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IMPORTANCE OF THE PROBLEM

REACHABILITY PROBLEM
input: a vector addition system and two
configurations source and target
question: source —* target?

DiscRETE RESOURCES

» modelling: items, money, energy, molecules, ...
» distributed computing: active threads in thread pool

» data: isomorphism types in data logics and data-centric
systems



IMPORTANCE OF THE PROBLEM

REACHABILITY PROBLEM
input: a vector addition system and two
configurations source and target
question: source —* target?

CENTRAL DEcIsION PROBLEM [invited survey S., SIGLOG'16]

Large number of problems interreducible with
reachability in vector addijtion systems
ualence
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IMPORTANCE OF THE PROBLEM

REACHABILITY PROBLEM
input: a vector addition system and two

configurations source and target
question: source —* target?

THEOREM (Minsky’67)

Reachability is undecidable in 2-dimensional

Minsky machines (vector addition systems with
zero tests).




IMPORTANCE OF THE PROBLEM

1662 C A. Petri: Petri nets
? R. M. Karp & R. E. Miller: coverability trees
1969 —— K

ﬁ R. J. Lipton: ExXPSPACE lower bound
1976 —m8M8

1979
%325 J. E. Hopcroft & J.-J. Pansiot: dim. > 3
not definable in Presburger arithmetic
;;% E. W. Mayr: decidability by decomposition
1992
S. R. Kosaraju: decidability by decomposition

! J.-L. Lambert: decidability by decomposition

. J. Leroux: decidability by Presburger inductive invariants
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DEMYSTIFYING REACHABILITY

IN VECTOR ADDITION SYSTEMS
[Leroux & S."15]

IDEAL DECOMPOSITION THEOREM
The Decomposition Algorithm computes the ideal
decomposition of the set of runs from source to target.
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IN VECTOR ADDITION SYSTEMS
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UprPER BouND THEOREM
Reachability in vector addition systems is in
Ackermann.
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Vector Addition Systems Decomposition Algorithm Upper Bounds Complexity Perspectives

“SimpLE Runs” (© CONDITION)

[Mayr’81, Kosaraju'82, Lambert'92]
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(0,1) ====+(@a)- -+ (0,0)
b (-1,-2) \/
CHARACTERISTIC SYSTEM SoLUTION PATH

O+1l-a—1-b=c
1+1-a—2-b=0
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Vector Addition Systems Decomposition Algorithm Upper Bounds Complexity

“SiMpLE RuNs” (© ConDITION)

[Mayr’81, Kosaraju'82, Lambert'92]
a1 A

(0,1) ====+(@m) -+ (00,0

b (-1,-2) \[

HOMOGENEOUS SYSTEM UNBOUNDED PATH

1'(1—1-1’):0 ......... O

l1-a—2-b=0 O/‘
a,b,c>0 O/‘

Perspectives
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“SimpLE Runs” (© CONDITION)

[Mayr'81, Kosaraju’82, Lambert'92]

PuMPABLE PATHS

pump up pump down
(00,00)
(00,00)
o :
(0,1)
(00,0)

uses coverability trees [Karp & Miller'69] (
which relies on Dickson’s Lemma [Dickson, 1913]
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“SimpLE Runs” (© CONDITION)

[Mayr’81, Kosaraju'82, Lambert'92]

PuMPABLE PATHS

unbounded path pump up pump down

Complexity Perspectives
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“SimpLE Runs” (© CONDITION)
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Decomposition Algorithm

“SimpLE Runs” (© CONDITION)
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“SimpLE Runs” (© CONDITION)

[Mayr'81, Kosaraju’82, Lambert'92]
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Vector Addition Systems Decomposition Algorithm Upper Bounds Complexity

“SimpLE Runs” (© CONDITION)

[Mayr’81, Kosaraju'82, Lambert'92]
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DECOMPOSITION ALGORITHM

[Mayr'81, Kosaraju'82, Lambert'92]

can we build a “simple run”? no
kJJ\‘ 5 )\/\’\_’ {a;)j/‘; JP Af}

decompose



Vector Addition Systems Decomposition Algorithm Upper Bounds Complexity

DECOMPOSITION ALGORITHM

[Mayr’81, Kosaraju'82, Lambert'92]

Perspectives



Vector Addition Systems Decomposition Algorithm Upper Bounds Complexity Perspectives

DECOMPOSITION ALGORITHM

[Mayr’81, Kosaraju'82, Lambert'92]



Vector Addition Systems Decomposition Algorithm Upper Bounds Complexity Perspectives

DECOMPOSITION ALGORITHM

[Mayr’81, Kosaraju'82, Lambert'92]
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TERMINATION

“Finally the checker has to verify that
the process comes to an end. Here
again he should be assisted by the
programmer giving a further definite
assertion to be verified. This may
take the form of

[Turing’49]



TERMINATION

“Finally the checker has to verify that
the process comes to an end. Here
again he should be assisted by the
programmer giving a further definite
assertion to be verified. This may
take the form of a quantity which is
asserted to decrease continually and
vanish when the machine stops. To
the pure mathematician it is natural to
give an "

[Turing’49]



Vector Addition Systems Decomposition Algorithm Upper Bounds Complexity Perspectives

TERMINATION OF THE DECOMPOSITION
ALGORITHM

[Mayr'81, Kosaraju'82, Lambert'92]
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TERMINATION OF THE DECOMPOSITION
ALGORITHM

[Mayr'81, Kosaraju'82, Lambert'92]
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TERMINATION OF THE DECOMPOSITION
ALGORITHM

[Mayr'81, Kosaraju'82, Lambert'92]
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DEMYSTIFYING REACHABILITY

IN VECTOR ADDITION SYSTEMS
[Leroux & S.15;S.17]

UpPPER BOUND THEOREM
Reachability in vector addition systems is in quadratic
Ackermann.
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UrPPER BOUNDS

How to bound the running time of algorithms with
-based termination proofs?

wgos ubiquitous in infinite-state verification

gy e

Algori
gOV:Mm;” nalyg;
Il Quagy a5 of p

7Ogray
lered py.9ams v
" Omaing: Vith




BAD SEQUENCES

Over aqo (X,X)
> X0,X1,... iS ifVi<j.xi£xj

» (X, <) wqo iff all bad sequences
are



BAD SEQUENCES

Over aqo (X,X)
X0,X1,... IS ifVi<j.xi£xj

(X, <) wqo iff all bad sequences
are

ExAMPLE (OVER IN?)



BAD SEQUENCES

Over aqo (X,X)
X0,X1,... isbadif Vi <j.x; £ X

(X, <) wqo iff all bad sequences
are finite

but can be of length

ExaMPLE (OVER IN?)



CONTROLLED BAD SEQUENCES

Over a qo (X, <) with |-l
X0,X1,... isbad if Vi <j.x; £ %

(X, <) wqo iff all bad sequences
are finite

by g:IN — IN T
monotone and inflationary and

ng € Nif Vi. [|x;]| < gi(no)

[Cichor & Tahhan Bittar'98]

ExAMPLE (OVER IN° WiITH g = 2 AND g(n) =1 + 1)



CONTROLLED BAD SEQUENCES
Over a qo (X, <) with norm || - ||
> X0,X1,... is bad if Vi <j.x; £ x;

» (X, <) wqo iff all bad sequences
are finite

> by g:IN — IN
monotone and inflatiqnary and
no € Nif Vi. ||xi]| < g'(no)

[Cichon & Tahhan Bittar'98]
ProrPosITION
Over (X,<), assuming Yn{x € X| ||x|| < n} finite,

(g,mp)-controlled bad sequences have a
noted L4 x(no).



CONTROLLED BAD SEQUENCES

ProPOSITION
Over a wgo (X, <), assuming {x € X[ ||x|]| < n} to be finite
¥n, (g,ng)-controlled bad sequences have a

, noted Ly x(ng).

OBJECTIVE
Provide upper bounds for Ly x(no).



DESCENT EQUATION
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DESCENT EQUATION

(g,mp)-controlled X0,X1,X2,X3,... over a
wgo (X, <):
norms ||x4 ||
93(“0) «
X,Z 03
g°(ng) o) over the suffix
X1,X2,X3,..., Vi>0,
91(“0)
g%(ng)
X%) x1

indices i
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DESCENT EQUATION

(g,mp)-controlled bad sequence xg,X1,X2,X3,... Over a

wqo (X,<):
norms ||x4 ||
93(“0)
2
9%no) over the  suffix
] X1,X2,X3,...,Vi>0,
g-(ng)
def

0 xi € X\Txo = {x € X[x0 £ x}
g~ (ng)

®

z indices i




DESCENT EQUATION

(g,mp)-controlled bad sequence xg,X1,X2,X3,... Over a

wgo (X, <):
norms ||x |
9°(g9(ng)) = g3 (ng) .
03
gl (g(ng)) = g°(ng) o)

over the suffix

X1,X2,X3,...,Vi>0
%(g(ng)) =g (ng) RACE S ’

9%(ng) xi € X\Txo d:ef{XGX|x0 £ x}

3 Ixi]l < g *(g(no))

indices i

Lgx(mo) = max  1+41Lgx1x(9(n0))

X0€X,||XOH<Tlo



DESCENT EQUATION

(g,ng)-controlled bad sequence xg, ®1, %2, ®3,... over an

norms || o ||

92(g9(ng)) =g3(ng)
&3
0(,2 O
_ 42
91 (s(no)) = 9%(no) o over the  suffix
o1, 0,%3,..., Vi>0
90(9(“0”191(“0) £ 1,X2,X3,..., )
3
Ay €
9% (ng) t
* o < i—1
(I)1 i |l < 9" (g(no))
£ T indices 1
Lg,oc(nO) = max 1+ [—g, (9(“0))

xo€o|[eo[<no
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THE CASE OF ORDINALS
[5/14]
» Cantor Normal Form for ordinals o« < ¢q:

x=w*-cy+--+w ¢y
o>y > > Xy 0<cy,ee, < w

> of ordinals & < £g: “maximal constant”

x| = max (max(lexill c1))

X

eg |w®’| =2, w5 +w? 3| =5
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[S/14]
Recall the descent equation:

Lg,oc(no) = max 1+ Lg,oco(g(no))

(XoGO(,HO(oHSTLO

PROPOSITION (variant of [Buchholtz, Cichor & Weiermann'94])
Let 0 < a < g and ||«|| < ng. Then

Lgo(no) =0
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Recall the descent equation:
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THE CASE oF ORDINALS

[s/14]
PROPOSITION (variant of [Buchholtz, Cichor & Weiermann'94])
Let0 < & < g and ||| < ng. Then

Lgo(ng) =0 Lga(no) =1+Lgp, («)(9(no))

P.() denotes the : “maximal
ordinal B < as.t. ||B|| <x”

EXAMPLE
P3(w?)=w-3+3
P3(ww2) — ww~3+3 '3+ww~3+2 .3+ww-3+1 3+ww33
+ww~2+3‘3_’_ww-2+2.3+ww~2+l‘3_’_ww-2.3
+ w3 34+ w2 34 WPt .34+ w3

+w3-3+w? 34+w-3+3



THE CASE oF ORDINALS

[s/14]

PROPOSITION (variant of [Buchholtz, Cichon & Weiermann'94])
Let0 < x < gg and ||| < ng. Then

Lgo(ng) =0 Lga(no) =1+Lgp, («(9(no))

This function was already known in the literature!

DeriniTioN (Cichon Hierarchy [Cichon & Tahhan Bittar'98])
For g:IN — IN, define (g : IN — IN), by

def

go(x) =0 9o(x) =14 gp, (o(g(x)) for >0



THE CASE oF ORDINALS

[s/14]

LENGTH FUNCTION THEOREM (FOR ORDINALS)

Let x < g andng > ||x||. Then the longest
(g,no)-controlled descending sequence over « is of

length Lg «(no) = g«(no)



RELATING NORM AND LENGTH

[Cichon & Tahhan Bittar'98]

Recall the definition of the Cichon Hierarchy:

def

go(x) =0 Jo(x) =14 gp, (o (g(x)) for >0

DeriNiTION (Hardy Hierarchy)
For g:IN — IN, define (g*:IN — IN), by

g°(x) = x g*(x) £ g™ ¥ (g(x)) for x>0



RELATING NORM AND LENGTH

[Cichon & Tahhan Bittar'98]

norms ||x4 ||

g3(ng)

g2(ng)

gl (ng)
O(ng)

o)

9

gu(x) =1+gp ((g(x))  fora>0
g*(x) = g™ (g(x)) for >0
XZ OX3

indices i



RELATING NORM AND LENGTH

[Cichon & Tahhan Bittar'98]

norm: Hardy function g& (ng)

A

go(x) =20 gu(x) Z1+4gp ((g(x))  fora>0
g° () =x g%(x) = g™ ¥ (g(x)) for >0
norms ||x4 ||
93(ng)
X3
92(ng) ok
1 g% (x) = g9 (x)
g+ (ng)
9%(ng)
%) O"l

length: Cichon function gu(ng)
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is (g,no)-controlled. The algorithm runs in



THE LENGTH OF DECOMPOSITION BRANCHES
N N ao
V
X1
V
- 0

V

COROLLARY
Letng > 2 and ¢ : IN — IN be such that the sequence of

ordinal ranks computed by the decomposition algorithm
is (g,no)-controlled. The algorithm runs in

SPACE(g®*” (n0)).



THE LENGTH OF DECOMPOSITION BRANCHES
oo
V
X1
V
e o

V

- >

CONSEQUENCE OF (FlGUElRA, FIGUEIRA, S. & SCHNOEBELEN'11)

The control g(x) ZHY (e(x)) for H(x) Zx+ 1 and an
elementary function e, and ng the size of the reachability
instance fit. Thus the decomposition algorithm runs in



RESTATING THE RESULT

w2

“SPACE((H®” 0 e)®® (n)” is unreadable!



RESTATING THE RESULT

w (,U2
“SPACE((H®" oe)® (n)”is unreadable!

1. give names
» H®® is the Ackermann function

2
» HY" is the “quadratic Ackermann” function



RESTATING THE RESULT

w (,UZ
“SPACE((H®" oe)® (n)”is unreadable!

1. give names
» H®® is the Ackermann function

2
» HY" is the “quadratic Ackermann” function

2. define coarse-grained complexity classes

Feu= |J FOTME(HY () Fo = ] DTIME(H®"(f(n))

y<w* feF -«



RESTATING THE RESULT

w (,U2
“SPACE((H®" oe)® (n)”is unreadable!

1. give names
» H®® is the Ackermann function

2
» HY" is the “quadratic Ackermann” function

2. define coarse-grained complexity classes

Feu= |J FOTME(HY () Fo = ] DTIME(H®"(f(n))

y<w* feF -«

CONSEQUENCE OF (S."16, THM. 4.4)
VAS Reachability is in F 2.
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CoMPLEXITY CLASSES BEYOND ELEMENTARY

[S/16]

MuLTIPLY RECURSIVE

PRIMITIVE RECURSIVE

ELEMENTARY

F3= | ] DTime(tower(e(n)))

e elementary



CoMPLEXITY CLASSES BEYOND ELEMENTARY

[S/16]

MuLTIPLY RECURSIVE

PRIMITIVE RECURSIVE

ELEMENTARY

ExAMPLES OF TOWER-COMPLETE PROBLEMS:

satisfiability of first-order logic on words [Meyer75]
B-equivalence of simply typed A terms [Statman'79]
model-checking higher-order recursion schemes [Ong06]
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ELEMENTARY

F, & U DTiMe (ackermann(p(n)))

P primitive recursive



CoMPLEXITY CLASSES BEYOND ELEMENTARY

[S/16]

MuLTIPLY RECURSIVE

PRIMITIVE RECURSIVE

ELEMENTARY

ExAMPLES OF ACKERMANN-COMPLETE PROBLEMS:
> reachability in lossy Minsky machines [Urquhart'98, Schnoebelen'02]
> satisfiability of safety Metric Temporal Logic [Lazi¢ et al.16]
> satisfiability of Vertical XPath [Figueira and Segoufin'17]
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CoMPLEXITY CLASSES BEYOND ELEMENTARY

[S/16]

MuLTiPLY Ry COMPUTE
s /2 ot RS A’V

PriMITIVE REC

ELEMENTARY §



SUMMARY

well-quasi-orders (wqo):
» proving algorithm termination

a toolbox for wgo-based complexity

» upper bounds: length function theorems
(for ordinals, Dickson’s Lemma, Higman's
Lemma, and combinations)

» lower bounds
» complexity classes: (Fy)q

this talk: focus on one problem

» reachability in vector addition systems
inF 2



PERSPECTIVES

1. complexity gap for VAS reachability
» ExPSPACE-hard [Lipton'76]
better lower bounds?
> decomposition algorithm: at least F,, (Ackermannian) time
[Zetzsche'16]



PERSPECTIVES

1. complexity gap for VAS reachability
» ExPSPACE-hard [Lipton'76]
better lower bounds?
> decomposition algorithm: at least F,, (Ackermannian) time
[Zetzsche'16]

2. reachability in VAS extensions

» decidable in VAS with hierarchical zero tests [Reinhardt'08]
» what about

» branching VAS

» unordered data Petri nets

> pushdown VAS



DEMYSTIFYING REACHABILITY

IN VECTOR ADDITION SYSTEMS
[Leroux & S."15]

IDEAL DECOMPOSITION THEOREM
The Decomposition Algorithm computes the ideal
decomposition of the set of runs from source to target.



IDEALS OF WELL-QUASI-ORDERS (X, <)

» Canonical decompositions
[Bonnet'75]

if D C Xis J-closed, then

D=LU---Uly

for (maximal) ideals I4,..., I,

22/20



IDEALS OF WELL-QUASI-ORDERS (X, <)

» Canonical decompositions
[Bonnet'75]

if D C X is |-closed, then
D — Il U e U In

for (maximal) ideals I,..., I

ExAMPLE (OVER IN?)
D=({0,...,2} x N) U ( JU(N x{0,...,



IDEALS OF WELL-QUASI-ORDERS (X, <)

» Canonical decompositions
[Bonnet'75]

if D C X is |-closed, then
D — Il U e U In

for (maximal) ideals I,..., I

» Effective representations

[Goubault-Larrecq et al.’17]

ExAMPLE (OVER IN?)
D =[(2,00)]U U[[(oo0,4)]
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ADHERENCE MEMBERSHIP

» lis adherent to Runs if
[ C J(INRuns)

» semantic equivalent to
© condition

v

undecidable for arbitrary ideals

\4

decidable for the ideals arising in
the decomposition algorithm

I adherent
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