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Importance of the Problem

Reachability Problem
input: a vector addition system and two

configurations source and target
question: source→∗ target?
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Importance of the Problem

Discrete Resources

I modelling: items, money, energy, molecules, . . .

I distributed computing: active threads in thread pool

I data: isomorphism types in data logics and data-centric
systems
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MoVeP Example: Unordered CFSM

Communicating Finite-State Machine
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Importance of the Problem

MoVeP Example: Asynchronous Rendez-vous
[German & Prasad Sistla’92]
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Importance of the Problem
CentralDecision Problem [S.’16]
Large number of problems interreducible with
reachability in vector addition systems

4/35



Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Importance of the Problem

Theorem (Minsky’67)
Reachability is undecidable in 2-dimensional
Minsky machines (vector addition systems with
zero tests).
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Importance of the Problem
1962

2015

C. A. Petri: Petri nets

R. M. Karp & R. E. Miller: coverability trees
1969

R. J. Lipton: EXPSPACE lower bound
1976

J. E. Hopcroft & J.-J. Pansiot: dim. > 3
not definable in Presburger arithmetic

1979

E. W. Mayr: decidability by decomposition

1981

S. R. Kosaraju: decidability by decomposition

1982

J.-L. Lambert: decidability by decomposition

1992

J. Leroux: decidability by Presburger inductive invariants

2011

this talk: Leroux & S.’15
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Demystifying Reachability
in Vector Addition Systems

[Leroux & S.’15]

Ideal Decomposition Theorem
The Decomposition Algorithm computes the ideal
decomposition of the set of runs from source to target.

Upper Bound Theorem
Reachability in vector addition systems is in cubic
Ackermann.
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Demystifying Reachability
in Vector Addition Systems

[Leroux & S.’15; S.’17]

Ideal Decomposition Theorem
The Decomposition Algorithm computes the ideal
decomposition of the set of runs from source to target.

Upper Bound Theorem
Reachability in vector addition systems is in quadratic
Ackermann.
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“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

(∞,∞)

(1,1)
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c
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“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

(∞,∞)

a (1,1)

b (-1,-2)

(0,1) (∞,0)
c

Homogeneous System

1 ·a−1 ·b= c
1 ·a−2 ·b= 0

a,b,c > 0

Unbounded Path
(2,0)
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[Mayr’81, Kosaraju’82, Lambert’92]

solution path

×1

unbounded path

×2
(0,1)

(0,0) (2,0) (4,0) (6,0)
(0,−1)

6/35



Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]
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“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

Pumpable Paths

unbounded path

−

pump up

(0,1)

(∞,∞)

−

pump down
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(∞,0)

=

remainder

uses coverability trees [Karp & Miller’69]

which relies on Dickson’s Lemma [Dickson, 1913]
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Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

can we build a “simple run”?{
, , ,

} yesno

decompose
, /

,
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Termination

“Finally the checker has to verify that
the process comes to an end. Here
again he should be assisted by the
programmer giving a further definite
assertion to be verified. This may
take the form of a quantity which is
asserted to decrease continually and
vanish when the machine stops.”

To
the pure mathematician it is natural to
give an ordinal number.

[Turing’49]
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Termination of the Decomposition
Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

Ranking Function ωω
2

α0

∨

∨

α1

∨

α2

∨...
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Demystifying Reachability
in Vector Addition Systems

[Leroux & S.’15; S.’17]

Ideal Decomposition Theorem
The Decomposition Algorithm computes the ideal
decomposition of the set of runs from source to target.

Upper Bound Theorem
Reachability in vector addition systems is in quadratic
Ackermann.
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Upper Bounds

How to bound the running time of algorithms with
ordinal-based termination proofs?

wqos ubiquitous in infinite-state verification

Information and Computation 160, 109�127 (2000)

Algorithmic Analysis of Programs with

Well Quasi-ordered Domains 1Parosh Aziz Abdulla

Department of Computer Systems, Uppsala University, P.O. Box 325, 751 05 Uppsala, Sweden

E-mail: parosh�docs.uu.se
Ka� rlis C8 era� ns

Institute of Mathematics and Computer Science, University of Latvia, Riga, Latvia

E-mail: karlis�cclu.lv
Bengt Jonsson

Department of Computer Systems, Uppsala University, P.O. Box 325, 751 05 Uppsala, Sweden

E-mail: bengt�docs.uu.se

and

Yih-Kuen Tsay

Department of Information Management, National Taiwan University, Taipei, Taiwan

E-mail: tsay�im.ntu.edu.twOver the past few years increasing research effort has been directed

towards the automatic verification of infinite-state systems. This paper is

concerned with identifying general mathematical structures which can

serve as sufficient conditions for achieving decidability. We present

decidability results for a class of systems (called well-structured systems)

which consist of a finite control part operating on an infinite data domain.

The results assume that the data domain is equipped with a preorder

which is a well quasi-ordering, such that the transition relation is

``monotonic'' (a simulation) with respect to the preorder. We show that

the following properties are decidable for well-structured systems:

v Reachability: whether a certain set of control states is reachable.

Other safety properties can be reduced to the reachability problem.

doi:10.1006�inco.1999.2843, available online at http:��www.idealibrary.com on

109

0890-5401�00 �35.00

Copyright � 2000 by Academic Press

All rights of reproduction in any form reserved.

1Supported in part by the Swedish Board for Industrial and Technical Development (NUTEK) and

by the Swedish Research Council for Engineering Sciences (TFR). The work of the second author has

been partially supported by Grant 93�596 from the Latvian Council of Science. The work of the fourth

author has been partially supported by the National Science Council. Taiwan (Republic of China).
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A One-Player Game

I over Q>0×Q>0

I given initially (x0,y0)

I Eloise plays (xj,yj) s.t.
∀0 6 i < j, xi > xj or
yi > yj

(x1,y1)

(x2,y2)

(x0,y0)

I Can Eloise win, i.e. play indefinitely?

I If not, how long can she last?
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If (x0,y0) , (0,0), then choosing (xj,yj) = (x0
2j ,

y0
2j ) wins.
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A One-Player Game

I over N×N

I given initially (x0,y0)

I Eloise plays (xj,yj) s.t.
∀0 6 i < j, xi > xj or
yi > yj

(x1,y1)

(x2,y2)

(x0,y0)

I Can Eloise win, i.e. play indefinitely?

I If not, how long can she last?
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Assume there exists an infinite sequence (xj,yj)j of
moves over N2.

Consider the pairs of indices i < j: color
(i, j)

purple if xi > xj but yi 6 yj,

red if xi > xj and yi > yj,

orange if yi > yj but xi 6 xj.

(3,4) (5,2) (2,3) . . .

By the infinite Ramsey Theorem, there exists an infinite
monochromatic subset of indices. In all cases, it implies
the existence of an infinite decreasing sequence in N, a

contradiction.
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I if (x0,y0) = (0,0), 0 turns

I otherwise, an arbitrary number of turnsN: if x0 > 0:

(x0,y0), (0,N−1), (0,N−2), . . . , (0,1), (0,0)
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Bad Sequences

Over a qo (X,6)

I x0,x1, . . . is bad if ∀i < j . xi � xj

I (X,6) wqo iff all bad sequences
are finite

I
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Bad Sequences
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WQOs for Algorithm Termination

simple (a,b)
c←− 1
while a > 0∧b > 0
〈a,b,c〉 ←− 〈a−1,b,2c〉

or

〈a,b,c〉 ←− 〈2c,b−1,1〉
end

〈a0,b0,c0〉
〈a1,b1,c1〉

...
〈ai,bi,ci〉

...
〈aj,bj,cj〉

66×

I in any execution, 〈a0,b0〉, . . . ,〈an,bn〉 is a bad sequence
over (N2,6×),

I (N2,6×) is a wqo: all the runs are finite

I How long can simple run?
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A Rich Theory

I multiple equivalent definitions

I algebraic constructions
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A Rich Theory

I multiple equivalent definitions: (X,6) wqo iff
I 6 is well-founded and has no infinite antichains,
I thus every ordinal is a wqo

I every linearisation of 6 is well-founded,

I 6 has the Ascending Chain Condition,

I if x0,x1, · · · ∈ Xω, then there exists an infinite sequence
i0 < i1 < · · · with xi0 6 xi1 6 · · · ,

I etc.

I algebraic constructions
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A Rich Theory

I multiple equivalent definitions

I algebraic constructions
I Cartesian products (Dickson’s Lemma),

I finite sequences (Higman’s Lemma),

I disjoint sums,

I finite sets with Hoare’s quasi-ordering,

I finite trees (Kruskal’s Tree Theorem),

I graphs with minors (Robertson and Seymour’s Graph Minor
Theorem), etc.
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Example: Ordinals

ordinal: well-founded linear
order

bad sequences are descending
sequences:

α 66 β iff α > β
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Example: Dickson’s Lemma

Lemma (Dickson 1913)

If (X,6X) and (Y,6Y) are two wqos, then (X×
Y,6×) is a wqo, where 6× is the product order-
ing:

〈x,y〉6× 〈x ′,y ′〉
def⇔ x6X x

′∧y6Y y
′ .

Example
(Nd,6) using the product ordering
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Example: Higman’s Lemma

Lemma (Higman 1952)

If (X,6) is a wqo, then (X∗,6∗) is a wqo where
6∗ is the subword embedding ordering:

a1 · · ·am 6∗ b1 · · ·bn
def⇔

{
∃1 6 i1 < · · ·< im 6 n,∧m
j=1aj 6A bij .

Example
aba6∗ baaacabbab
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Bad Sequences
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Controlled Bad Sequences
Over a qo (X,6) with norm ‖ · ‖

I x0,x1, . . . is bad if ∀i < j . xi � xj

I (X,6) wqo iff all bad sequences
are finite

I controlled by g:N→N

monotone and inflationary and
n0 ∈N if ∀i . ‖xi‖6 gi(n0)
[Cichoń & Tahhan Bittar’98]

Proposition
Over (X,6), assuming ∀n {x ∈ X | ‖x‖6 n} finite,
(g,n0)-controlled bad sequences have a maximal length,
noted Lg,X(n0).
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Controlled Bad Sequences

Proposition
Over a wqo (X,6), assuming {x ∈ X | ‖x‖6 n} to be finite
∀n, (g,n0)-controlled bad sequences have a maximal
length, noted Lg,X(n0).

Proof Idea
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Controlled Bad Sequences

Proposition
Over a wqo (X,6), assuming {x ∈ X | ‖x‖6 n} to be finite
∀n, (g,n0)-controlled bad sequences have a maximal
length, noted Lg,X(n0).

Objective
Provide upper bounds for Lg,X(n0).
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WQOs for Algorithm Termination

simple (a,b)
c←− 1
while a > 0∧b > 0
〈a,b,c〉 ←− 〈a−1,b,2c〉

or

〈a,b,c〉 ←− 〈2c,b−1,1〉
end

〈a0,b0,c0〉
〈a1,b1,c1〉

...
〈ai,bi,ci〉

...
〈aj,bj,cj〉

66×

I in any execution, 〈a0,b0〉, . . . ,〈an,bn〉 is a bad sequence
over (N2,6×),

I (N2,6×) is a wqo: all the runs are finite

I How long can simple run?
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A Computation of simple(2,3)

simple (a,b)
c←− 1
while a > 0 ∧b > 0
〈a,b,c〉 ←− 〈a−1,b,2c〉

or

〈a,b,c〉 ←− 〈2c,b−1,1〉
end

〈a,b,c〉 loop iterations

〈2,3,20〉 0

I non-elementary complexity

I derive (matching) upper bounds for termination
arguments based on (N2,6×) being a wqo
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simple (a,b)
c←− 1
while a > 0 ∧b > 0
〈a,b,c〉 ←− 〈a−1,b,2c〉

or

〈a,b,c〉 ←− 〈2c,b−1,1〉
end

〈a,b,c〉 loop iterations

〈2,3,20〉 0
〈1,3,21〉 1

I non-elementary complexity

I derive (matching) upper bounds for termination
arguments based on (N2,6×) being a wqo
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A Computation of simple(2,3)

simple (a,b)
c←− 1
while a > 0 ∧b > 0
〈a,b,c〉 ←− 〈a−1,b,2c〉

or

〈a,b,c〉 ←− 〈2c,b−1,1〉
end

〈a,b,c〉 loop iterations

〈2,3,20〉 0
〈1,3,21〉 1
〈22,2,20〉 2

I non-elementary complexity

I derive (matching) upper bounds for termination
arguments based on (N2,6×) being a wqo
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A Computation of simple(2,3)

simple (a,b)
c←− 1
while a > 0 ∧b > 0
〈a,b,c〉 ←− 〈a−1,b,2c〉

or

〈a,b,c〉 ←− 〈2c,b−1,1〉
end

〈a,b,c〉 loop iterations

...
...

〈22,2,20〉 2
...

...
〈1,2,222−1〉 2+22 −1

I non-elementary complexity

I derive (matching) upper bounds for termination
arguments based on (N2,6×) being a wqo
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A Computation of simple(2,3)

simple (a,b)
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while a > 0 ∧b > 0
〈a,b,c〉 ←− 〈a−1,b,2c〉

or

〈a,b,c〉 ←− 〈2c,b−1,1〉
end

〈a,b,c〉 loop iterations

...
...

〈1,2,222−1〉 2+22 −1
〈222

,1,1〉 2+22

I non-elementary complexity

I derive (matching) upper bounds for termination
arguments based on (N2,6×) being a wqo
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A Computation of simple(2,3)

simple (a,b)
c←− 1
while a > 0 ∧b > 0
〈a,b,c〉 ←− 〈a−1,b,2c〉

or

〈a,b,c〉 ←− 〈2c,b−1,1〉
end

〈a,b,c〉 loop iterations

...
...

〈222
,1,1〉 2+22

...
...

〈1,1,2222
−1〉 2+22 +222

−1

I non-elementary complexity

I derive (matching) upper bounds for termination
arguments based on (N2,6×) being a wqo
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A Computation of simple(2,3)

simple (a,b)
c←− 1
while a > 0 ∧b > 0
〈a,b,c〉 ←− 〈a−1,b,2c〉

or

〈a,b,c〉 ←− 〈2c,b−1,1〉
end

〈a,b,c〉 loop iterations

...
...

〈1,1,2222
−1〉 2+22 +222

−1

〈0,1,2222

〉 2+22 +222

I non-elementary complexity

I derive (matching) upper bounds for termination
arguments based on (N2,6×) being a wqo
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〈a,b,c〉 ←− 〈a−1,b,2c〉

or

〈a,b,c〉 ←− 〈2c,b−1,1〉
end

〈a,b,c〉 loop iterations

...
...

〈0,1,2222

〉 2+22 +222

I non-elementary complexity

I derive (matching) upper bounds for termination
arguments based on (N2,6×) being a wqo
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Descent Equation
(g,n0)-controlled bad sequence x0,x1,x2,x3, . . . over a
wqo (X,6):

norms ‖xi‖

indices i

g0(n0)

g1(n0)g0(g(n0)) =

g2(n0)g1(g(n0)) =

g3(n0)g2(g(n0)) =

x0
x1

x2

x3

�

�

�

�

�

�

over the suffix
x1,x2,x3, . . . , ∀i > 0,

‖xi‖6 gi−1(g(n0))

Lg,X(n0) = max
x0∈X,‖x0‖6n0

1+Lg,X\↑x0
(g(n0))
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(g,n0)-controlled bad sequence x0,x1,x2,x3, . . . over a
wqo (X,6):

norms ‖xi‖

indices i
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g1(n0)g0(g(n0)) =

g2(n0)g1(g(n0)) =
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x0
x1

x2
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�

�

�

�

�
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xi ∈ X\↑x0
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= {x ∈ X | x0 � x}
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1+Lg,X\↑x0
(g(n0))
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Descent Equation
(g,n0)-controlled bad sequence α0,α1,α2,α3, . . . over an
ordinal α:

norms ‖αi‖

indices i

g0(n0)

g1(n0)g0(g(n0)) =

g2(n0)g1(g(n0)) =

g3(n0)g2(g(n0)) =

α0
α1

α2

α3

�

�

�

�

�

�

over the suffix
α1,α2,α3, . . . , ∀i > 0,

αi ∈ α0
def
= {β ∈ α | β 66 α0}

‖αi‖6 gi−1(g(n0))

Lg,α(n0) = max
α0∈α,‖α0‖6n0

1+Lg,α0(g(n0))
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The Case of Ordinals
[S.’14]

I Cantor Normal Form (CNF) for ordinals α < ε0:

α=ωα1 · c1 + · · ·+ωαk · ck
α > α1 > · · ·> αk in CNF , 0< c1, . . . ,ck <ω

I Norm of ordinals α < ε0: “maximal constant”

‖α‖ def
= max

16i6k
(max(||αi||,ci))

Example
‖ωω

2
‖= 2

‖ωω·5 +ω2 ·3‖= 5
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I Cantor Normal Form (CNF) for ordinals α < ε0:

α=ωα1 · c1 + · · ·+ωαk · ck
α > α1 > · · ·> αk in CNF , 0< c1, . . . ,ck <ω

I Norm of ordinals α < ε0: “maximal constant”

‖α‖ def
= max

16i6k
(max(||αi||,ci))

Example
‖ωω

2
‖= 2

‖ωω·5 +ω2 ·3‖= 5

28/35



Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

The Case of Ordinals
[S.’14]

Recall the descent equation:

Lg,α(n0) = max
α0∈α,‖α0‖6n0

1+Lg,α0(g(n0))

Proposition (variant of [Buchholtz, Cichoń & Weiermann’94])

Let 0< α < ε0 and ‖α‖6 n0. Then

Lg,0(n0) = 0 Lg,α(n0) = 1+Lg,Pn0(α)
(g(n0))

Px(α) denotes the predecessor at x of α > 0: “maximal
ordinal β < α s.t. ‖β‖6 x”
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The Case of Ordinals
[S.’14]

Px(α) denotes the predecessor at x of α > 0: “maximal
ordinal β < α s.t. ‖β‖6 x”

Example

P3(ω
2) =ω ·3+3

P3(ω
ω2

) =ωω·3+3 ·3+ωω·3+2 ·3+ωω·3+1 ·3+ωω·3 ·3
+ωω·2+3 ·3+ωω·2+2 ·3+ωω·2+1 ·3+ωω·2 ·3
+ωω+3 ·3+ωω+2 ·3+ωω+1 ·3+ωω ·3
+ω3 ·3+ω2 ·3+ω ·3+3
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Px(α) denotes the predecessor at x of α > 0: “maximal
ordinal β < α s.t. ‖β‖6 x”
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The Case of Ordinals
[S.’14]

Proposition (variant of [Buchholtz, Cichoń & Weiermann’94])

Let 0< α < ε0 and ‖α‖6 n0. Then

Lg,0(n0) = 0 Lg,α(n0) = 1+Lg,Pn0(α)
(g(n0))

This function was already known in the literature!

Definition (Cichoń Hierarchy [Cichoń & Tahhan Bittar’98])
For g :N→N, define (gα :N→N)α by

g0(x)
def
= 0 gα(x)

def
= 1+gPx(α)(g(x)) for α > 0
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The Case of Ordinals
[S.’14]

Length Function Theorem (for Ordinals)
Let α < ε0 and n0 > ‖α‖. Then the longest
(g,n0)-controlled descending sequence over α is of
length Lg,α(n0) = gα(n0)
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Relating Norm and Length
[Cichoń & Tahhan Bittar’98]

Recall the definition of the Cichoń Hierarchy:

g0(x)
def
= 0 gα(x)

def
= 1+gPx(α)(g(x)) for α > 0

Definition (Hardy Hierarchy)
For g :N→N, define (gα :N→N)α by

g0(x)
def
= x gα(x)

def
= gPx(α)(g(x)) for α > 0
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Relating Norm and Length
[Cichoń & Tahhan Bittar’98]

g0(x)
def
= 0 gα(x)

def
= 1+gPx(α)(g(x)) for α > 0

g0(x)
def
= x gα(x)

def
= gPx(α)(g(x)) for α > 0

length: Cichoń function gα(n0)

no
rm

:H
ar

dy
fu

nc
ti

on
g
α
(n

0
)

norms ‖xi‖

indices i

g0(n0)

g1(n0)

g2(n0)

g3(n0)

x0
x1

x2

x3

gα(x) = ggα(x)(x)

gα(x)> gα(x)+ x
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The Length of Decomposition Branches
α0

∨

α1

∨

α2

∨...

Corollary
Assume n0 > 2 and g :N→N are such that the
sequence of ordinal ranks computed by the
decomposition algorithm is (g,n0)-controlled. The

algorithm runs in SPACE
(
gω

ω2

(n0)
)
.
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The Length of Decomposition Branches
α0

∨

α1

∨

α2

∨...

Consequence of (Figueira, Figueira, S. & Schnoebelen’11)

The control g(x)
def
=Hω

ω
(e(x)) for H(x)

def
= x+1 and an

elementary function e, and n0 the size of the reachability
instance fit. Thus the decomposition algorithm runs in

SPACE((Hω
ω ◦ e)ωω

2

(n).

Corollary
Assume n0 > 2 and g :N→N are such that the
sequence of ordinal ranks computed by the
decomposition algorithm is (g,n0)-controlled. The

algorithm runs in SPACE
(
gω

ω2

(n0)
)
.
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Restating the Result
“SPACE

(
(Hω

ω ◦ e)ωω
2

(n)
)
” is unreadable!

1. give names
I Hω

ω
is the Ackermann function

I Hω
ω2

is the “quadratic Ackermann” function

2. define coarse-grained complexity classes

F<α
def
=
⋃
γ<ωα

FDTIME(Hγ(n)) Fα
def
=
⋃

f∈F<α

DTIME(Hω
α
(f(n))

Consequence of (S.’16, Thm. 4.4)
VAS Reachability is in Fω2 .
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Complexity Classes Beyond Elementary
[S.’16]

ExpSpace

Elementary

Primitive Recursive

Multiply Recursive

F3
= Tower

Fω
= Ackermann

Fω2

Fast-Growing Complexity

Fω2
def
=

⋃
p∈F

<ω2

DTime(Fω2(p(n)))
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A Related Problem

labelled VAS transitions carry labels from some alphabet

L(V,source,target) the language of labels in runs from
source to target

↓L the set of subwords (for 6∗) of the words in
the language L

Downwards Language Inclusion Problem
input: two labelled VAS V and V ′ and configurations

source, target, source ′, target ′

question: ↓L(V,source,target)⊆
↓L(V ′,source ′,target ′)?
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Corollary
The Downwards Language Inclusion problem is in
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input: two labelled VAS V and V ′ and configurations
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Theorem (Zetzsche’16)
The Downwards Language Inclusion problem is
Ackermann-hard.
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Summary
well-quasi-orders (wqo):

I proving algorithm termination

a toolbox for wqo-based complexity
I upper bounds: length function theorems

(for ordinals, Dickson’s Lemma, Higman’s
Lemma, and combinations)

I lower bounds

I complexity classes: (Fα)α

this talk: focus on one problem
I reachability in vector addition systems

in Fω2
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Perspectives

1. complexity gap for VAS reachability
I ExpSpace-hard [Lipton’76]

better lower bounds?
I decomposition algorithm: at least Fω (Ackermannian) time

[Zetzsche’16]

2. reachability in VAS extensions
I decidable in VAS with hierarchical zero tests [Reinhardt’08]
I what about
I branching VAS
I unordered data Petri nets
I pushdown VAS
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Demystifying Reachability
in Vector Addition Systems

[Leroux & S.’15]

Ideal Decomposition Theorem
The Decomposition Algorithm computes the ideal
decomposition of the set of runs from source to target.

Upper Bound Theorem
Reachability in vector addition systems is in cubic
Ackermann.
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Ideals of Well-Quasi-Orders (X,6)

I Canonical decompositions
[Bonnet’75]

ifD⊆ X is ↓-closed, then

D= I1 ∪ ·· · ∪ In

for (maximal) ideals I1, . . . ,In

I Effective representations
[Goubault-Larrecq et al.’17]

Example (overN2)
D= ({0, . . . ,2}×N)∪ ({0, . . . ,5}× {0, . . . ,7})∪ (N× {0, . . . ,4})
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Decomposition Theorem
Well-Quasi-Order on Runs

combination of Dickson’s and
Higman’s lemmata

Syntax Semantics

,

, ,

/

I0

I1

I2

I3 I4

↓Runs
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Adherence Membership

I I is adherent to Runs if
I⊆ ↓(I∩Runs)

I semantic equivalent to
Θ condition

I undecidable for arbitrary ideals

I decidable for the ideals arising in
the decomposition algorithm

Runs

↓Runs
I

I adherentI not adherent
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Branching VAS Reachability

I important open problem [Bojańczyk’14]

I incorrect decidability proof in [Bimbó’15]

I application domains:

Complexity Theory Distributed Computing Computational BiologyProof Theory

Database TheoryProgramming Languages Security Computational Linguistics
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