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Dickson’s Lemma
Definition (wqo)
A wqo is a quasi-order (S,⩽) s.t.

∀x = x0, x1, x2, ⋅ ⋅ ⋅ ∈ Sω, ∃i1 < i2, xi1 ⩽ xi2 .

Lemma (Dickson’s Lemma)
If (A,⩽A) and (B,⩽B) are two wqo’s,

then (A× B,⩽×) is a wqo,
where ⩽× is the product ordering:

⟨a,b⟩ ⩽× ⟨a ′,b ′⟩
def⇔ a ⩽A a

′ ∧ b ⩽B b
′ .
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Dickson’s Lemma

Definition (wqo)
A wqo is a quasi-order (S,⩽) s.t.

∀x = x0, x1, x2, ⋅ ⋅ ⋅ ∈ Sω, ∃i1 < i2, xi1 ⩽ xi2 .

Lemma (Dickson’s Lemma)
In this talk: (Nk,⩽) is a wqo.
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Applications of Dickson’s Lemma

Termination and decision of problems on
I well-structured transition systems (Finkel and

Schnoebelen, 2001),
I Datalog with constraints (Revesz, 1993),
I Gröbner’s bases (Gallo and Mishra, 1994),
I relevance logics (Urquhart, 1999),
I LTL with Presburger constraints (Demri, 2006),
I data logics (Demri and Lazić, 2009; Figueira and Segoufin, 2009),
I . . .
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An Example

 (a,b)
c←− 1
while a > 0 ∧ b > 0

⟨a,b, c⟩ ←− ⟨a− 1,b, 2c⟩
or
⟨a,b, c⟩ ←− ⟨2c,b− 1, 1⟩

end

I in any run ⟨a0,b0, c0⟩, . . . , ⟨an,bn, cn⟩,
⟨a0,b0⟩ � ⟨an,bn⟩

I Dickson’s Lemma: all the runs are finite
I How long can  run?
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Complexity of 

⟨3, 3, 20⟩, ⟨2, 3, 21⟩, ⟨1, 3, 22⟩,
⟨23, 2, 1⟩, . . . , ⟨1, 2, 223−1⟩,

⟨223
, 1, 1⟩, . . . , ⟨1, 1, 2223

−1⟩,

⟨0, 1, 2223

⟩

I 3 + 23 + 223
+ 1 steps: non elementary lower

bound
I This talk: (matching) upper bound from the use

of Dickson’s Lemma
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Bad Sequences

I x = x0, x1, . . . in S∞ is a good sequence if
∃i1 < i2, xi1 ⩽ xi2,

I a bad sequence otherwise,

I (S,⩽) wqo: every bad sequence is finite
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Controlled Sequences

I bound the length of bad sequences

I but: choose any N, and consider the bad
sequence N,N− 1, . . . , 0 over N

I similarly:
⟨3, 3⟩, ⟨3, 2⟩, ⟨3, 1⟩, ⟨3, 0⟩, ⟨2,N⟩, ⟨2,N− 1⟩, . . .
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Controlled Sequences

I bound the length of controlled bad sequences

I fix a control function f :N→N

I x = x0, x1, . . . over Nk is (f, t)-controlled if

∀i = 0, 1, . . . , ∀1 ⩽ j ⩽ k, xi[j] < f(i+ t)

I for fixed k, f, t, there are finitely many
(f, t)-controlled sequences over Nk: maximal
length

Lk,f(t)
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Example
k = 2, t = 3, f(x) = x+ 1

i 0 1 2 3 4 5 ⋅ ⋅ ⋅ 10 11 12 13 ⋅ ⋅ ⋅ 26 27 28 29 ⋅ ⋅ ⋅ 58 59
xi[1] 3 3 3 3 2 2 ⋅ ⋅ ⋅ 2 2 1 1 ⋅ ⋅ ⋅ 1 1 0 0 ⋅ ⋅ ⋅ 0 0
xi[2] 3 2 1 0 7 6 ⋅ ⋅ ⋅ 1 0 15 14 ⋅ ⋅ ⋅ 1 0 31 30 ⋅ ⋅ ⋅ 1 0
f(i+ t) 4 5 6 7 8 9 ⋅ ⋅ ⋅ 14 15 16 17 ⋅ ⋅ ⋅ 30 31 32 33 ⋅ ⋅ ⋅ 62 63

Example ()
k = 2, t = 2 = ⌈log2(max(a,b))⌉, f(x) = 2x + 1



Dickson’s Lemma Length of Bad Sequences Subrecursive Hierarchies Applications References

Technical Overview

1. obtain inequalities for Lk,f in terms of “simpler”
wqo’s

2. define a bounding functionMwith
Lk,f(t) ⩽Mk,f(t)

3. rankMk,f in a hierarchy of function classes (Fk)k
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Easy Cases

L0,f(t) = 1
L1,f(t) = f(t)

the latter sequence being

f(t) − 1, f(t) − 2, . . . , 1, 0
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A More General Problem

I disjoint sums A1 ⊕A2

I wqo for the sum ordering :

x ⩽ x ′
def⇔
(
x, x ′ ∈ A1 ∧ x ⩽1 x

′)
∨
(
x, x ′ ∈ A2 ∧ x ⩽2 x

′)
I multiset notation: τ = {|k1,k2, . . . |}, Nτ =

⊕
iN

ki

I shift to Lτ,f(t)
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Inequality for Nk

A bad sequence x = x0, x1, . . . , xl over Nk:
I control: x0 ⩽ ⟨f(t) − 1, . . . , f(t) − 1⟩

I badness: ∀i > 0, ∃j ⩽ k, xi[j] < x0[j] ⩽ f(t) − 1

I each xi belongs to at least one region Rj,s
depending on its value s = xi[j] at coordinate j

I Rj,s = {x ∈Nk | x[j] = s}

I there are Nk,f(t)
def
= k ⋅ (f(t) − 1) regions in total
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Inequality for Nk

Example

x = ⟨2, 2⟩, ⟨1, 5⟩, ⟨4, 0⟩, ⟨1, 1⟩, ⟨0, 100⟩, ⟨0, 99⟩, ⟨3, 0⟩

⟨2, 2⟩,

⎡⎢⎢⎣
⟨0, 100⟩,⟨0, 99⟩, (R1,0 : x[1] = 0)

⟨1, 5⟩, ⟨1, 1⟩, (R1,1 : x[1] = 1)
⟨4, 0⟩, ⟨3, 0⟩ (R2,0 : x[2] = 0)

(R2,1 : x[2] = 1)

⎤⎥⎥⎦
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Inequality for Nk

Example

x = ⟨2, 2⟩, ⟨1, 5⟩, ⟨4, 0⟩, ⟨1, 1⟩, ⟨0, 100⟩, ⟨0, 99⟩, ⟨3, 0⟩

⟨2, 2⟩,

⎡⎢⎢⎣
⟨0, 100⟩,⟨0, 99⟩, (R1,0 : x[1] = 0)

⟨1, 5⟩, ⟨1, 1⟩, (R1,1 : x[1] = 1)
⟨4, 0⟩, ⟨3, 0⟩ (R2,0 : x[2] = 0)

⟨1, 1⟩ (R2,1 : x[2] = 1)

⎤⎥⎥⎦
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Inequality for Nk

Example

x = ⟨2, 2⟩, ⟨1, 5⟩, ⟨4, 0⟩, ⟨1, 1⟩, ⟨0, 100⟩, ⟨0, 99⟩, ⟨3, 0⟩

⟨2, 2⟩,

⎡⎢⎢⎣
⟨∗, 100⟩,⟨∗, 99⟩, (R1,0 : x[1] = 0)

⟨∗, 5⟩, ⟨∗, 1⟩, (R1,1 : x[1] = 1)
⟨4, ∗⟩, ⟨3, ∗⟩ (R2,0 : x[2] = 0)

(R2,1 : x[2] = 1)

⎤⎥⎥⎦
Suffix: a bad sequence over

N⊕N⊕N⊕N =N4×{1} =NNk,f(t)×{k−1}
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Inequality for Nk

Example

x = ⟨2, 2⟩, ⟨1, 5⟩, ⟨4, 0⟩, ⟨1, 1⟩, ⟨0, 100⟩, ⟨0, 99⟩, ⟨3, 0⟩

⟨2, 2⟩,

⎡⎢⎢⎣
⟨100⟩,⟨99⟩, (R1,0 : x[1] = 0)

⟨5⟩, ⟨1⟩, (R1,1 : x[1] = 1)
⟨4⟩, ⟨3⟩ (R2,0 : x[2] = 0)

(R2,1 : x[2] = 1)

⎤⎥⎥⎦
Suffix: an (f, t+ 1)-controlled bad sequence:

L{k},f(t) ⩽ 1 + LNk,f(t)×{k−1},f(t+ 1)
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Inequality for
⊕

iN
ki

Example
τ = {|1, 2, 2|}:⎡⎣ ⟨5⟩, ⟨3⟩
⟨2, 2⟩, ⟨1, 5⟩,⟨4, 0⟩, ⟨1, 1⟩, ⟨0, 100⟩,⟨0, 99⟩,⟨3, 0⟩

⟨12, 1⟩, ⟨3, 5⟩

⎤⎦

⟨2, 2⟩

⎡⎢⎢⎢⎢⎢⎣
⟨5⟩, ⟨3⟩

⟨∗, 100⟩,⟨∗, 99⟩,
⟨∗, 5⟩, ⟨∗, 1⟩,

⟨4, ∗⟩, ⟨3, ∗⟩

⟨12, 1⟩, ⟨3, 5⟩

⎤⎥⎥⎥⎥⎥⎦
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Inequality for
⊕

iN
ki

Example

⟨2, 2⟩

⎡⎢⎢⎢⎢⎢⎣
⟨5⟩, ⟨3⟩

⟨∗, 100⟩,⟨∗, 99⟩,
⟨∗, 5⟩, ⟨∗, 1⟩,

⟨4, ∗⟩, ⟨3, ∗⟩

⟨12, 1⟩, ⟨3, 5⟩

⎤⎥⎥⎥⎥⎥⎦
τ⟨k,t,f⟩

def
= τ− {k}+Nk,f(t)× {k− 1}
= τ− {k}+ k(f(t) − 1)× {k− 1}

Lτ,f(t) ⩽ max
k∈τ

{
1 + Lτ⟨k,t,f⟩,f(t+ 1)

}
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A Bounding Function

Mτ,f(t)
def
= max

k∈τ
{1 +Mτ⟨k,t,f⟩,f(t+ 1)} .

I Then for all τ and t

Lτ,f(t) ⩽Mτ,f(t)

I find the functional complexity ofM
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Fast Growing Hierarchy: (Fα)α
(Löb and Wainer, 1970)

Hierarchy of functions (Fα)α indexed by ordinals; we
only need the finite fragment.

F0(x)
def
= x+ 1

Fn+1(x)
def
= Fx+1

n (x)

F1(x) = 2x+ 1

F2(x) = (x+ 1) ⋅ 2x+1 − 1
F3 is non elementary

Fω
def
= λx.Fx(x) is non primitive-recursive
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Fast Growing Hierarchy: (Fα)α
(Löb and Wainer, 1970)

Elementary-recursive closure of the (Fα)α

F0 = F1
(linear)

F2
(elementary)

F3

∪
kFk

(primitive-recursive)

Fω

(
(

⋅ ⋅ ⋅
(
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Maximizing Strategy

Lemma
For all τ , ∅, t ⩾ 0,Mτ,f(t) = 1 +Mτ⟨minτ,t,f⟩,f(t+ 1).

Example
t = 1, f(x+ t) = x+ t, τ = {|2, 1|}: compare

⟨0, 0⟩,⟨1⟩, ⟨0⟩
⟨0⟩,⟨1, 1⟩, ⟨1, 0⟩, ⟨0, 3⟩, ⟨0, 2⟩, ⟨0, 1⟩, ⟨0, 0⟩
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A Variant of (Fk)k

G1,f(x)
def
= f(x) + x

Gk+1,f(x)
def
= G

Nk+1,f(x)
k,f (x+ 1)

Lemma
For all k ⩾ 1, r ⩾ 1, x ⩾ 0,Mr×{k},f(x) = G

r
k,f(x) − x

Lemma
Let γ ⩾ 1 and f be unary monotone in Fγ with
f(x) ⩾ max(1, x) for all x. Then for all k ⩾ 1,
Gk,f belongs to Fγ+k−1.
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Complexity Results

Proposition (Upper Bound)
Let k, r ⩾ 1 be natural numbers and γ ⩾ 1. If f is a
monotone unary function of Fγ with
f(x) ⩾ max(1, x) for all x, thenMr×{k},f is in Fγ+k−1.

Proposition (Lower Bound)
Let k, r ⩾ 1 be natural numbers and γ ⩾ 0 with
γ+ k ⩾ 3. Then Lr×{k},Fγ is bounded below by a
function which is not in Fγ+k−2.
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Applications of our Bounds

Termination and decision of problems on
I well-structured transition systems (Finkel and

Schnoebelen, 2001),
I Datalog with constraints (Revesz, 1993),
I Gröbner’s bases (Gallo and Mishra, 1994),
I relevance logics (Urquhart, 1999),
I LTL with Presburger constraints (Demri, 2006),
I data logics (Demri and Lazić, 2009; Figueira and Segoufin, 2009),
I . . .
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Program Termination Proofs
(Podelski and Rybalchenko, 2004)

Monolithic Termination Argument

I prove that the program’s transition relation R is
well-founded

I ranking function ρ from program configurations
x = x0, x1, . . . into a wqo s.t.
R ⊆ {(xi, xj) | ρ(xi) � ρ(xj)}

I for : ρ(a,b, c) = ωb + a
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Program Termination Proofs
(Podelski and Rybalchenko, 2004)

Disjunctive Termination Argument

I find well-founded relations T1, . . . , Tk on
program configurations

I prove R+ ⊆ T1 ∪ ⋅ ⋅ ⋅ ∪ Tk
I for :

T1 = {(⟨a,b, c⟩, ⟨a ′,b ′, c ′⟩) | a > 0 ∧ a ′ < a}

T2 = {(⟨a,b, c⟩, ⟨a ′,b ′, c ′⟩) | b > 0 ∧ b ′ < b}

I at the heart of the T tool
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Termination by Dickson’s Lemma
I each Tj shown well-founded thanks to a ranking

function ρj into a wqo (Sj,⩽j)
I map any sequence of program configurations

x = x0, x1, . . .
to a sequence of tuples

y = ⟨ρ1(x0), . . . , ρk(x0)⟩, ⟨ρ1(x1), . . . , ρk(x1)⟩, . . .

in S1 × ⋅ ⋅ ⋅ × Sk
I y is bad: if i1 < i2, there exists j s.t.

(xi1, xi2) ∈ R+ ∩ Tj
but

ρj(xi1) � ρj(xi2)
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Bounds on Program Complexity
Make some assumptions:
I complexity bound g on atomic program

operations
I for instance polynomial

I complexity bound ρ on ranking functions intoN
I for instance polynomial

I y controlled by gi ∘ ρ in some Fγ

I in this case an exponential function in F2

I time complexity in Fγ+k−1
I in this case Fk+1

I matches the lower bound (expand  to
dimension k instead of 2)
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Concluding Remarks

I practical applications of wqo’s yield upper
bounds!

I out-of-the-box upper bounds

I “essentially” matching lower bounds for
decision problems on monotone counter
systems (lossy counter systems, reset or transfer
Petri nets)

I the future: Higman’s Lemma
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Lower Bound
Specific sequence, bad for (Nk,⩽lex), of length ℓk,f(t).

Example
k = 2, t = 1, f(x) = x+ 3:

i 0 1 2 3 4 5 ⋅ ⋅ ⋅ 10 11 12 13 ⋅ ⋅ ⋅ 26 27 28 29 ⋅ ⋅ ⋅ 58 59
xi[1] 3 3 3 3 2 2 ⋅ ⋅ ⋅ 2 2 1 1 ⋅ ⋅ ⋅ 1 1 0 0 ⋅ ⋅ ⋅ 0 0
xi[2] 3 2 1 0 7 6 ⋅ ⋅ ⋅ 1 0 15 14 ⋅ ⋅ ⋅ 1 0 31 30 ⋅ ⋅ ⋅ 1 0
f(i+ t) 4 5 6 7 8 9 ⋅ ⋅ ⋅ 14 15 16 17 ⋅ ⋅ ⋅ 30 31 32 33 ⋅ ⋅ ⋅ 62 63

5 = 1 + 4 = 1 + ℓ1,f(1)
13 = 5 + 8 = 5 + ℓ1,f(5)
29 = 16 + 13 = 13 + ℓ1,f(13)
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Lower Bound
Specific sequence, bad for (Nk,⩽lex), of length ℓk,f(t).
In general, on the k+ 1th coordinate:

f(t) − 1 f(t) − 1 ⋅ ⋅ ⋅ f(t) − 1︸                                 ︷︷                                 ︸ f(t) − 2, f(t) − 2, ⋅ ⋅ ⋅ , f(t) − 2︸                                     ︷︷                                     ︸
ℓk,f(t) times ℓk,f(ok,f(t)) times

⋅ ⋅ ⋅ 0, 0, ⋅ ⋅ ⋅ , 0︸          ︷︷          ︸
ℓk,f

(
o
f(t)−1
k,f (t)

)
times

ok,f(t)
def
= t+ ℓk,f(t)

ℓk+1,f(t) =

f(t)∑
j=1

ℓk,f

(
oj−1
k,f (t)

)
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Lower Bound

Specific sequence, bad for (Nk,⩽lex), of length ℓk,f(t).
One can have ℓk,f(t) < L({k}, t): let f(x) = 2x and
t = 1,

⟨1, 1⟩,⟨1, 0⟩,⟨0, 5⟩,⟨0, 4⟩,⟨0, 3⟩,⟨0, 2⟩,⟨0, 1⟩, ⟨0, 0⟩
⟨1, 1⟩,⟨0, 3⟩,⟨0, 2⟩,⟨0, 1⟩,⟨9, 0⟩,⟨8, 0⟩,⟨7, 0⟩,⟨6, 0⟩,⟨5, 0⟩, . . . ,⟨0, 0⟩

ℓ2,f(1) = 8 L{2},f(1) ⩾ 14
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Well-structured transition systems
I transition systems (Q,→,q0) with a wqo ⩽ onQ

compatible with transitions:

∀p,q,p ′ ∈ Q, (p a−→ q∧p ⩽ p ′)⇒ ∃q ′, (q ⩽ q ′∧p ′
a−→ q ′)

I a generic framework for decidability results:
safety, termination, EF model checking, ...

I many classes of concrete systems are WSTS:
I over (Nk,⩽): vector addition systems,

resets/transfer Petri nets, increasing counter systems,
...

I over (Σ∗,⊑): lossy channel systems, ...
I beyond: data nets, ...
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Example: (Non) Termination

I given (Q,→,q0), decide whether there exists an
infinite run q0 → q1 → ⋅ ⋅ ⋅

I holds iff there exists qi ⩽ qj with q0 →∗ qi →+ qj

I thanks to wqo, termination is both r.e. and co-r.e.

I what is the complexity?
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Affine Counter Systems

I C = ⟨Q,k, δ,m0⟩

I transitions (q,g,q ′) where g(x) = Ax+ B an
affine function, A ∈Nk×k, B ∈ Zk

I m0 ∈Nk

I generalize reset/transfer Petri nets, broadcast
protocols,. . .
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Termination for ACS

Given ⟨C⟩ a k-ACS, does every run of C terminate?

I exponential control in F2

I t < |m0| < |C|

I upper bound: Fk+1

I lower bound: Fk−O(1) (Schnoebelen, 2010)

I if k is not fixed, non-primitive recursive, with an
upper bound in Fω
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