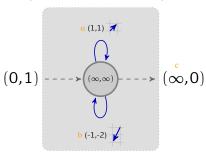


"Simple Runs" (Θ Condition)

[Mayr'81, Kosaraju'82, Lambert'92]



[Mayr'81, Kosaraju'82, Lambert'92]



CHARACTERISTIC SYSTEM

$$0+1 \cdot a - 1 \cdot b = c$$

$$1+1 \cdot a - 2 \cdot b = 0$$

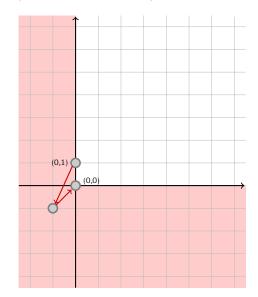
Solution for a, b

$$[1 \cdot 7, 1 \cdot 7]$$

SOLUTION PATH

[Mayr'81, Kosaraju'82, Lambert'92]

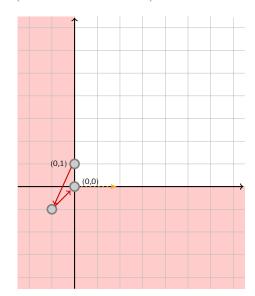
solution path



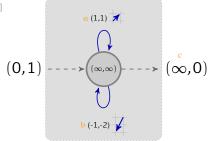
[Mayr'81, Kosaraju'82, Lambert'92]

solution path

 $\sqrt{1}$



[Mayr'81, Kosaraju'82, Lambert'92]



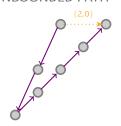
HOMOGENEOUS SYSTEM

$$1 \cdot a - 1 \cdot b = c$$

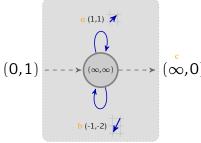
$$1 \cdot \mathbf{a} - 2 \cdot \mathbf{b} = 0$$

Solution for a, b

Unbounded Path



[Mayr'81, Kosaraju'82, Lambert'92]



HOMOGENEOUS SYSTEM

$$1 \cdot a - 1 \cdot b = c$$

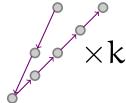
$$1 \cdot a - 2 \cdot b = 0$$

$$a, b, c > 0$$

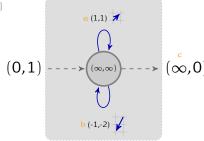
Solution for a, b

$$[4k \cdot \ \ \ \ \]$$

Unbounded Path



[Mayr'81, Kosaraju'82, Lambert'92]



CHARACTERISTIC SYSTEM

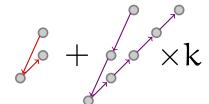
$$0 + 1 \cdot a - 1 \cdot b = c$$

$$1 + 1 \cdot \mathbf{a} - 2 \cdot \mathbf{b} = 0$$

Solution for a, b

$$[(1+4k)\cdot / (1+2k)\cdot /]$$

Ратн

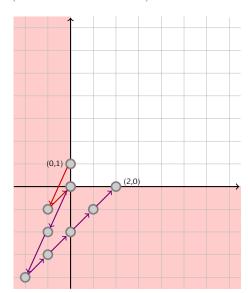


[Mayr'81, Kosaraju'82, Lambert'92]

solution path

unbounded path

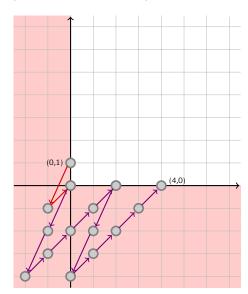
×1



[Mayr'81, Kosaraju'82, Lambert'92]

solution path

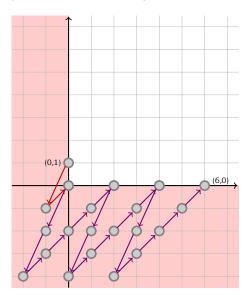
unbounded path



[Mayr'81, Kosaraju'82, Lambert'92]

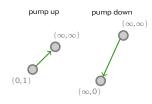
solution path

unbounded path



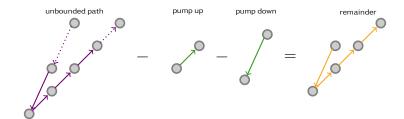
[Mayr'81, Kosaraju'82, Lambert'92]

PUMPABLE PATHS



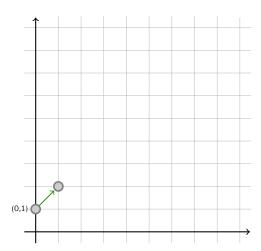
[Mayr'81, Kosaraju'82, Lambert'92]

PUMPABLE PATHS



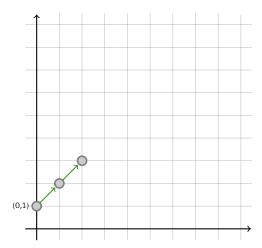
[Mayr'81, Kosaraju'82, Lambert'92]

pump up $\times 1$



[Mayr'81, Kosaraju'82, Lambert'92]

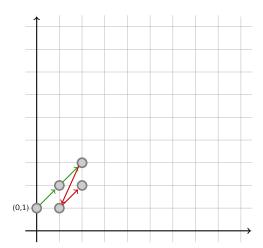
pump up



[Mayr'81, Kosaraju'82, Lambert'92]

pump up

solution path

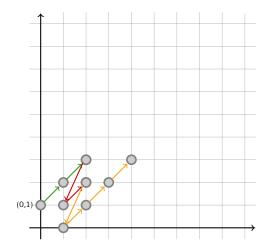


[Mayr'81, Kosaraju'82, Lambert'92]

pump up

solution path

remainder

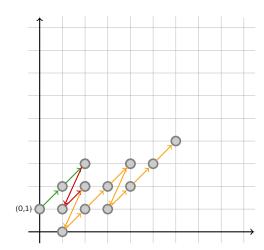


[Mayr'81, Kosaraju'82, Lambert'92]

pump up

solution path

remainder



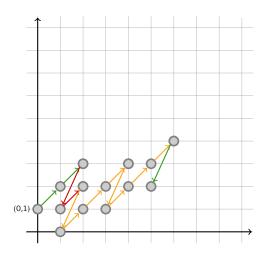
[Mayr'81, Kosaraju'82, Lambert'92]

pump up

solution path

remainder

pump down

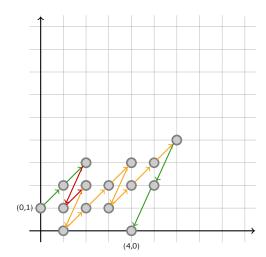


[Mayr'81, Kosaraju'82, Lambert'92]

solution path

remainder

pump down



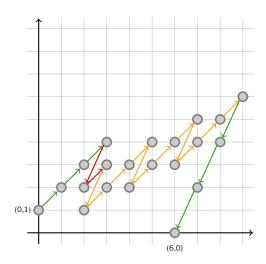
[Mayr'81, Kosaraju'82, Lambert'92]

pump up

solution path

remainder

pump down



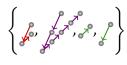
DECOMPOSITION ALGORITHM

[Mayr'81, Kosaraju'82, Lambert'92]

can we build a "simple run"?

[Mayr'81, Kosaraju'82, Lambert'92]

can we build a "simple run"? yes



[Mayr'81, Kosaraju'82, Lambert'92]

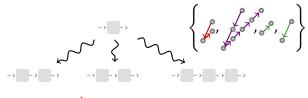
can we build a "simple run"?



decompose

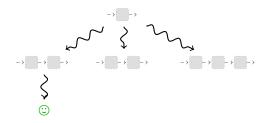
[Mayr'81, Kosaraju'82, Lambert'92]

can we build a "simple run"? no



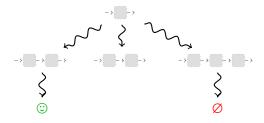
decompose

[Mayr'81, Kosaraju'82, Lambert'92]

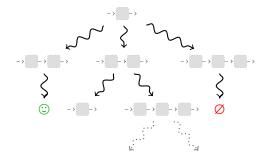


[Mayr'81, Kosaraju'82, Lambert'92]

Vector Addition Systems

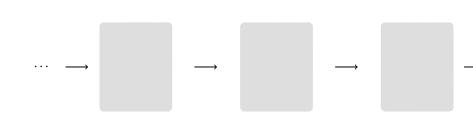


[Mayr'81, Kosaraju'82, Lambert'92]



[Mayr'81, Kosaraju'82, Lambert'92]

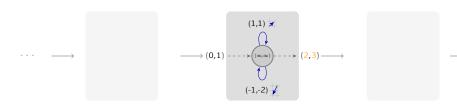
Vector Addition Systems



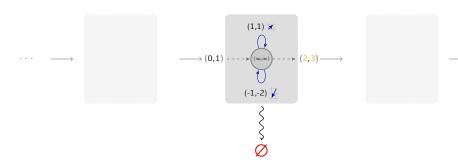
New Ingredients

[Mayr'81, Kosaraju'82, Lambert'92]

Vector Addition Systems



[Mayr'81, Kosaraju'82, Lambert'92]

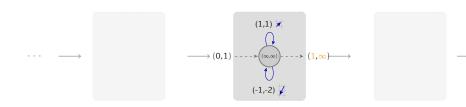


[Mayr'81, Kosaraju'82, Lambert'92]

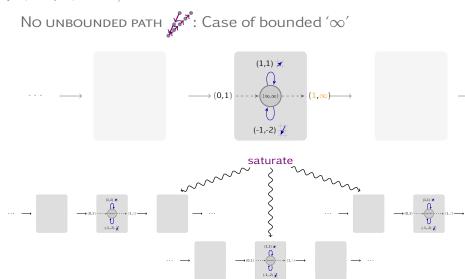
Vector Addition Systems

[Mayr'81, Kosaraju'82, Lambert'92]

No unbounded path f: Case of bounded ∞

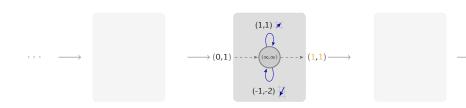


[Mayr'81, Kosaraju'82, Lambert'92]



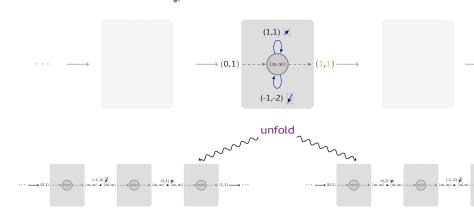
[Mayr'81, Kosaraju'82, Lambert'92]

No unbounded path :: Case of bounded transitions



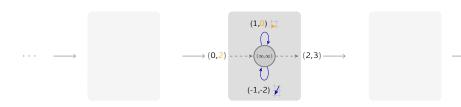
[Mayr'81, Kosaraju'82, Lambert'92]

No unbounded path :: Case of bounded transitions



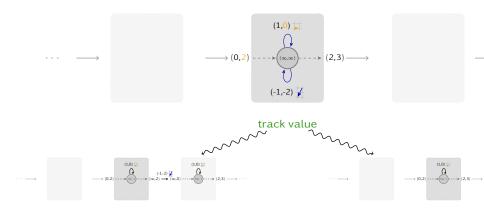
[Mayr'81, Kosaraju'82, Lambert'92]

No pumping path → or ✓:



[Mayr'81, Kosaraju'82, Lambert'92]

No pumping path → or ✓:



TERMINATION

Vector Addition Systems

RANKING FUNCTION

 α_0

New Ingredients

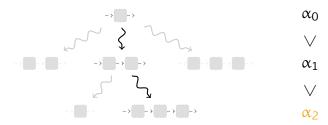
TERMINATION

RANKING FUNCTION

New Ingredients

TERMINATION

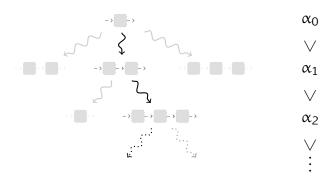
RANKING FUNCTION

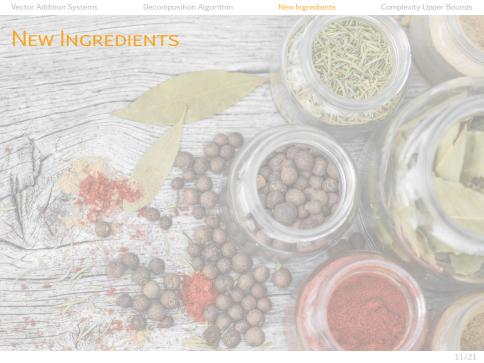


New Ingredients

TERMINATION

RANKING FUNCTION





[Leroux & S. '19]

1. new ranking function:

order type
$$\omega^{\omega^{+}}$$
 in [Leroux & S. '15]
$$\omega^{\omega} \cdot (d+1) \text{ in [S. '17]}$$

2. refined analysis of pumpable paths:

[Leroux & S. '19]

1. new ranking function:

order type
$$\omega^{d+1}$$

$$\omega^{\omega^3} \text{ in [Leroux \& S. '15]}$$

$$\omega^\omega \cdot (d+1) \text{ in [S. '17]}$$

2. refined analysis of pumpable paths:

Rackoff-style analysis improves complexity from F_{2d+2} to F_{d+2}

[Leroux & S. '19]

1. new ranking function:

order type ω^{d+1}

$$\omega^{\omega^3} \text{ in [Leroux \& S. '15]}$$

$$\omega^\omega \cdot (d+1) \text{ in [S. '17]}$$

2. refined analysis of pumpable paths:

Rackoff-style analysis improves complexity from $F_{2\,d+2}$ to F_{d+4}

[Leroux & S. '19]

1. new ranking function:

order type
$$\omega^{d+1}$$

$$\omega^{\omega^3}$$
 in [Leroux & S. '15] $\omega^{\omega} \cdot (d+1)$ in [S. '17]

2. refined analysis of pumpable paths:

Rackoff-style analysis improves complexity from F_{2d+2} to F_{d+4}

RANK OF A TRANSITION

 $\{ \text{effects of cycles } C \mid t \in C \}$

RANK OF A TRANSITION

$$\{m \cdot \not > + n \cdot \not \mid m \geqslant 0, n > 0\}$$

RANK OF A TRANSITION

$$span_{\mathbb{Q}}\Big(\big\{m\cdot {\color{red} >} + n\cdot {\color{red} \neq} \mid m\geqslant 0, n>0\big\}\Big) = \mathbb{Q}^2$$

$$\dim \left(\operatorname{span}_{\mathbb{Q}} \left(\left\{ m \cdot \triangleright + n \cdot \bigvee \mid m \geqslant 0, n > 0 \right\} \right) = \mathbb{Q}^2 \right) = 2$$

$$\dim \left(\operatorname{span}_{\mathbb{Q}} \left(\left\{ m \cdot \nearrow + n \cdot \cancel{\nearrow} \mid m \geqslant 0, n > 0 \right\} \right) = \mathbb{Q}^2 \right) = 2$$
 here,
$$\operatorname{rank}(t) = (1,0,0) \qquad \in \mathbb{N}^{d+1}$$

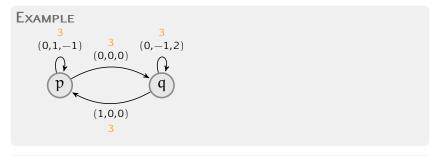
DEFINITION

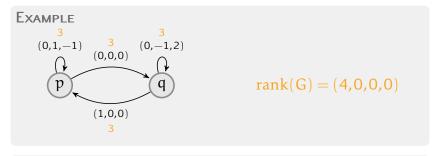
$$rank(G) \stackrel{\text{def}}{=} \sum_{t \in G} rank(t) \quad \in \mathbb{N}^{d+1} \quad \text{(ordered lexicographically)}$$

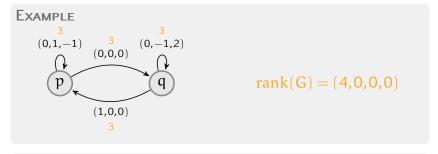
$$\dim \left(\operatorname{span}_{\mathbb{Q}} \left(\left\{ m \cdot \nearrow + n \cdot \not \nearrow \mid m \geqslant 0, n > 0 \right\} \right) = \mathbb{Q}^2 \right) = 2$$
 here,
$$\operatorname{rank}(t) = (1,0,0) \qquad \in \mathbb{N}^{d+1}$$

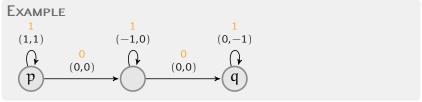
DEFINITION

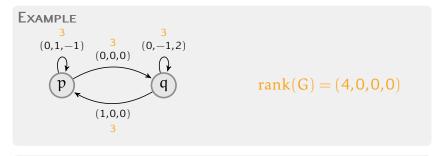
$$rank(G) \stackrel{\text{\tiny def}}{=} \sum_{t \in G} rank(t) \quad \in \mathbb{N}^{d+1} \quad \text{(ordered lexicographically)}$$

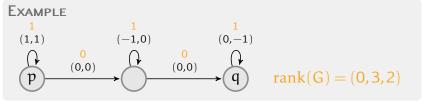












DECREASING RANKS

RECALL DECOMPOSITION STEPS:

- ▶ no ¾: Ø
- ▶ no 🖟 :
 - bounded '∞': saturate
 - bounded transitions: unfold
- ▶ no 🚜 or no ½: track value

RECALL DECOMPOSITION STEPS:

- ▶ no 🖟 :

 - bounded transitions: unfold

Decreasing Ranks

Proof Idea

Consider a strongly connected VAS G:

- let V, resp. V', be the vector space spanned by the cycles of T, resp. T'
- we want to show $\dim(V') < \dim(V)$
- ▶ as $V' \subseteq V$, it suffices to show that V' = V implies T' = T
 - pick cycle using every transition: effect x + z + u + v ∈ W
 - ▶ V = V' thus $\exists \lambda \in \mathbb{Q}$ s.t. $x + z + u + v = \lambda(x + u + v)$
 - ightharpoonup pick $p\in\mathbb{N}_{>0}$ s.t. $p\lambda\in\mathbb{Z}$; $p(x+z+u+v)-p\lambda(x+u+v)=0$
 - ▶ $\exists q \in \mathbb{N} \text{ s.t. } qa, qb, qc \geqslant p\lambda$
 - ► $[(p+qa-p\lambda)x,pz,(p+qb-p\lambda)u,(p+qc-p\lambda)v]$ also hom. solven.

Decreasing Ranks

Proof Idea

Consider a strongly connected VAS G:

 $T \setminus T'$: not in any hom. sol.

- let V, resp. V', be the vector space spanned by the cycles of T resp. T'
- $\textcolor{red}{\blacktriangleright} \ \text{ we want to show } dim(V') < dim(V)$
- $\,\blacktriangleright\,$ as $V'\subseteq V,$ it suffices to show that V'=V implies T'=T
 - pick cycle using every transition: effect $x+z+u+v \in V$
 - ▶ V = V' thus $\exists \lambda \in \mathbb{Q}$ s.t. $x + z + u + v = \lambda(x + u + v)$
- ▶ pick $p \in \mathbb{N}_{>0}$ s.t. $p\lambda \in \mathbb{Z}$; $p(x+z+u+v)-p\lambda(x+u+v)=0$
- ▶ $\exists q \in \mathbb{N} \text{ s.t. } qa,qb,qc \geqslant p\lambda$
- ► $[(p+qa-p\lambda)x,pz,(p+qb-p\lambda)u,(p+qc-p\lambda)v]$ also hom. solven.

Proof Idea

Consider a strongly connected VAS G:

 $T \setminus T'$: not in any hom. sol.

- let V, resp. V', be the vector space spanned by the cycles of I resp. T'
- $\textcolor{red}{\blacktriangleright} \ \text{ we want to show } dim(V') < dim(V)$
- $\,\blacktriangleright\,$ as $V'\subseteq V,$ it suffices to show that V'=V implies T'=T
 - ▶ pick cycle using every transition: effect $x + z + u + v \in V$
- \lor V = V' thus $\exists \lambda \in \mathbb{O}$ s.t. $x + z + u + v = \lambda(x + u + v)$
- ▶ pick $p \in \mathbb{N}_{>0}$ s.t. $p\lambda \in \mathbb{Z}$; $p(x+z+u+v)-p\lambda(x+u+v)=0$
- ▶ $\exists q \in \mathbb{N} \text{ s.t. } qa,qb,qc \geqslant p\lambda$
- ► $[(p+q\alpha-p\lambda)x,pz,(p+qb-p\lambda)u,(p+qc-p\lambda)v]$ also hom. sol

PROOF IDEA

Consider a strongly connected VAS G:

 $T \setminus T'$: not in any hom. sol.

- let V, resp. V', be the vector space spanned by the cycles of T, resp. T'
- we want to show $\dim(\mathbf{V}') < \dim(\mathbf{V})$
- ▶ as $V' \subseteq V$, it suffices to show that V' = V implies T' = T
 - \triangleright pick cycle using every transition: effect $\mathbf{x} + \mathbf{z} + \mathbf{u} + \mathbf{v} \in \mathbf{V}$
 - \lor V = V' thus $\exists \lambda \in \mathbb{O}$ s.t. $x + z + u + v = \lambda(x + u + v)$

PROOF IDEA

Consider a strongly connected VAS G:

$$T \setminus T'$$
: not in any hom. sol. T' : in an homogeneous solution $[\alpha x, bu, cv]$

- \triangleright let V, resp. V', be the vector space spanned by the cycles of T, resp. T'
- we want to show $\dim(\mathbf{V}') < \dim(\mathbf{V})$
- ightharpoonup as $V' \subseteq V$, it suffices to show that V' = V implies T' = T
 - ▶ pick cycle using every transition: effect $\mathbf{x} + \mathbf{z} + \mathbf{u} + \mathbf{v} \in \mathbf{V}$
 - \lor V = V' thus $\exists \lambda \in \mathbb{O}$ s.t. $x + z + u + v = \lambda(x + u + v)$

PROOF IDEA

Consider a strongly connected VAS G:

$$T \setminus T'$$
: not in any hom. sol. T' : in an homogeneous solution $[\alpha x, bu, cv]$

- \triangleright let V, resp. V', be the vector space spanned by the cycles of T, resp. T'
- we want to show $\dim(\mathbf{V}') < \dim(\mathbf{V})$
- ightharpoonup as $V' \subseteq V$, it suffices to show that V' = V implies T' = T
 - ▶ pick cycle using every transition: effect $\mathbf{x} + \mathbf{z} + \mathbf{u} + \mathbf{v} \in \mathbf{V}$
 - \lor V = V' thus $\exists \lambda \in \mathbb{O}$ s.t. $\mathbf{x} + \mathbf{z} + \mathbf{u} + \mathbf{v} = \lambda(\mathbf{x} + \mathbf{u} + \mathbf{v})$

PROOF IDEA

Consider a strongly connected VAS G:

$$T \setminus T'$$
: not in any hom. sol. T' : in an homogeneous solution $[\alpha x, bu, cv]$

- \triangleright let V, resp. V', be the vector space spanned by the cycles of T, resp. T'
- we want to show $\dim(\mathbf{V}') < \dim(\mathbf{V})$
- ightharpoonup as $V' \subseteq V$, it suffices to show that V' = V implies T' = T
 - ▶ pick cycle using every transition: effect $\mathbf{x} + \mathbf{z} + \mathbf{u} + \mathbf{v} \in \mathbf{V}$
 - \lor V = V' thus $\exists \lambda \in \mathbb{O}$ s.t. $\mathbf{x} + \mathbf{z} + \mathbf{u} + \mathbf{v} = \lambda(\mathbf{x} + \mathbf{u} + \mathbf{v})$
 - ▶ pick $p \in \mathbb{N}_{>0}$ s.t. $p\lambda \in \mathbb{Z}$; $p(x+z+u+v)-p\lambda(x+u+v)=0$

PROOF IDEA

Consider a strongly connected VAS G:

$$T \setminus T'$$
: not in any hom. sol. T' : in an homogeneous solution $[\alpha x, bu, cv]$

- \triangleright let V, resp. V', be the vector space spanned by the cycles of T, resp. T'
- we want to show $\dim(\mathbf{V}') < \dim(\mathbf{V})$
- ightharpoonup as $V' \subseteq V$, it suffices to show that V' = V implies T' = T
 - ▶ pick cycle using every transition: effect $\mathbf{x} + \mathbf{z} + \mathbf{u} + \mathbf{v} \in \mathbf{V}$
 - ▶ V = V' thus $\exists \lambda \in \mathbb{Q}$ s.t. $x + z + u + v = \lambda(x + u + v)$
 - ▶ pick $p \in \mathbb{N}_{>0}$ s.t. $p\lambda \in \mathbb{Z}$; $p(x+z+u+v)-p\lambda(x+u+v)=0$

PROOF IDEA

Consider a strongly connected VAS G:

$$T \setminus T'$$
: not in any hom. sol. T' : in an homogeneous solution $[\alpha x, bu, cv]$

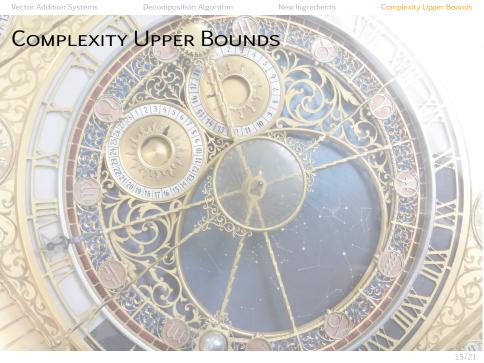
- \triangleright let V, resp. V', be the vector space spanned by the cycles of T, resp. T'
- we want to show $\dim(\mathbf{V}') < \dim(\mathbf{V})$
- ightharpoonup as $V' \subseteq V$, it suffices to show that V' = V implies T' = T
 - ▶ pick cycle using every transition: effect $\mathbf{x} + \mathbf{z} + \mathbf{u} + \mathbf{v} \in \mathbf{V}$
 - \lor V = V' thus $\exists \lambda \in \mathbb{O}$ s.t. $\mathbf{x} + \mathbf{z} + \mathbf{u} + \mathbf{v} = \lambda(\mathbf{x} + \mathbf{u} + \mathbf{v})$
 - ▶ pick $p \in \mathbb{N}_{>0}$ s.t. $p\lambda \in \mathbb{Z}$; $p(x+z+u+v)-p\lambda(x+u+v)=0$
 - ▶ $\exists q \in \mathbb{N}$ s.t. $qa,qb,qc \geqslant p\lambda$

Proof Idea

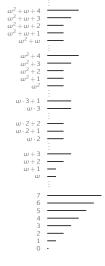
Consider a strongly connected VAS G:

$$T \setminus T'$$
: not in any hom. sol. T' : in an homogeneous solution $[\alpha x, bu, cv]$

- \triangleright let V, resp. V', be the vector space spanned by the cycles of T, resp. T'
- we want to show $\dim(\mathbf{V}') < \dim(\mathbf{V})$
- ightharpoonup as $V' \subseteq V$, it suffices to show that V' = V implies T' = T
 - ▶ pick cycle using every transition: effect $\mathbf{x} + \mathbf{z} + \mathbf{u} + \mathbf{v} \in \mathbf{V}$
 - \lor V = V' thus $\exists \lambda \in \mathbb{O}$ s.t. $\mathbf{x} + \mathbf{z} + \mathbf{u} + \mathbf{v} = \lambda(\mathbf{x} + \mathbf{u} + \mathbf{v})$
 - ▶ pick $p \in \mathbb{N}_{>0}$ s.t. $p\lambda \in \mathbb{Z}$; $p(x+z+u+v)-p\lambda(x+u+v)=0$
 - ▶ $\exists q \in \mathbb{N}$ s.t. $qa,qb,qc \geqslant p\lambda$
 - $[(p+qa-p\lambda)x,pz,(p+qb-p\lambda)u,(p+qc-p\lambda)v]$ also hom. sol



ORDINALS



▶ Cantor normal form for ordinals $\alpha < \varepsilon_0$:

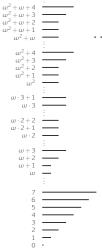
$$\begin{split} \alpha &= \omega^{\alpha_1} \cdot c_1 + \dots + \omega^{\alpha_k} \cdot c_k \\ \alpha &> \alpha_1 > \dots > \alpha_k \text{ in CNF} \,, \quad 0 < c_1, \dots, c_k < \omega \end{split}$$

▶ norm of ordinals $\alpha < \varepsilon_0$: "maximal constant"

$$N\alpha \stackrel{\text{def}}{=} \max_{1 \leqslant i \leqslant k} (\max(N\alpha_i, c_i))$$

EXAMPLE

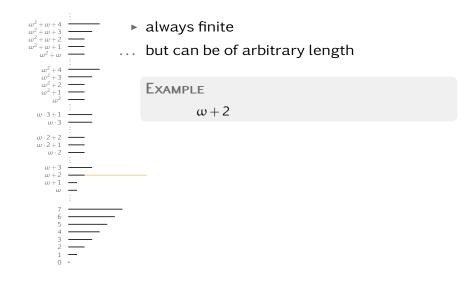
$$N7 = 7$$
 $N(\omega \cdot 3 + 1) = 3$
 $N(\omega^2 + \omega) = 2$ $N(\omega^2 + \omega + 4) = 4$

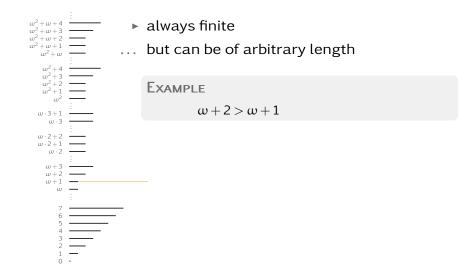


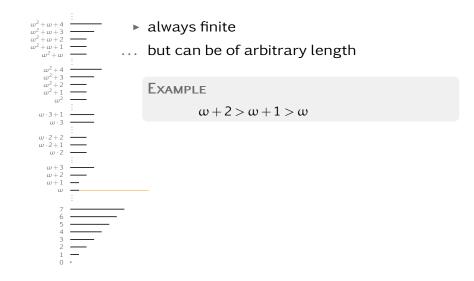
always finite

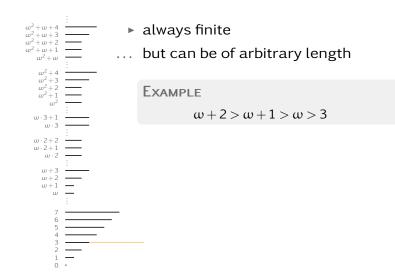
... but can be of arbitrary length

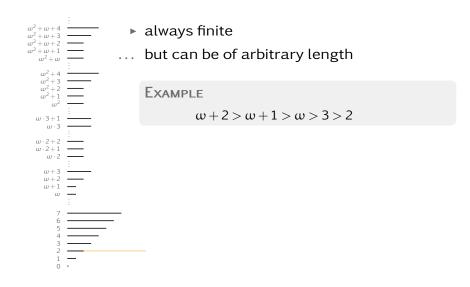
EXAMPLE

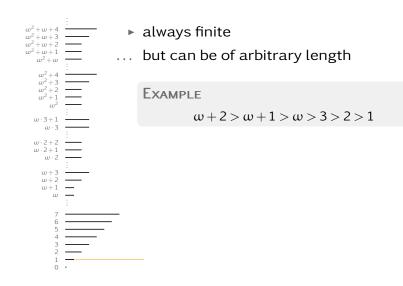


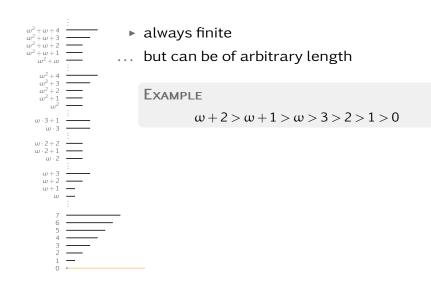


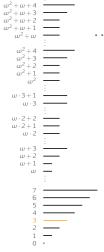












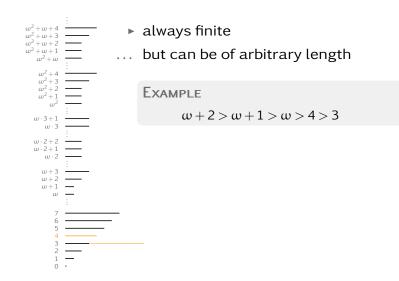
always finite

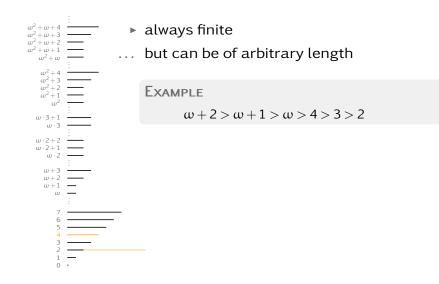
... but can be of arbitrary length

EXAMPLE

$$\omega + 2 > \omega + 1 > \omega > 3 > 2 > 1 > 0$$





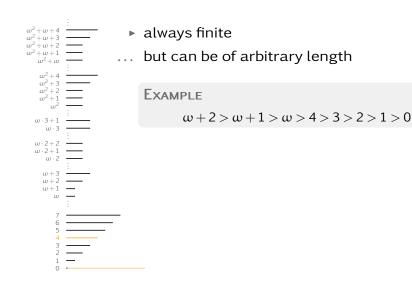


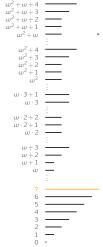
always finite

... but can be of arbitrary length

EXAMPLE

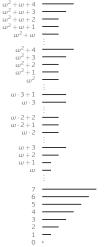
$$\omega + 2 > \omega + 1 > \omega > 4 > 3 > 2 > 1$$





- always finite
- ... but can be of arbitrary length

EXAMPLE $\omega + 2 > \omega + 1 > \omega > 7 > 6 > 5 > 4 > 3 > 2 > 1 > 0$



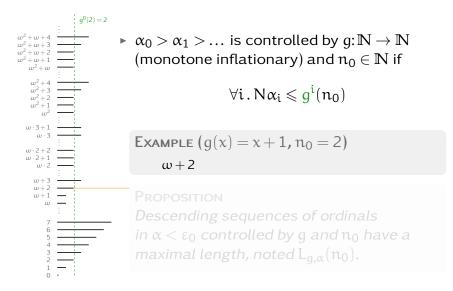
▶ $\alpha_0 > \alpha_1 > ...$ is controlled by $g: \mathbb{N} \to \mathbb{N}$ (monotone inflationary) and $n_0 \in \mathbb{N}$ if

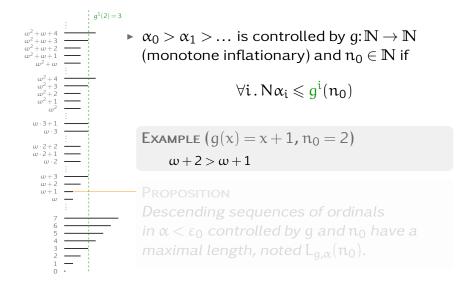
$$\forall i. N\alpha_i \leqslant g^i(n_0)$$

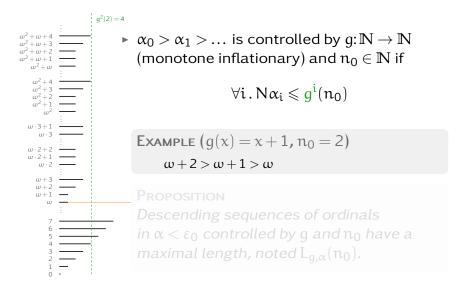
Example
$$(g(x) = x + 1, n_0 = 2)$$

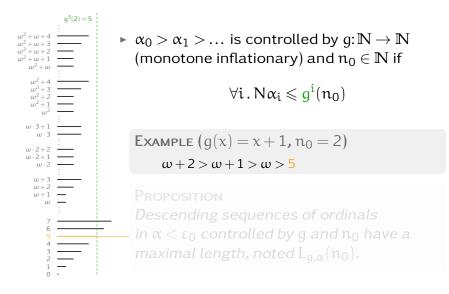
Proposition

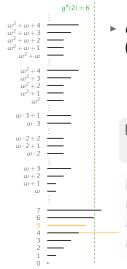
Descending sequences of ordinals in $\alpha < \epsilon_0$ controlled by g and n_0 have a maximal length, noted $L_{g,\alpha}(n_0)$.











• $\alpha_0 > \alpha_1 > ...$ is controlled by $g: \mathbb{N} \to \mathbb{N}$ (monotone inflationary) and $n_0 \in \mathbb{N}$ if

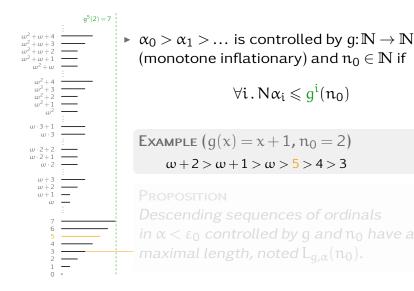
$$\forall i. N\alpha_i \leqslant g^i(n_0)$$

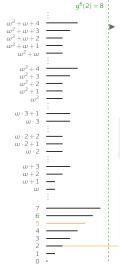
Example
$$(g(x) = x + 1, n_0 = 2)$$

 $\omega + 2 > \omega + 1 > \omega > 5 > 4$

PROPOSITION

in $\alpha < \epsilon_0$ controlled by g and n_0 have a maximal length, noted $L_{g,\alpha}(n_0)$.





 $\alpha_0 > \alpha_1 > \dots$ is controlled by $g: \mathbb{N} \to \mathbb{N}$ (monotone inflationary) and $n_0 \in \mathbb{N}$ if

$$\forall i. N\alpha_i \leqslant g^i(n_0)$$

Example
$$(g(x) = x + 1, n_0 = 2)$$

 $\omega + 2 > \omega + 1 > \omega > 5 > 4 > 3 > 2$

PROPOSITION

Descending sequences of ordinals in $\alpha < \epsilon_0$ controlled by g and \mathfrak{n}_0 have a maximal length, noted $L_{g,\alpha}(\mathfrak{n}_0)$.

DESCENDING ORDINAL SEQUENCES

 $lpha_0 > lpha_1 > \dots$ is controlled by $g: \mathbb{N} \to \mathbb{N}$ (monotone inflationary) and $\mathfrak{n}_0 \in \mathbb{N}$ if

$$\forall i. N\alpha_i \leqslant g^i(n_0)$$

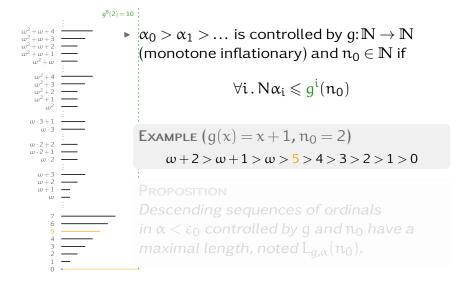
Example
$$(g(x) = x + 1, n_0 = 2)$$

 $\omega + 2 > \omega + 1 > \omega > 5 > 4 > 3 > 2 > 1$

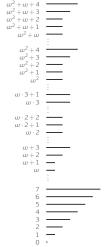
PROPOSITION

Descending sequences of ordinals in $\alpha < \epsilon_0$ controlled by g and n_0 have a maximal length, noted $L_{g,\alpha}(n_0)$.

DESCENDING ORDINAL SEQUENCES



DESCENDING ORDINAL SEQUENCES



▶ $\alpha_0 > \alpha_1 > ...$ is controlled by $g: \mathbb{N} \to \mathbb{N}$ (monotone inflationary) and $n_0 \in \mathbb{N}$ if

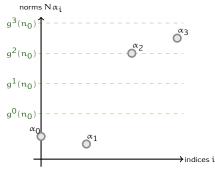
$$\forall i. N\alpha_i \leqslant g^i(n_0)$$

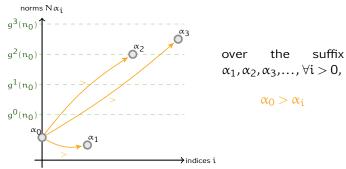
Example
$$(g(x) = x + 1, n_0 = 2)$$

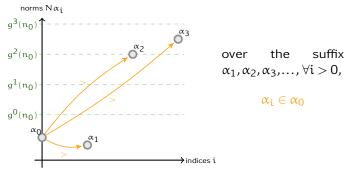
 $\omega + 2 > \omega + 1 > \omega > 5 > 4 > 3 > 2 > 1 > 0$

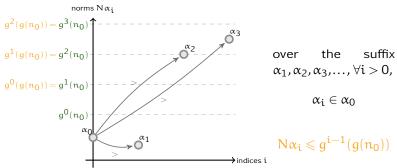
PROPOSITION

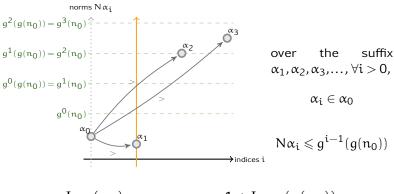
Descending sequences of ordinals in $\alpha < \epsilon_0$ controlled by g and n_0 have a maximal length, noted $L_{g,\alpha}(n_0)$.











$$L_{g,\alpha}(n_0) = \max_{\alpha_0 \in \alpha, N \alpha_0 \leqslant n_0} 1 + L_{g,\alpha_0}(g(n_0))$$

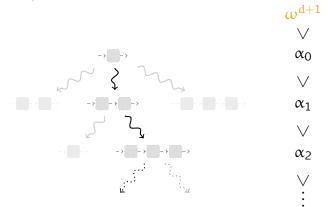
$$L_{g,\alpha}(n_0) = \max_{\alpha_0 \in \alpha, N \alpha_0 \leqslant n_0} 1 + L_{g,\alpha_0}(g(n_0))$$

Consequence of (S. '14, '16)

For g elementary, $L_{g,\omega^{d+1}}(n_0)\leqslant F_{d+4}(e(n_0))$ for some elementary function e.

THE LENGTH OF DECOMPOSITION BRANCHES

[Leroux & S. '19]

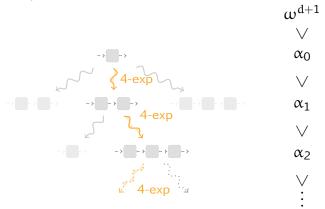


COPOLLARY

The decomposition tree is of size at most $F_{d+4}(e(n))$ for some elementary function e.

THE LENGTH OF DECOMPOSITION BRANCHES

[Leroux & S. '19]

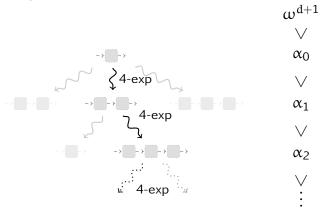


COROLLARY

The decomposition tree is of size at most $F_{d+4}(e(n))$ for some elementary function e.

THE LENGTH OF DECOMPOSITION BRANCHES

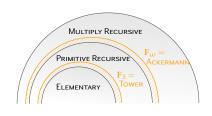
[Leroux & S. '19]



COROLLARY

The decomposition tree is of size at most $F_{d+4}(e(n))$ for some elementary function e.

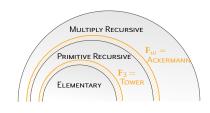
$$\begin{split} F_0(x) &= x+1 \\ F_1(x) &= \overbrace{F_0 \circ \cdots \circ F_0}^{x+1 \text{ times}}(x) = 2x+1 \\ F_2(x) &= \overbrace{F_1 \circ \cdots \circ F_1}^{x+1 \text{ times}}(x) \approx 2^x \\ F_3(x) &= \overbrace{F_2 \circ \cdots \circ F_2}^{x+1 \text{ times}}(x) \approx \text{tower}(x) \\ &\vdots \\ F_{\boldsymbol{\omega}}(x) &= F_{x+1}(x) &\approx \text{ackermann}(x) \end{split}$$



Upper Bound Theorem VAS Reachability is in F_{ω} , and in F_{d+4} in fixed dimension d

NEW UPPER BOUNDS

$$\begin{split} F_0(x) &= x+1 \\ F_1(x) &= \overbrace{F_0 \circ \cdots \circ F_0}^{x+1 \text{ times}}(x) = 2x+1 \\ F_2(x) &= \overbrace{F_1 \circ \cdots \circ F_1}^{x+1 \text{ times}}(x) \approx 2^x \\ F_3(x) &= \overbrace{F_2 \circ \cdots \circ F_2}^{x+1 \text{ times}}(x) \approx \text{tower}(x) \\ &\vdots \\ F_{\mathfrak{W}}(x) &= F_{x+1}(x) &\approx \text{ackermann}(x) \end{split}$$



UPPER BOUND THEOREM

VAS Reachability is in F_{ω} , and in F_{d+4} in fixed dimension d

THEOREM

VAS Reachability reduces to bounded VAS Reachability

labelled VAS transitions carry labels from some alphabet

L(V, source, target) the language of labels in runs from source to target

 $\downarrow L$ the set of scattered subwords of the words in the language L

Example (scattered subword ordering)

aba ≤* baaacabbab

labelled VAS transitions carry labels from some alphabet

 $L(\mathcal{V}, \mathbf{source}, \mathbf{target})$ the language of labels in runs from source to target

> L the set of scattered subwords of the words in the language L

DOWNWARDS LANGUAGE INCLUSION PROBLEM

input: two labelled VAS \mathcal{V} and \mathcal{V}' and configurations

source, target, source', target'

question: $\downarrow L(\mathcal{V}, \mathbf{source}, \mathbf{target}) \subseteq \downarrow L(\mathcal{V}', \mathbf{source}', \mathbf{target}')$?

DOWNWARDS LANGUAGE INCLUSION PROBLEM

input: two labelled VAS \mathcal{V} and \mathcal{V}' and configurations

source, target, source', target'

question: $\downarrow L(\mathcal{V}, \mathbf{source}, \mathbf{target}) \subseteq \downarrow L(\mathcal{V}', \mathbf{source}', \mathbf{target}')$?

THEOREM (Habermehl, Meyer & Wimmel'10)

Given a labelled VAS V and configurations source and target and its decomposition, one can construct a finite automaton for $\downarrow L(\mathcal{V}, \mathbf{source}, \mathbf{target})$ in polynomial time.

DOWNWARDS LANGUAGE INCLUSION PROBLEM

input: two labelled VAS $\mathcal V$ and $\mathcal V'$ and configurations

source, target, source', target'

question: $\downarrow L(\mathcal{V}, \mathbf{source}, \mathbf{target}) \subseteq \downarrow L(\mathcal{V}', \mathbf{source}', \mathbf{target}')$?

THEOREM (Habermehl, Meyer & Wimmel'10)

Given a labelled VAS V and configurations **source** and **target** and its decomposition, one can construct a finite automaton for $\downarrow L(V, \mathbf{source}, \mathbf{target})$ in polynomial time.

COROLLARY

The Downwards Language Inclusion is in Ackermann.

DOWNWARDS LANGUAGE INCLUSION PROBLEM

input: two labelled VAS \mathcal{V} and \mathcal{V}' and configurations

source, target, source', target'

question: $\downarrow L(\mathcal{V}, \mathbf{source}, \mathbf{target}) \subseteq \downarrow L(\mathcal{V}', \mathbf{source}', \mathbf{target}')$?

COROLLARY

The Downwards Language Inclusion is in Ackermann.

THEOREM (Zetzsche'16)

The Downwards Language Inclusion is Ackermann-hard.

PERSPECTIVES

1. complexity gap for VAS reachability

- ► Tower-hard [Czerwinski et al.'19]

Perspectives

1. complexity gap for VAS reachability

- ► Tower-hard [Czerwinski et al.'19]
- \blacktriangleright decomposition algorithm: requires $F_{\varpi}=$ Ackermann time, because downward language inclusion is F_{ϖ} -hard <code>[Zetzsche'16]</code>
- reachability in VAS extensions?
 - decidable in VAS with hierarchical zero tests [Reinhardt'08
 - what about
 - branching VAS
 - unordered data Petri nets
 - ▶ pushdown VAS

PERSPECTIVES

1. complexity gap for VAS reachability

- ► Tower-hard [Czerwinski et al.'19]
- decomposition algorithm: requires \mathbf{F}_{α} = Ackermann time, because downward language inclusion is \mathbf{F}_{ω} -hard [Zetzsche'16]
- 2. reachability in VAS extensions?
 - decidable in VAS with hierarchical zero tests [Reinhardt'08]
 - ▶ what about
 - branching VAS
 - unordered data Petri nets
 - pushdown VAS