Thomas Colcombet, Marcin Jurdziński, Ranko Lazić, and Sylvain Schmitz

LSV, ENS Paris-Saclay & CNRS & Inria

LICS 2017, June 23rd, 2017

What to do this week-end?

What to do this week-end?

Perfect Half Space Games

What to do this week-end?

MAXIMAL DRY TEMPERATURE

M

What to do this week-end?

Maximal dry temperature as a parity objective

R

0

What to do this week-end?

Maximal dry temperature as a parity objective

R

Perfect Half Space Games

WHAT TO DO THIS WEEK-END? UNCONTROLLED EVENTS

M

What to do this week-end?

Maximal dry temperature as a parity objective UNCONTROLLED EVENTS as a two-players game

M

What to do this week-end?

Maximal dry temperature as a parity objective UNCONTROLLED EVENTS as a two-players game

Perfect Half Space Games

What to do this week-end?

DISCRETE RESOURCES

What to do this week-end?

What to do this week-end?

Multi-Dimensional Energy Parity Games

Player 1 wins a play if both

- energy objective: no component goes negative
- parity objective: the maximal priority is odd

Example $R(0,0) \xrightarrow{(1,0)} R(1,0) \xrightarrow{(1,0)} R(2,0) \xrightarrow{(-1,0)} H(1,0) \xrightarrow{(0,0)} R(1,0) \rightarrow \cdots$

Multi-Dimensional Energy Parity Games

Applications

- ► contractive (⊕,!)-Horn linear logic (Kanovich, APAL '95)
- (weak) simulation of finite-state systems by Petri nets (Abdulla et al., Concur '13)
- model-checking Petri nets with a fragment of μ-calculus (Abdulla et al., Concur '13)
- resource-bounded agent temporal logic RB±ATL* (Alechina et al., RP '16 & AI '17)

Multi-Dimensional Energy Parity Games

COMPLEXITY

lower bound

upper bound

w. initial credit

 \exists initial credit

MULTI-DIMENSIONAL ENERGY PARITY GAMES

Complexity

lower bound

upper bound

w. initial credit

EXPSPACE

(Lasota, IPL '09)

TOWER

(Brázdil et al., ICALP '10)

∃ initial credit

coNP

(Chatterjee et al., FSTTCS '10)

coNP

(Chatterjee et al., FSTTCS '10)

3/10

MULTI-DIMENSIONAL ENERGY PARITY GAMES

Complexity

lower bound

upper bound

w. initial credit

2-EXP (Courtois and S., MFCS '14)

TOWER

(Brázdil et al., ICALP '10)

∃ initial credit

coNP

(Chatterjee et al., FSTTCS '10)

coNP

(Chatterjee et al., FSTTCS '10)

MULTI-DIMENSIONAL ENERGY PARITY GAMES

Complexity

lower bound

upper bound

w. initial credit

2-EXP (Courtois and S., MFCS '14) 2-EXP

(Jurdziński et al., ICALP '15)

∃ initial credit

coNP

(Chatterjee et al., FSTTCS '10)

coNP

(Chatterjee et al., FSTTCS '10)

Multi-Dimensional Energy Parity Games

Complexity

lower bound

upper bound

w. initial credit

2-EXP (Courtois and S., MFCS '14)

∃ initial credit

coNP

(Chatterjee et al., Concur '12)

coNP

Multi-Dimensional Energy Parity Games

Complexity

lower bound

upper bound

w. initial credit

2-EXP (Courtois and S., MFCS '14)

decidable

(Abdulla et al., Concur '13)

∃ initial credit

coNP

(Chatterjee et al., Concur '12)

coNP

Multi-Dimensional Energy Parity Games

Complexity

lower bound

upper bound

w. initial credit

2-EXP (Courtois and S., MFCS '14)

TOWER

(Jančar, RP '15)

∃ initial credit

coNP

(Chatterjee et al., Concur '12)

coNP

Multi-Dimensional Energy Parity Games

Complexity

lower bound

upper bound

w. initial credit

2-EXP (Courtois and S., MFCS '14) 2-EXP

this talk

∃ initial credit

coNP

(Chatterjee et al., Concur '12)

coNP

Fixed Dimensional Energy Fixed Parity Games

Complexity

lower bound

upper bound

w. initial credit

EXP for $d \ge 4$

(Courtois and S., MFCS '14)

pseudoP

this talk

∃ initial credit

this talk

Outline

EXTENDED MULTI-DIMENSIONAL ENERGY GAMES ENCODE PRIORITIES AS ENERGY (Jančar, RP '15)

Two new dimensions: tolerance to humid low/high temperature

Perfect Half Space Games

BOUNDING GAMES

Perfect Half Space Games

BOUNDING GAMES

Perfect Half Space Games

BOUNDING GAMES

Perfect Half Space Games

BOUNDING GAMES

Perfect Half Space Games

Bounding Games

BOUNDING GAMES

Encoding Extended Energy Games

Тнеокем (Jurdziński et al., ICALP '15)

Bounding games on multi-weighted game graphs (V, E, d) are solvable in $(|V| \cdot \|E\|)^{O(d^4)}$.

COROLLARY

The given initial credit problem with credit **c** for energy parity games on multi-weighted game graphs (V, E, d) with p even priorities is solvable in

$$O(|V| \cdot ||E||)^{2^{O(d \log(d+p))}} + O(d \cdot \log ||c||)$$
.

Тнеокем (Jurdziński et al., ICALP '15)

Bounding games on multi-weighted game graphs (V, E, d) are solvable in $(|V| \cdot ||E||)^{O(d^4)}$.

COROLLARY

The given initial credit problem with credit **c** for energy parity games on multi-weighted game graphs (V, E, d) with p even priorities is solvable in

$$O(|V| \cdot ||E||)^{2^{O(d \log(d+p))}} + O(d \cdot \log ||c||).$$

THEOREM (this paper)

Bounding games on multi-weighted game graphs (V, E, d) are solvable in $(|V| \cdot ||E||)^{O(d^3)}$.

COROLLARY

The given initial credit problem with credit **c** for energy parity games on multi-weighted game graphs (V, E, d) with p even priorities is solvable in

$$O(|V| \cdot ||E||)^{2^{O(d \log(d+p))}} + O(d \cdot \log ||c||).$$

Player 2's Objective in a Bounding Game

Key Intuition Player 2 can escape in a perfect half space

Player 2's Objective in a Bounding Game

Key INTUITION Player 2 can escape in a perfect half space

Perfect Half Space Games

Perfect Half Space

$$\{(x,y): x+y < 0\}$$

Perfect Half Space

$$\{(x,y): x + y < 0\}$$
 boundary: $\{(x,y): x + y = 0\}$

Perfect Half Space

$$\{(x,y): x + y < 0\}$$

 $\cup \{(x,y): x + y = 0 \land x < 0\}$

PLAYS

pairs of vertices and perfect half spaces:

$$(\mathbf{v}_0, \mathbf{H}_0) \xrightarrow{\mathbf{w}_1} (\mathbf{v}_1, \mathbf{H}_1) \xrightarrow{\mathbf{w}_2} (\mathbf{v}_2, \mathbf{H}_2) \cdots$$

- in his vertices, Player 2 chooses the current perfect half space
- ▶ Player 2 wins if $\exists i \text{ s.t. } \sum_{j \ge 0} w_j$ diverges into $\bigcap_{j > i} H_j$

▶ Player 2 wins if $\exists i \text{ s.t. } \sum_{j \ge 0} w_j$ diverges into $\bigcap_{j > i} H_j$

Solving Perfect Half Space Games

THEOREM Perfect half space games on multi-weighted game graphs (V, E, d) are solvable in $(|V| \cdot ||E||)^{O(d^3)}$.

Proof Idea

- reduce to a lexicographic energy game (Colcombet and Niwiński)
- hinspace pprox perfect half space game with a single fixed ${f H}$
- ▶ itself reduced to a mean-payoff game

Solving Perfect Half Space Games

Тнеокем Perfect half space games on multi-weighted game graphs (V,E,d) are solvable in $(|V| \cdot ||E||)^{O(d^3)}$.

Proof Idea

- reduce to a lexicographic energy game (Colcombet and Niwiński)
- ${\scriptstyle \blacktriangleright}\,\approx$ perfect half space game with a single fixed H
- itself reduced to a mean-payoff game

Player 2 Strategies

Oblivious Strategy Player 2 chooses the same H_{ν} every time it visits vertex ν

THEOREM If Player 2 has a winning strategy in a perfect half space game, then it has an oblivious one.

"Counterless" Strategy

COROLLARY (Brázdil et al., ICALP '10)

If Player 2 has a winning strategy in a multi-dimensional energy parity game, then it has a positional one.

Player 2 Strategies

Oblivious Strategy Player 2 chooses the same H_{ν} every time it visits vertex ν

THEOREM If Player 2 has a winning strategy in a perfect half space game, then it has an oblivious one.

"Counterless" Strategy

COROLLARY (Brázdil et al., ICALP '10)

If Player 2 has a winning strategy in a multi-dimensional energy parity game, then it has a positional one.

Concluding Remarks

- tight 2-EXP bounds for multi-energy parity games
- impacts numerous problems
- fine understanding of Player 2's strategies:
 Player 2 can win by announcing in which perfect half space he will escape

DISCLAIMER

The Icelandic Met Office does not endorse any of the information provided during this talk, and cannot be held liable for a ruined week-end subsequent to foolishly trusting these fabricated forecasts.

References

- Abdulla, P.A., Mayr, R., Sangnier, A., and Sproston, J., 2013. Solving parity games on integer vectors. In Concur 2013, volume 8052 of LNCS, pages 106–120. Springer. doi:10.1007/978-3-642-40184-8_9.
- Alechina, N., Bulling, N., Demri, S., and Logan, B., 2016. On the complexity of resource-bounded logics. In RP 2016, volume 9899 of LNCS, pages 36–50. Springer. doi:10.1007/978-3-319-45994-3_3.
- Alechina, N., Bulling, N., Logan, B., and Nguyen, H.N., 2017. The virtues of idleness: A decidable fragment of resource agent logic. Artif. Intell. doi:10.1016/j.artint.2016.12.005. to appear.
- Brázdil, T., Jančar, P., and Kučera, A., 2010. Reachability games on extended vector addition systems with states. In *ICALP 2010*, volume 6199 of *LNCS*, pages 478–489. Springer. doi:10.1007/978-3-642-14162-1_40. arXiv version available from http://arxiv.org/abs/1002.2557.
- Chatterjee, K., Randour, M., and Raskin, J.F., 2014. Strategy synthesis for multi-dimensional quantitative objectives. Acta Inf., 51(3–4):129–163. doi:10.1007/s00236-013-0182-6.
- Colcombet, T. and Niwiński, D., 2017. Lexicographic energy games. Manuscript.
- Comin, C. and Rizzi, R., 2016. Improved pseudo-polynomial bound for the value problem and optimal strategy synthesis in mean payoff games. *Algorithmica*. doi:10.1007/s00453-016-0123-1. To appear.
- Jurdziński, M., Lazić, R., and Schmitz, S., 2015. Fixed-dimensional energy games are in pseudo-polynomial time. In ICALP 2015, volume 9135 of LNCS, pages 260–272. Springer. doi:10.1007/978-3-662-47666-6.21. arXiv version available from https://arxiv.org/abs/1502.06875.
- Kanovich, M.I., 1995. Petri nets, Horn programs, linear logic and vector games. Ann. Pure App. Logic, 75(1–2): 107–135. doi:10.1016/0168-0072(94)00060-G.
- Lasota, S., 2009. EXPSPACE lower bounds for the simulation preorder between a communication-free Petri net and a finite-state system. *Information Processing Letters*, 109(15):850–855. doi:10.1016/j.ipl.2009.04.003.
- Velner, Y., Chatterjee, K., Doyen, L., Henzinger, T.A., Rabinovich, A., and Raskin, J.F., 2015. The complexity of multi-mean-payoff and multi-energy games. *Inform. and Comput.*, 241:177–196. doi:10.1016/j.ic.2015.03.001.
- Zwick, U. and Paterson, M., 1996. The complexity of mean payoff games on graphs. *Theor. Comput. Sci.*, 158(1): 343–359. doi:10.1016/0304-3975(95)00188-3.