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Coverability Graphs CTL Model Checking Small Model Properties

Vector Addition Systems
S = 〈V, x0〉
I V: a finite set of transitions in Zk,
I x0: an initial configuration inNk

I semantics: for x, x ′ inNk and a in V, x a−→ x ′ iff
x + a = x ′

Example
S = 〈{a, b, c}, 〈1, 0, 1〉〉 with transitions a = 〈1, 1, −1〉,
b = 〈−1, 0, 1〉, and c = 〈0, −1, 0〉:

〈1, 0, 1〉 a−→ 〈2, 1, 0〉 a−→/



Coverability Graphs CTL Model Checking Small Model Properties

Coverability Graph

I finite abstraction of the VAS reachability graph

I allows to decide various properties of the VAS
(coverability, boundedness, place boundedness,
regularity, reversal boundedness, trace boundedness, LTL
model-checking, . . . )

I but of non-primitive recursive size!
(Cardoza et al., 1976)



Coverability Graphs CTL Model Checking Small Model Properties

Coverability Tree
(Karp and Miller, 1969)

a = 〈1, 1, −1〉, b = 〈−1, 0, 1〉, c = 〈0, −1, 0〉:
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coverability:

is some x > 〈1, 5, 1〉
reachable?

(Karp and Miller, 1969)

coverability of x:

EF
k∧
j=1

µ(j) > x(j)

boundedness:

is the set of reachable
configurations finite?

(Karp and Miller, 1969)

unboundedness:

EF
k∨
j=1

µ(j) > ω

place boundedness:

is the set of reachable val-
ues on coordinate 2 fi-
nite?

place unboundedness of j:

EFµ(j) > ω

1,ω, 1

c

non-regularity

regularity:

is the set L = {w ∈ V∗ |

∃x ∈ Nk, x0
w−→ x} regu-

lar?

(Valk and Vidal-Naquet, 1981)

(no: L ∩ (ab)∗c∗ =
(ab)nc6n)

Idea of the paper: a
“small” witness for cov-
erability, boundedness,
place boundedness, reg-
ularity, . . .

based on Rackoff (1978)
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PrECTL>(F)
Syntax

ϕ ::= > | ⊥ | ϕ∨ϕ | ϕ∧ϕ | EFψϕ | µ(j) > c

with c ∈N ∪ {ω} and ψ a QFP formula with k free variables

Semantics
Over partial covers:

s |= EFψϕ iff ∃π = s0
a1−→ s1

a2−→ · · · ∈ Paths(s), ∃n 6 |π|,

PA |= ψ(

n∑
i=1

ai) and sn |= ϕ,

s |= µ(j) > c iff `(s)(j) > c .
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Examples

non-regularity:

EF
∨

I ⊆ {1, . . . ,k}
I , ∅

∨
I⊆J⊆{1,...,k}

∧
j∈J

µ(j) > ω∧ EFψI,J>


ψI,J(x1, . . . , xk) =

∧
j∈I

xj < 0 ∧
∧
j<J

xj > 0
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(Eventually) Increasing Formulæ

EFx1>0 (µ(2) > ω∧ EFx1>0∧x2<0>∧ EFµ(1) > ω)

1, 0

1,ω

0,ω ω,ω

1,ω

< 〈0, 1〉

〈−1, −1〉

<

〈1, 0〉

〈1, 0〉

6

6

I PrECTL>(F) formulæ
have finite tree models

I increasing formulæ
I eventually increasing

formulæ (eiPrECTL>(F)):
EFϕwhere ϕ is
increasing
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Complexity

Theorem
The VAS model-checking problem for eiPrECTL>(F)
formulæ is ES-complete.

I lower bound: coverability (Cardoza et al., 1976),
I upper bound: small model (∼ 22O(k)·|V|·|ϕ|)
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Proof Idea
(based on Rackoff, 1978)

Construct a small model by induction on i,
0 6 i 6 k:
I allow negative values in coordinates j > i in

models,
I ignore coverability constraints µ(j) > c for j > i

and c < ω (noted ϕ|i)
I called i-admissible models.
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Small Bounded Models
(based on Rackoff, 1978)

(i, r)-bounded partial cover: all finite values on
coordinates 6 i are < r.

Lemma
C |= ϕ|i and C (i, r)-bounded imply ∃C ′, C ′ |= ϕ|i with
|C ′| 6 (2|V|r)(k+|ϕ|)d for some constant d.
(based on small solutions to QFP/LIP instances, e.g.
Papadimitriou, 1981)
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Main Induction
(using ideas from Rackoff, 1978; Atig and Habermehl, 2011)

Small i-admissible model of size 6 g(i) regardless of
initial state:
I base i = 0:
g(0) by reduction to LIP,

I ind. step i+ 1:
set r = 2|V| · g(i) + 2|ϕ|

I (i+ 1, r)-bounded: use small bounded model,
I not (i+ 1, r)-bounded

finally: g(k) 6 22kd·|V|·|ϕ|.
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Case Not (i+ 1, r)-Bounded
|= EFϕ

|= ϕ

|= ϕ

r 6 `(s)(i+ 1) < ω
<

<
<

6

|= ϕ

<
<

6

|= ϕ

<

6

|= ϕ

<

<

<

|= EFϕ
(i+ 1, r)-bounded

replace by small model
of size 6 g(i)
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Main Induction
(using ideas from Rackoff, 1978; Atig and Habermehl, 2011)

Small i-admissible model of size 6 g(i) regardless of
initial state:
I base i = 0:
g(0) by reduction to LIP,

I ind. step i+ 1:
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Concluding Remarks

I a characterization of “coverability-like”
properties

I simpler to use than (Yen, 1992; Atig and
Habermehl, 2011; Demri, 2010)

I see paper for more: decidability/undecidability
of larger fragments, satisfiability, etc.
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