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DESCENDING ORDINAL SEQUENCES
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wirurs > &g > &1 > ... is controlled by g:IN — IN
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N —
T ExampLE (g(x) =x+ 1,10 = 2)
Ziz wH2>w+l>w>5>4>3
b R
w+1l —

oRrNWhUON



DESCENDING ORDINAL SEQUENCES

¢(2)=8 !
wirurs > &g > &1 > ... is controlled by g:IN — IN
wtw+2 — ! . . .
Crre (monotone inflationary) and ng € IN if
w-3+1 E
N —
o ExaMPLE (g(x) =x+ 1,9 =2)
v = wH+2>w+1l>w>5>4>3>2
b R
w+1l —

oRrNWhUON



DESCENDING ORDINAL SEQUENCES

§7(2)=9 !
wirurs » Xg > &1 > ... is controlled by g:IN — IN
wtw+2 —— | . . N
e = - (monotone inflationary) and ng € IN if
u}i 4 — | )
:i? — Vi.Neg < g'(no)
v-3+1 E
w3 — !
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v = WwH2>w+1>w>5>4>3>2>1
s
w+1l —
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DESCENDING ORDINAL SEQUENCES
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wtw+2 —— | . . .
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u}i 4 — | .
:;{% — VI' N(Xi < gl(nO)
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oiz —
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DESCENDING ORDINAL SEQUENCES

> ®p > 1 > ... is controlled by g:IN — IN
(monotone inflationary) and ng € IN if

Vi. Ny < g'(no)

ExaMPLE (g(x) =x+ 1,9 =2)

PROPOSITION
Descending sequences of ordinals
in o« < ¢g controlled by g andng have a

— wH+2>w+1l>w>5>4>3>2>1>0
— , noted Ly «(nog).
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norms Notj
3(

g~ (ng)

X3
o)
5 x2 .

g°(ng) O over the suffix
061,0(2,063,...,V"L> o,

Ql(no)

9% (ng)

(o @

Q) o1

indices i



DESCENT EQUATION

(g,mp)-controlled descending sequence g, x1, X2, X3,...
over an ordinal «:

norms Notj

3

g~ (ng)
92 (ng) over the suffix
0(1,0(2,0(3,...,V"L> o,

Ql(no)

xi € xp
9% (ng)
?
indices i




DESCENT EQUATION

(g,mp)-controlled descending sequence g, x1, X2, X3,...
over an ordinal «:

norms Notj
2( 3(ng)

gc(g(ngl)) =g

I 2 over the suffix

0(1,0(2,0(3,‘..,V"L>0,

g-(g(ng)) =g(ng)

9%(g(ng)) =gl (ng)

Xi € Xo
9%(ng)
Noi < g' !(g(no))
indices i
Lg,oc(nO) = max 1+ Lg,oco (g(no))

xp€ea,Nog<ng



DESCENT EQUATION

Lg,oc(no) = max 1+ Lg,oco (g(no))

xp€a, Nog<ng

CONSEQUENCE OF (S. '14,'16)

For g elementary, Ly a1 (no) < Fgra(e(ng)) for some
elementary function e.
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THE LENGTH OF DECOMPOSITION BRANCHES

[Leroux & S."19]

d+1
Vv
L ao

{4-exp \V

— > = a’l

4-exp

Y‘& Vv

-2 =l = (xz

Vv

w

COROLLARY
The decomposition tree is of size at most Fg,4(e(n)) for
some elementary function e.



New UrPPER BOUNDS

Fo(x) =x+1

x+1 times y Q
Fl(x) :FOO""’FO(X) —2x+1 ULTIPLY RECURSIVE
x+1 times

Fo(x)=F1o0---0F(x) = 2% PRIMITIVE RECURSIVE

ELEMENTARY

x+1 times
F3(x)=Fpo---0Fy(x) ~ tower(x)

Fw(x)=Fyyq(x) = ackermann (x)
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VAS Reachability is in F,, and in ¥4 4 in fixed dimension d



New UrPPER BOUNDS

Fo(x)=x+1

x+1 times

e e
F1(x)=Fpo---oFg(x) =2x+1 MuLTIPLY RECURSIVE

x+1 times

—_—
Fo(x)=F10---0Fq(x) ~ 2% PRIMITIVE RECURSIVE

ELEMENTARY

x+1 times
F3(x)=Fpo---0Fy(x) ~ tower(x)

Fw(x)=Fyyq(x) = ackermann (x)

UpPPER BOUND THEOREM
VAS Reachability is in F,, and in ¥4 4 in fixed dimension d

THEOREM
VAS Reachability reduces to bounded VAS Reachability



A RELATED PROBLEM

labelled VAS transitions carry labels from some alphabet

L(V,source,target) the language of labels in runs from
source to target

JL the set of scattered subwords of the words in
the language L

ExXAMPLE (scattered subword ordering)
ba < baaacabbab
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A RELATED PROBLEM

DowNWARDS LANGUAGE INCLUSION PROBLEM
input: two labelled VASV and V' and configurations
source, target, source’, target’
question: JL(V,source,target) C |L(V’,source’,target’)?

COROLLARY
The Downwards Language Inclusion is in ACKERMANN.

THEOREM (Zetzsche'16)

The Downwards Language Inclusion is ACKERMANN-hard.
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PERSPECTIVES

1. complexity gap for VAS reachability
» TOwWER-hard [Czerwinski et al/19]

» decomposition algorithm: requires F, = ACKERMANN time,
because downward language inclusion is F ,-hard [zetzsche'16]

2. reachability in VAS extensions?

» decidable in VAS with hierarchical zero tests [Reinhardt'08]
» what about

» branching VAS

» unordered data Petri nets

> pushdown VAS
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