
Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Algorithmic Complexity
of Well-Quasi-Orders

Sylvain Schmitz
based on joint works with D. Figueira, S. Figueira, J. Leroux, and Ph. Schnoebelen

LSV, ENS Paris-Saclay & CNRS, Université Paris-Saclay

MoVeP 2018

1/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Outline

well-quasi-orders (wqo):
I proving algorithm termination

a toolbox for wqo complexity
I upper bounds

I lower bounds

I complexity classes

this talk: focus on one problem
I reachability in vector addition systems

2/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Outline

well-quasi-orders (wqo):
I proving algorithm termination

a toolbox for wqo complexity
I upper bounds

I lower bounds

I complexity classes

this talk: focus on one problem
I reachability in vector addition systems

2/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Outline

well-quasi-orders (wqo):
I proving algorithm termination

a toolbox for wqo complexity
I upper bounds

I lower bounds

I complexity classes

this talk: focus on one problem
I reachability in vector addition systems

2/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Vector Addition Systems

3/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Vector Addition Systems

Springfield Power Plant

(1,1)

(-1,-2)

produce electricity

recycle uranium

electricity
ur

an
iu

m
w

as
te

(0,1)

Can we produce unbounded electricity with no left-
over uranium waste?

Yes, (∞,0) is reachable

3/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Vector Addition Systems

Springfield Power Plant

(1,1)

(-1,-2)

produce electricity

recycle uranium

electricity
ur

an
iu

m
w

as
te

(0,1)

Can we produce unbounded electricity with no left-
over uranium waste? Yes, (∞,0) is reachable

3/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Importance of the Problem

Reachability Problem
input: a vector addition system and two

configurations source and target
question: source→∗ target?

4/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Importance of the Problem

Discrete Resources

I modelling: items, money, energy, molecules, . . .

I distributed computing: active threads in thread pool

I data: isomorphism types in data logics and data-centric
systems

4/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Importance of the Problem

MoVeP Example: Petri Nets

p1

Petri net

p2 ⇒

VAS

(−1,−1) (0,0)

(−1,0) (1,1)

4/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Importance of the Problem

MoVeP Example: Petri Nets

p1

Petri net

p2 ⇒

VAS

(−1,−1) (0,0)

(−1,0) (1,1)

4/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Importance of the Problem

MoVeP Example: Unordered CFSM

Communicating Finite-State Machine

p q r

!a

?b

?a

!b

unordered channel:

aabab

⇒ p

r

q

r

(1,0)

(−1,0)

(0,1)

(0,−1)

(−1,0)

(0,1)

VAS

counters:

3 2a b

4/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Importance of the Problem

MoVeP Example: Unordered CFSM

Communicating Finite-State Machine

p q r

!a

?b

?a

!b

unordered channel:

aabab

⇒ p

r

q

r

(1,0)

(−1,0)

(0,1)

(0,−1)

(−1,0)

(0,1)

VAS

counters:

3 2a b

4/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Importance of the Problem

MoVeP Example: Asynchronous Rendez-vous
[German & Prasad Sistla’92]

Controller Clients

p q s1 s2

⊥
spawn

?a

!b

?a

!a ?b

⇒ p q

(−1,1)

(1,0)

(1,−1)

(−2,0) (0,2)

(−2,0)

(0,2)

VAS

counters:

s1 s2

4/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Importance of the Problem

MoVeP Example: Asynchronous Rendez-vous
[German & Prasad Sistla’92]

Controller Clients

p q s1 s2

⊥
spawn

?a

!b

?a

!a ?b

⇒ p q

(−1,1)

(1,0)

(1,−1)

(−2,0) (0,2)

(−2,0)

(0,2)

VAS

counters:

s1 s2

4/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Importance of the Problem
CentralDecision Problem [S.’16]
Large number of problems interreducible with
reachability in vector addition systems

4/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Importance of the Problem

Theorem (Minsky’67)
Reachability is undecidable in 2-dimensional
Minsky machines (vector addition systems with
zero tests).

4/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Importance of the Problem
1962

2015

C. A. Petri: Petri nets

R. M. Karp & R. E. Miller: coverability trees
1969

R. J. Lipton: EXPSPACE lower bound
1976

J. E. Hopcroft & J.-J. Pansiot: dim. > 3
not definable in Presburger arithmetic

1979

E. W. Mayr: decidability by decomposition

1981

S. R. Kosaraju: decidability by decomposition

1982

J.-L. Lambert: decidability by decomposition

1992

J. Leroux: decidability by Presburger inductive invariants

2011

this talk: Leroux & S.’15

4/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Demystifying Reachability
in Vector Addition Systems

[Leroux & S.’15]

Ideal Decomposition Theorem
The Decomposition Algorithm computes the ideal
decomposition of the set of runs from source to target.

Upper Bound Theorem
Reachability in vector addition systems is in cubic
Ackermann.

5/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Demystifying Reachability
in Vector Addition Systems

[Leroux & S.’15]

Ideal Decomposition Theorem
The Decomposition Algorithm computes the ideal
decomposition of the set of runs from source to target.

Upper Bound Theorem
Reachability in vector addition systems is in cubic
Ackermann.

5/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Demystifying Reachability
in Vector Addition Systems

[Leroux & S.’15; S.’17]

Ideal Decomposition Theorem
The Decomposition Algorithm computes the ideal
decomposition of the set of runs from source to target.

Upper Bound Theorem
Reachability in vector addition systems is in quadratic
Ackermann.

5/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

(∞,∞)

(1,1)

(-1,-2)

(0,1) (∞,0)
c

Path

6/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

solution path

×1

unbounded path

×

(0,1)

(0,0) (2,0) (4,0) (6,0)
(0,−1)

6/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

(∞,∞)

a (1,1)

b (-1,-2)

(0,1) (∞,0)
c

Characteristic System

0+1 ·a−1 ·b= c
1+1 ·a−2 ·b= 0

Solution Path
(0,−1)

6/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

solution path

×1

unbounded path

×

(0,1)

(0,0) (2,0) (4,0) (6,0)
(0,−1)

6/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

solution path

×1

unbounded path

×

(0,1)

(0,0) (2,0) (4,0) (6,0)
(0,−1)

6/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

(∞,∞)

a (1,1)

b (-1,-2)

(0,1) (∞,0)
c

Homogeneous System

1 ·a−1 ·b= c
1 ·a−2 ·b= 0

a,b,c > 0

Unbounded Path
(2,0)

6/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

solution path

×1

unbounded path

×1
(0,1)

(0,0) (2,0) (4,0) (6,0)
(0,−1)

6/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

solution path

×1

unbounded path

×2
(0,1)

(0,0) (2,0) (4,0) (6,0)
(0,−1)

6/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

solution path

×1

unbounded path

×3
(0,1)

(0,0) (2,0) (4,0) (6,0)
(0,−1)

6/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

Pumpable Paths

unbounded path

−

pump up

(0,1)

(∞,∞)

−

pump down
(∞,∞)

(∞,0)

=

remainder

uses coverability trees [Karp & Miller’69]

which relies on Dickson’s Lemma [Dickson, 1913]

6/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

Pumpable Paths

unbounded path

−

pump up

(0,1)

(∞,∞)

−

pump down
(∞,∞)

(∞,0)

=

remainder

uses coverability trees [Karp & Miller’69]

which relies on Dickson’s Lemma [Dickson, 1913]

6/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

pump up

×1

(0,1)

(4,0)

6/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

pump up

×2

(0,1)

(4,0)

6/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

pump up

×2

solution path

×1

(0,1)

(4,0)

6/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

pump up

×2

solution path

×1

remainder

×1

(0,1)

(4,0)

6/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

pump up

×2

solution path

×1

remainder

×2

(0,1)

(4,0)

6/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

pump up

×2

solution path

×1

remainder

×2

pump down

×1
(0,1)

(4,0)

6/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

pump up

×2

solution path

×1

remainder

×2

pump down

×2
(0,1)

(4,0)

6/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

pump up

×3

solution path

×1

remainder

×3

pump down

×3
(0,1)

(6,0)

6/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

can we build a “simple run”?{
, , ,

} yesno

decompose
, /

,

7/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

can we build a “simple run”?{
, , ,

} yesno

decompose
, /

,

7/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

can we build a “simple run”?{
, , ,

} yesno

decompose
,

/

/

,

7/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

can we build a “simple run”?{
, , ,

} yesno

decompose
, /

,

7/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

can we build a “simple run”?{
, , ,

} yesno

decompose
, /

,

7/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

can we build a “simple run”?{
, , ,

} yesno

decompose
, /

,

7/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

can we build a “simple run”?{
, , ,

} yesno

decompose
, /

,

7/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Termination

“Finally the checker has to verify that
the process comes to an end. Here
again he should be assisted by the
programmer giving a further definite
assertion to be verified. This may
take the form of a quantity which is
asserted to decrease continually and
vanish when the machine stops.”

To
the pure mathematician it is natural to
give an ordinal number.

[Turing’49]

8/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Termination

“Finally the checker has to verify that
the process comes to an end. Here
again he should be assisted by the
programmer giving a further definite
assertion to be verified. This may
take the form of a quantity which is
asserted to decrease continually and
vanish when the machine stops. To
the pure mathematician it is natural to
give an ordinal number.”

[Turing’49]

8/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Termination of the Decomposition
Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

Ranking Function ωω
2

α0

∨

∨

α1

∨

α2

∨...

9/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Termination of the Decomposition
Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

Ranking Function ωω
2

α0

∨

∨

α1

∨

α2

∨...

9/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Termination of the Decomposition
Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

Ranking Function ωω
2

α0

∨

∨

α1

∨

α2

∨...

9/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Termination of the Decomposition
Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

Ranking Function ωω
2

α0

∨

∨

α1

∨

α2

∨...

9/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Demystifying Reachability
in Vector Addition Systems

[Leroux & S.’15; S.’17]

Ideal Decomposition Theorem
The Decomposition Algorithm computes the ideal
decomposition of the set of runs from source to target.

Upper Bound Theorem
Reachability in vector addition systems is in quadratic
Ackermann.

10/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Upper Bounds

How to bound the running time of algorithms with
ordinal-based termination proofs?

wqos ubiquitous in infinite-state verification

Information and Computation 160, 109�127 (2000)

Algorithmic Analysis of Programs with

Well Quasi-ordered Domains 1Parosh Aziz Abdulla

Department of Computer Systems, Uppsala University, P.O. Box 325, 751 05 Uppsala, Sweden

E-mail: parosh�docs.uu.se
Ka� rlis C8 era� ns

Institute of Mathematics and Computer Science, University of Latvia, Riga, Latvia

E-mail: karlis�cclu.lv
Bengt Jonsson

Department of Computer Systems, Uppsala University, P.O. Box 325, 751 05 Uppsala, Sweden

E-mail: bengt�docs.uu.se

and

Yih-Kuen Tsay

Department of Information Management, National Taiwan University, Taipei, Taiwan

E-mail: tsay�im.ntu.edu.twOver the past few years increasing research effort has been directed

towards the automatic verification of infinite-state systems. This paper is

concerned with identifying general mathematical structures which can

serve as sufficient conditions for achieving decidability. We present

decidability results for a class of systems (called well-structured systems)

which consist of a finite control part operating on an infinite data domain.

The results assume that the data domain is equipped with a preorder

which is a well quasi-ordering, such that the transition relation is

``monotonic'' (a simulation) with respect to the preorder. We show that

the following properties are decidable for well-structured systems:

v Reachability: whether a certain set of control states is reachable.

Other safety properties can be reduced to the reachability problem.

doi:10.1006�inco.1999.2843, available online at http:��www.idealibrary.com on

109

0890-5401�00 �35.00

Copyright � 2000 by Academic Press

All rights of reproduction in any form reserved.

1Supported in part by the Swedish Board for Industrial and Technical Development (NUTEK) and

by the Swedish Research Council for Engineering Sciences (TFR). The work of the second author has

been partially supported by Grant 93�596 from the Latvian Council of Science. The work of the fourth

author has been partially supported by the National Science Council. Taiwan (Republic of China).

Theore
tical C

ompute
r Scien

ce 256
(2001)

63–92 www.e
lsevier

.com/lo
cate/tc

s

Well-stru
ctured

transiti
on sys

tems e
verywh

ere!

A. Fin
kel, Ph

. Schn
oebele

n∗

Lab. S
peci c

ation a
nd Ver

i catio
n, EN

S de Cac
han &

CNRS
UMR 8643,

61 av.
Pdt W

ilson,

94235
Cacha

n Cede
x, Fra

nce

Abstra
ct

Well-stru
ctured

transiti
on system

s (WSTSs)
are a

genera
l class

of in-
nite-sta

te syst
ems fo

r

which
decida

bility results
rely on the ex

istence
of a w

ell-qua
si-orde

ring betwee
n states

that is

compa
tible w

ith the
transiti

ons. In
this ar

ticle, w
e prov

ide an
extensi

ve trea
tment

of the
WSTS

idea an
d show

several
new results

. Our
improv

ed de-
nitions

allow
many

examp
les of

classic
al

system
s to be

seen a
s insta

nces o
f WSTSs.

c� 2001 E
lsevier

Scienc
e B.V.

All rig
hts res

erved.

Keywo
rds: In

- nite s
ystems

; Veri-
cation;

Well-qua
si-orde

ring

1. Intr
oductio

n

1.1. V
eri cat

ion of
in nite-st

ate sys
tems

Forma
l veri-

cation
of pro

grams
and system

s is a
very active

- eld for bo
th theo-

retical
researc

h and practic
al dev

elopme
nts, es

peciall
y since impres

sive advanc
es in

formal
veri- ca

tion te
chnolo

gy pro
ved fe

asible
in seve

ral rea
listic a

pplicat
ions fr

om the

industr
ial wor

ld. The
highly

succes
sful m

odel-ch
ecking

approa
ch for

- nite s
ystems

[16]

sugges
ted tha

t a wo
rking v

eri- cat
ion tec

hnolog
y coul

d well
be dev

eloped
for sys

tems

with a
n in- n

ite stat
e spac

e.

This ex
plains

the con
siderab

le amo
unt of

work t
hat has

been d
evoted

in rece
nt year

s

to this
“veri- c

ation o
f in- ni

te-state
system

s” - eld
, with

a surpr
ising w

ealth o
f posit

ive

results
[50,26

].

1.2. W
ell-stru

ctured
transit

ion sys
tems

A very interes
ting develo

pment
in this - e

ld is the
introdu

ction of wel
l-struc

tured

transit
ion system

s (WSTSs).
These

are transiti
on system

s where
the existen

ce

∗Corres
pondin

g auth
or.

E-mail
addres

s: phs@
lsv.ens

-cacha
n.fr (P

h. Sch
noebel

en).

0304-3
975/01

/$-see
front m

atter
c� 2001 E

lsevier
Scienc

e B.V.
All rig

hts res
erved.

PII: S0
304-3

975(0
0)001

02-X

11/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Upper Bounds

How to bound the running time of algorithms with
wqo-based termination proofs?

wqos ubiquitous in infinite-state verification

Information and Computation 160, 109�127 (2000)

Algorithmic Analysis of Programs with

Well Quasi-ordered Domains 1Parosh Aziz Abdulla

Department of Computer Systems, Uppsala University, P.O. Box 325, 751 05 Uppsala, Sweden

E-mail: parosh�docs.uu.se
Ka� rlis C8 era� ns

Institute of Mathematics and Computer Science, University of Latvia, Riga, Latvia

E-mail: karlis�cclu.lv
Bengt Jonsson

Department of Computer Systems, Uppsala University, P.O. Box 325, 751 05 Uppsala, Sweden

E-mail: bengt�docs.uu.se

and

Yih-Kuen Tsay

Department of Information Management, National Taiwan University, Taipei, Taiwan

E-mail: tsay�im.ntu.edu.twOver the past few years increasing research effort has been directed

towards the automatic verification of infinite-state systems. This paper is

concerned with identifying general mathematical structures which can

serve as sufficient conditions for achieving decidability. We present

decidability results for a class of systems (called well-structured systems)

which consist of a finite control part operating on an infinite data domain.

The results assume that the data domain is equipped with a preorder

which is a well quasi-ordering, such that the transition relation is

``monotonic'' (a simulation) with respect to the preorder. We show that

the following properties are decidable for well-structured systems:

v Reachability: whether a certain set of control states is reachable.

Other safety properties can be reduced to the reachability problem.

doi:10.1006�inco.1999.2843, available online at http:��www.idealibrary.com on

109

0890-5401�00 �35.00

Copyright � 2000 by Academic Press

All rights of reproduction in any form reserved.

1Supported in part by the Swedish Board for Industrial and Technical Development (NUTEK) and

by the Swedish Research Council for Engineering Sciences (TFR). The work of the second author has

been partially supported by Grant 93�596 from the Latvian Council of Science. The work of the fourth

author has been partially supported by the National Science Council. Taiwan (Republic of China).

Theore
tical C

ompute
r Scien

ce 256
(2001)

63–92 www.e
lsevier

.com/lo
cate/tc

s

Well-stru
ctured

transiti
on sys

tems e
verywh

ere!

A. Fin
kel, Ph

. Schn
oebele

n∗

Lab. S
peci c

ation a
nd Ver

i catio
n, EN

S de Cac
han &

CNRS
UMR 8643,

61 av.
Pdt W

ilson,

94235
Cacha

n Cede
x, Fra

nce

Abstra
ct

Well-stru
ctured

transiti
on system

s (WSTSs)
are a

genera
l class

of in-
nite-sta

te syst
ems fo

r

which
decida

bility results
rely on the ex

istence
of a w

ell-qua
si-orde

ring betwee
n states

that is

compa
tible w

ith the
transiti

ons. In
this ar

ticle, w
e prov

ide an
extensi

ve trea
tment

of the
WSTS

idea an
d show

several
new results

. Our
improv

ed de-
nitions

allow
many

examp
les of

classic
al

system
s to be

seen a
s insta

nces o
f WSTSs.

c� 2001 E
lsevier

Scienc
e B.V.

All rig
hts res

erved.

Keywo
rds: In

- nite s
ystems

; Veri-
cation;

Well-qua
si-orde

ring

1. Intr
oductio

n

1.1. V
eri cat

ion of
in nite-st

ate sys
tems

Forma
l veri-

cation
of pro

grams
and system

s is a
very active

- eld for bo
th theo-

retical
researc

h and practic
al dev

elopme
nts, es

peciall
y since impres

sive advanc
es in

formal
veri- ca

tion te
chnolo

gy pro
ved fe

asible
in seve

ral rea
listic a

pplicat
ions fr

om the

industr
ial wor

ld. The
highly

succes
sful m

odel-ch
ecking

approa
ch for

- nite s
ystems

[16]

sugges
ted tha

t a wo
rking v

eri- cat
ion tec

hnolog
y coul

d well
be dev

eloped
for sys

tems

with a
n in- n

ite stat
e spac

e.

This ex
plains

the con
siderab

le amo
unt of

work t
hat has

been d
evoted

in rece
nt year

s

to this
“veri- c

ation o
f in- ni

te-state
system

s” - eld
, with

a surpr
ising w

ealth o
f posit

ive

results
[50,26

].

1.2. W
ell-stru

ctured
transit

ion sys
tems

A very interes
ting develo

pment
in this - e

ld is the
introdu

ction of wel
l-struc

tured

transit
ion system

s (WSTSs).
These

are transiti
on system

s where
the existen

ce

∗Corres
pondin

g auth
or.

E-mail
addres

s: phs@
lsv.ens

-cacha
n.fr (P

h. Sch
noebel

en).

0304-3
975/01

/$-see
front m

atter
c� 2001 E

lsevier
Scienc

e B.V.
All rig

hts res
erved.

PII: S0
304-3

975(0
0)001

02-X

11/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Upper Bounds

How to bound the running time of algorithms with
wqo-based termination proofs?

wqos ubiquitous in infinite-state verification

Information and Computation 160, 109�127 (2000)

Algorithmic Analysis of Programs with

Well Quasi-ordered Domains 1Parosh Aziz Abdulla

Department of Computer Systems, Uppsala University, P.O. Box 325, 751 05 Uppsala, Sweden

E-mail: parosh�docs.uu.se
Ka� rlis C8 era� ns

Institute of Mathematics and Computer Science, University of Latvia, Riga, Latvia

E-mail: karlis�cclu.lv
Bengt Jonsson

Department of Computer Systems, Uppsala University, P.O. Box 325, 751 05 Uppsala, Sweden

E-mail: bengt�docs.uu.se

and

Yih-Kuen Tsay

Department of Information Management, National Taiwan University, Taipei, Taiwan

E-mail: tsay�im.ntu.edu.twOver the past few years increasing research effort has been directed

towards the automatic verification of infinite-state systems. This paper is

concerned with identifying general mathematical structures which can

serve as sufficient conditions for achieving decidability. We present

decidability results for a class of systems (called well-structured systems)

which consist of a finite control part operating on an infinite data domain.

The results assume that the data domain is equipped with a preorder

which is a well quasi-ordering, such that the transition relation is

``monotonic'' (a simulation) with respect to the preorder. We show that

the following properties are decidable for well-structured systems:

v Reachability: whether a certain set of control states is reachable.

Other safety properties can be reduced to the reachability problem.

doi:10.1006�inco.1999.2843, available online at http:��www.idealibrary.com on

109

0890-5401�00 �35.00

Copyright � 2000 by Academic Press

All rights of reproduction in any form reserved.

1Supported in part by the Swedish Board for Industrial and Technical Development (NUTEK) and

by the Swedish Research Council for Engineering Sciences (TFR). The work of the second author has

been partially supported by Grant 93�596 from the Latvian Council of Science. The work of the fourth

author has been partially supported by the National Science Council. Taiwan (Republic of China).

Theore
tical C

ompute
r Scien

ce 256
(2001)

63–92 www.e
lsevier

.com/lo
cate/tc

s

Well-stru
ctured

transiti
on sys

tems e
verywh

ere!

A. Fin
kel, Ph

. Schn
oebele

n∗

Lab. S
peci c

ation a
nd Ver

i catio
n, EN

S de Cac
han &

CNRS
UMR 8643,

61 av.
Pdt W

ilson,

94235
Cacha

n Cede
x, Fra

nce

Abstra
ct

Well-stru
ctured

transiti
on system

s (WSTSs)
are a

genera
l class

of in-
nite-sta

te syst
ems fo

r

which
decida

bility results
rely on the ex

istence
of a w

ell-qua
si-orde

ring betwee
n states

that is

compa
tible w

ith the
transiti

ons. In
this ar

ticle, w
e prov

ide an
extensi

ve trea
tment

of the
WSTS

idea an
d show

several
new results

. Our
improv

ed de-
nitions

allow
many

examp
les of

classic
al

system
s to be

seen a
s insta

nces o
f WSTSs.

c� 2001 E
lsevier

Scienc
e B.V.

All rig
hts res

erved.

Keywo
rds: In

- nite s
ystems

; Veri-
cation;

Well-qua
si-orde

ring

1. Intr
oductio

n

1.1. V
eri cat

ion of
in nite-st

ate sys
tems

Forma
l veri-

cation
of pro

grams
and system

s is a
very active

- eld for bo
th theo-

retical
researc

h and practic
al dev

elopme
nts, es

peciall
y since impres

sive advanc
es in

formal
veri- ca

tion te
chnolo

gy pro
ved fe

asible
in seve

ral rea
listic a

pplicat
ions fr

om the

industr
ial wor

ld. The
highly

succes
sful m

odel-ch
ecking

approa
ch for

- nite s
ystems

[16]

sugges
ted tha

t a wo
rking v

eri- cat
ion tec

hnolog
y coul

d well
be dev

eloped
for sys

tems

with a
n in- n

ite stat
e spac

e.

This ex
plains

the con
siderab

le amo
unt of

work t
hat has

been d
evoted

in rece
nt year

s

to this
“veri- c

ation o
f in- ni

te-state
system

s” - eld
, with

a surpr
ising w

ealth o
f posit

ive

results
[50,26

].

1.2. W
ell-stru

ctured
transit

ion sys
tems

A very interes
ting develo

pment
in this - e

ld is the
introdu

ction of wel
l-struc

tured

transit
ion system

s (WSTSs).
These

are transiti
on system

s where
the existen

ce

∗Corres
pondin

g auth
or.

E-mail
addres

s: phs@
lsv.ens

-cacha
n.fr (P

h. Sch
noebel

en).

0304-3
975/01

/$-see
front m

atter
c� 2001 E

lsevier
Scienc

e B.V.
All rig

hts res
erved.

PII: S0
304-3

975(0
0)001

02-X

11/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Upper Bounds

How to bound the running time of algorithms with
wqo-based termination proofs?

wqos ubiquitous in infinite-state verification

Information and Computation 160, 109�127 (2000)

Algorithmic Analysis of Programs with

Well Quasi-ordered Domains 1Parosh Aziz Abdulla

Department of Computer Systems, Uppsala University, P.O. Box 325, 751 05 Uppsala, Sweden

E-mail: parosh�docs.uu.se
Ka� rlis C8 era� ns

Institute of Mathematics and Computer Science, University of Latvia, Riga, Latvia

E-mail: karlis�cclu.lv
Bengt Jonsson

Department of Computer Systems, Uppsala University, P.O. Box 325, 751 05 Uppsala, Sweden

E-mail: bengt�docs.uu.se

and

Yih-Kuen Tsay

Department of Information Management, National Taiwan University, Taipei, Taiwan

E-mail: tsay�im.ntu.edu.twOver the past few years increasing research effort has been directed

towards the automatic verification of infinite-state systems. This paper is

concerned with identifying general mathematical structures which can

serve as sufficient conditions for achieving decidability. We present

decidability results for a class of systems (called well-structured systems)

which consist of a finite control part operating on an infinite data domain.

The results assume that the data domain is equipped with a preorder

which is a well quasi-ordering, such that the transition relation is

``monotonic'' (a simulation) with respect to the preorder. We show that

the following properties are decidable for well-structured systems:

v Reachability: whether a certain set of control states is reachable.

Other safety properties can be reduced to the reachability problem.

doi:10.1006�inco.1999.2843, available online at http:��www.idealibrary.com on

109

0890-5401�00 �35.00

Copyright � 2000 by Academic Press

All rights of reproduction in any form reserved.

1Supported in part by the Swedish Board for Industrial and Technical Development (NUTEK) and

by the Swedish Research Council for Engineering Sciences (TFR). The work of the second author has

been partially supported by Grant 93�596 from the Latvian Council of Science. The work of the fourth

author has been partially supported by the National Science Council. Taiwan (Republic of China).

Theore
tical C

ompute
r Scien

ce 256
(2001)

63–92 www.e
lsevier

.com/lo
cate/tc

s

Well-stru
ctured

transiti
on sys

tems e
verywh

ere!

A. Fin
kel, Ph

. Schn
oebele

n∗

Lab. S
peci c

ation a
nd Ver

i catio
n, EN

S de Cac
han &

CNRS
UMR 8643,

61 av.
Pdt W

ilson,

94235
Cacha

n Cede
x, Fra

nce

Abstra
ct

Well-stru
ctured

transiti
on system

s (WSTSs)
are a

genera
l class

of in-
nite-sta

te syst
ems fo

r

which
decida

bility results
rely on the ex

istence
of a w

ell-qua
si-orde

ring betwee
n states

that is

compa
tible w

ith the
transiti

ons. In
this ar

ticle, w
e prov

ide an
extensi

ve trea
tment

of the
WSTS

idea an
d show

several
new results

. Our
improv

ed de-
nitions

allow
many

examp
les of

classic
al

system
s to be

seen a
s insta

nces o
f WSTSs.

c� 2001 E
lsevier

Scienc
e B.V.

All rig
hts res

erved.

Keywo
rds: In

- nite s
ystems

; Veri-
cation;

Well-qua
si-orde

ring

1. Intr
oductio

n

1.1. V
eri cat

ion of
in nite-st

ate sys
tems

Forma
l veri-

cation
of pro

grams
and system

s is a
very active

- eld for bo
th theo-

retical
researc

h and practic
al dev

elopme
nts, es

peciall
y since impres

sive advanc
es in

formal
veri- ca

tion te
chnolo

gy pro
ved fe

asible
in seve

ral rea
listic a

pplicat
ions fr

om the

industr
ial wor

ld. The
highly

succes
sful m

odel-ch
ecking

approa
ch for

- nite s
ystems

[16]

sugges
ted tha

t a wo
rking v

eri- cat
ion tec

hnolog
y coul

d well
be dev

eloped
for sys

tems

with a
n in- n

ite stat
e spac

e.

This ex
plains

the con
siderab

le amo
unt of

work t
hat has

been d
evoted

in rece
nt year

s

to this
“veri- c

ation o
f in- ni

te-state
system

s” - eld
, with

a surpr
ising w

ealth o
f posit

ive

results
[50,26

].

1.2. W
ell-stru

ctured
transit

ion sys
tems

A very interes
ting develo

pment
in this - e

ld is the
introdu

ction of wel
l-struc

tured

transit
ion system

s (WSTSs).
These

are transiti
on system

s where
the existen

ce

∗Corres
pondin

g auth
or.

E-mail
addres

s: phs@
lsv.ens

-cacha
n.fr (P

h. Sch
noebel

en).

0304-3
975/01

/$-see
front m

atter
c� 2001 E

lsevier
Scienc

e B.V.
All rig

hts res
erved.

PII: S0
304-3

975(0
0)001

02-X

11/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

A One-Player Game

I over Q>0×Q>0

I given initially (x0,y0)

I Eloise plays (xj,yj) s.t.
∀0 6 i < j, xi > xj or
yi > yj

(x1,y1)

(x2,y2)

(x0,y0)

I Can Eloise win, i.e. play indefinitely?

I If not, how long can she last?

12/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

A One-Player Game

I over Q>0×Q>0

I given initially (x0,y0)

I Eloise plays (xj,yj) s.t.
∀0 6 i < j, xi > xj or
yi > yj

(x1,y1)

(x2,y2)

(x0,y0)

I Can Eloise win, i.e. play indefinitely?

I If not, how long can she last?

12/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

A One-Player Game

I over Q>0×Q>0

I given initially (x0,y0)

I Eloise plays (xj,yj) s.t.
∀0 6 i < j, xi > xj or
yi > yj

(x1,y1)

(x2,y2)

(x0,y0)

I Can Eloise win, i.e. play indefinitely?

I If not, how long can she last?

12/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

If (x0,y0) , (0,0), then choosing (xj,yj) = (x0
2j ,

y0
2j) wins.

13/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

A One-Player Game

I over N×N

I given initially (x0,y0)

I Eloise plays (xj,yj) s.t.
∀0 6 i < j, xi > xj or
yi > yj

(x1,y1)

(x2,y2)

(x0,y0)

I Can Eloise win, i.e. play indefinitely?

I If not, how long can she last?

14/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Assume there exists an infinite sequence (xj,yj)j of
moves over N2.

Consider the pairs of indices i < j: color
(i, j)

purple if xi > xj but yi 6 yj,

red if xi > xj and yi > yj,

orange if yi > yj but xi 6 xj.

(3,4) (5,2) (2,3) . . .

By the infinite Ramsey Theorem, there exists an infinite
monochromatic subset of indices. In all cases, it implies
the existence of an infinite decreasing sequence in N, a

contradiction.

15/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Assume there exists an infinite sequence (xj,yj)j of
moves over N2. Consider the pairs of indices i < j: color
(i, j)

purple if xi > xj but yi 6 yj,

red if xi > xj and yi > yj,

orange if yi > yj but xi 6 xj.

(3,4) (5,2) (2,3) . . .

By the infinite Ramsey Theorem, there exists an infinite
monochromatic subset of indices. In all cases, it implies
the existence of an infinite decreasing sequence in N, a

contradiction.

15/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Assume there exists an infinite sequence (xj,yj)j of
moves over N2. Consider the pairs of indices i < j: color
(i, j)

purple if xi > xj but yi 6 yj,

red if xi > xj and yi > yj,

orange if yi > yj but xi 6 xj.

(3,4) (5,2) (2,3) . . .

By the infinite Ramsey Theorem, there exists an infinite
monochromatic subset of indices.

In all cases, it implies
the existence of an infinite decreasing sequence in N, a

contradiction.

15/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Assume there exists an infinite sequence (xj,yj)j of
moves over N2. Consider the pairs of indices i < j: color
(i, j)

purple if xi > xj but yi 6 yj,

red if xi > xj and yi > yj,

orange if yi > yj but xi 6 xj.

(3,4) (5,2) (2,3) . . .

By the infinite Ramsey Theorem, there exists an infinite
monochromatic subset of indices. In all cases, it implies
the existence of an infinite decreasing sequence in N, a

contradiction.

15/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

A One-Player Game

I over N×N

I given initially (x0,y0)

I Eloise plays (xj,yj) s.t.
∀0 6 i < j, xi > xj or
yi > yj

(x1,y1)

(x2,y2)

(x0,y0)

I Can Eloise win, i.e. play indefinitely?

I If not, how long can she last?

16/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

I if (x0,y0) = (0,0), 0 turns

I otherwise, an arbitrary number of turnsN: if x0 > 0:

(x0,y0), (0,N−1), (0,N−2), . . . , (0,1), (0,0)

17/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Bad Sequences

Over a qo (X,6)

I x0,x1, . . . is bad if ∀i < j . xi � xj

I (X,6) wqo iff all bad sequences
are finite

I

18/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Bad Sequences

18/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

WQOs for Algorithm Termination

simple (a,b)
c←− 1
while a > 0∧b > 0
〈a,b,c〉 ←− 〈a−1,b,2c〉

or

〈a,b,c〉 ←− 〈2c,b−1,1〉
end

〈a0,b0,c0〉
〈a1,b1,c1〉

...
〈ai,bi,ci〉

...
〈aj,bj,cj〉

66×

I in any execution, 〈a0,b0〉, . . . ,〈an,bn〉 is a bad sequence
over (N2,6×),

I (N2,6×) is a wqo: all the runs are finite

I How long can simple run?

19/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

WQOs for Algorithm Termination

simple (a,b)
c←− 1
while a > 0∧b > 0
〈a,b,c〉 ←− 〈a−1,b,2c〉

or

〈a,b,c〉 ←− 〈2c,b−1,1〉
end

〈a0,b0,c0〉
〈a1,b1,c1〉

...
〈ai,bi,ci〉

...
〈aj,bj,cj〉

66×

I in any execution, 〈a0,b0〉, . . . ,〈an,bn〉 is a bad sequence
over (N2,6×),

I (N2,6×) is a wqo: all the runs are finite

I How long can simple run?

19/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

WQOs for Algorithm Termination

simple (a,b)
c←− 1
while a > 0∧b > 0
〈a,b,c〉 ←− 〈a−1,b,2c〉

or

〈a,b,c〉 ←− 〈2c,b−1,1〉
end

〈a0,b0,c0〉
〈a1,b1,c1〉

...
〈ai,bi,ci〉

...
〈aj,bj,cj〉

66×

I in any execution, 〈a0,b0〉, . . . ,〈an,bn〉 is a bad sequence
over (N2,6×),

I (N2,6×) is a wqo: all the runs are finite

I How long can simple run?

19/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

WQOs for Algorithm Termination

simple (a,b)
c←− 1
while a > 0∧b > 0
〈a,b,c〉 ←− 〈a−1,b,2c〉

or

〈a,b,c〉 ←− 〈2c,b−1,1〉
end

〈a0,b0,c0〉
〈a1,b1,c1〉

...
〈ai,bi,ci〉

...
〈aj,bj,cj〉

66×

I in any execution, 〈a0,b0〉, . . . ,〈an,bn〉 is a bad sequence
over (N2,6×),

I (N2,6×) is a wqo: all the runs are finite

I How long can simple run?

19/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

A Rich Theory

I multiple equivalent definitions

I algebraic constructions

20/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

A Rich Theory

I multiple equivalent definitions: (X,6) wqo iff
I 6 is well-founded and has no infinite antichains,
I thus every ordinal is a wqo

I every linearisation of 6 is well-founded,

I 6 has the Ascending Chain Condition,

I if x0,x1, · · · ∈ Xω, then there exists an infinite sequence
i0 < i1 < · · · with xi0 6 xi1 6 · · · ,

I etc.

I algebraic constructions

20/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

A Rich Theory

I multiple equivalent definitions

I algebraic constructions
I Cartesian products (Dickson’s Lemma),

I finite sequences (Higman’s Lemma),

I disjoint sums,

I finite sets with Hoare’s quasi-ordering,

I finite trees (Kruskal’s Tree Theorem),

I graphs with minors (Robertson and Seymour’s Graph Minor
Theorem), etc.

20/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Example: Ordinals

ordinal: well-founded linear
order

bad sequences are descending
sequences:

α 66 β iff α > β

21/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Example: Dickson’s Lemma

Lemma (Dickson 1913)

If (X,6X) and (Y,6Y) are two wqos, then (X×
Y,6×) is a wqo, where 6× is the product order-
ing:

〈x,y〉6× 〈x ′,y ′〉
def⇔ x6X x

′∧y6Y y
′ .

Example
(Nd,6) using the product ordering

22/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Example: Higman’s Lemma

Lemma (Higman 1952)

If (X,6) is a wqo, then (X∗,6∗) is a wqo where
6∗ is the subword embedding ordering:

a1 · · ·am 6∗ b1 · · ·bn
def⇔

{
∃1 6 i1 < · · ·< im 6 n,∧m
j=1aj 6A bij .

Example
aba6∗ baaacabbab

23/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Bad Sequences

24/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Controlled Bad Sequences

24/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Controlled Bad Sequences
Over a qo (X,6) with norm ‖ · ‖

I x0,x1, . . . is bad if ∀i < j . xi � xj

I (X,6) wqo iff all bad sequences
are finite

I controlled by g:N→N

monotone and inflationary and
n0 ∈N if ∀i . ‖xi‖6 gi(n0)
[Cichoń & Tahhan Bittar’98]

Proposition
Over (X,6), assuming ∀n {x ∈ X | ‖x‖6 n} finite,
(g,n0)-controlled bad sequences have a maximal length,
noted Lg,X(n0).

24/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Controlled Bad Sequences

Proposition
Over a wqo (X,6), assuming {x ∈ X | ‖x‖6 n} to be finite
∀n, (g,n0)-controlled bad sequences have a maximal
length, noted Lg,X(n0).

Proof Idea

24/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Controlled Bad Sequences

Proposition
Over a wqo (X,6), assuming {x ∈ X | ‖x‖6 n} to be finite
∀n, (g,n0)-controlled bad sequences have a maximal
length, noted Lg,X(n0).

Objective
Provide upper bounds for Lg,X(n0).

24/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

WQOs for Algorithm Termination

simple (a,b)
c←− 1
while a > 0∧b > 0
〈a,b,c〉 ←− 〈a−1,b,2c〉

or

〈a,b,c〉 ←− 〈2c,b−1,1〉
end

〈a0,b0,c0〉
〈a1,b1,c1〉

...
〈ai,bi,ci〉

...
〈aj,bj,cj〉

66×

I in any execution, 〈a0,b0〉, . . . ,〈an,bn〉 is a bad sequence
over (N2,6×),

I (N2,6×) is a wqo: all the runs are finite

I How long can simple run?

25/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

A Computation of simple(2,3)

simple (a,b)
c←− 1
while a > 0 ∧b > 0
〈a,b,c〉 ←− 〈a−1,b,2c〉

or

〈a,b,c〉 ←− 〈2c,b−1,1〉
end

〈a,b,c〉 loop iterations

〈2,3,20〉 0

I non-elementary complexity

I derive (matching) upper bounds for termination
arguments based on (N2,6×) being a wqo

26/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

A Computation of simple(2,3)

simple (a,b)
c←− 1
while a > 0 ∧b > 0
〈a,b,c〉 ←− 〈a−1,b,2c〉

or

〈a,b,c〉 ←− 〈2c,b−1,1〉
end

〈a,b,c〉 loop iterations

〈2,3,20〉 0
〈1,3,21〉 1

I non-elementary complexity

I derive (matching) upper bounds for termination
arguments based on (N2,6×) being a wqo

26/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

A Computation of simple(2,3)

simple (a,b)
c←− 1
while a > 0 ∧b > 0
〈a,b,c〉 ←− 〈a−1,b,2c〉

or

〈a,b,c〉 ←− 〈2c,b−1,1〉
end

〈a,b,c〉 loop iterations

〈2,3,20〉 0
〈1,3,21〉 1
〈22,2,20〉 2

I non-elementary complexity

I derive (matching) upper bounds for termination
arguments based on (N2,6×) being a wqo

26/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

A Computation of simple(2,3)

simple (a,b)
c←− 1
while a > 0 ∧b > 0
〈a,b,c〉 ←− 〈a−1,b,2c〉

or

〈a,b,c〉 ←− 〈2c,b−1,1〉
end

〈a,b,c〉 loop iterations

...
...

〈22,2,20〉 2
...

...
〈1,2,222−1〉 2+22 −1

I non-elementary complexity

I derive (matching) upper bounds for termination
arguments based on (N2,6×) being a wqo

26/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

A Computation of simple(2,3)

simple (a,b)
c←− 1
while a > 0 ∧b > 0
〈a,b,c〉 ←− 〈a−1,b,2c〉

or

〈a,b,c〉 ←− 〈2c,b−1,1〉
end

〈a,b,c〉 loop iterations

...
...

〈1,2,222−1〉 2+22 −1
〈222

,1,1〉 2+22

I non-elementary complexity

I derive (matching) upper bounds for termination
arguments based on (N2,6×) being a wqo

26/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

A Computation of simple(2,3)

simple (a,b)
c←− 1
while a > 0 ∧b > 0
〈a,b,c〉 ←− 〈a−1,b,2c〉

or

〈a,b,c〉 ←− 〈2c,b−1,1〉
end

〈a,b,c〉 loop iterations

...
...

〈222
,1,1〉 2+22

...
...

〈1,1,2222
−1〉 2+22 +222

−1

I non-elementary complexity

I derive (matching) upper bounds for termination
arguments based on (N2,6×) being a wqo

26/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

A Computation of simple(2,3)

simple (a,b)
c←− 1
while a > 0 ∧b > 0
〈a,b,c〉 ←− 〈a−1,b,2c〉

or

〈a,b,c〉 ←− 〈2c,b−1,1〉
end

〈a,b,c〉 loop iterations

...
...

〈1,1,2222
−1〉 2+22 +222

−1

〈0,1,2222

〉 2+22 +222

I non-elementary complexity

I derive (matching) upper bounds for termination
arguments based on (N2,6×) being a wqo

26/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

A Computation of simple(2,3)

simple (a,b)
c←− 1
while a > 0 ∧b > 0
〈a,b,c〉 ←− 〈a−1,b,2c〉

or

〈a,b,c〉 ←− 〈2c,b−1,1〉
end

〈a,b,c〉 loop iterations

...
...

〈0,1,2222

〉 2+22 +222

I non-elementary complexity

I derive (matching) upper bounds for termination
arguments based on (N2,6×) being a wqo

26/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Descent Equation
(g,n0)-controlled bad sequence x0,x1,x2,x3, . . . over a
wqo (X,6):

norms ‖xi‖

indices i

g0(n0)

g1(n0)g0(g(n0)) =

g2(n0)g1(g(n0)) =

g3(n0)g2(g(n0)) =

x0
x1

x2

x3

�

�

�

�

�

�

over the suffix
x1,x2,x3, . . . , ∀i > 0,

‖xi‖6 gi−1(g(n0))

Lg,X(n0) = max
x0∈X,‖x0‖6n0

1+Lg,X\↑x0
(g(n0))

27/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Descent Equation
(g,n0)-controlled bad sequence x0,x1,x2,x3, . . . over a
wqo (X,6):

norms ‖xi‖

indices i

g0(n0)

g1(n0)g0(g(n0)) =

g2(n0)g1(g(n0)) =

g3(n0)g2(g(n0)) =

x0
x1

x2

x3

�

�

�

�

�

�

over the suffix
x1,x2,x3, . . . , ∀i > 0,

x0 � xi

‖xi‖6 gi−1(g(n0))

Lg,X(n0) = max
x0∈X,‖x0‖6n0

1+Lg,X\↑x0
(g(n0))

27/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Descent Equation
(g,n0)-controlled bad sequence x0,x1,x2,x3, . . . over a
wqo (X,6):

norms ‖xi‖

indices i

g0(n0)

g1(n0)g0(g(n0)) =

g2(n0)g1(g(n0)) =

g3(n0)g2(g(n0)) =

x0
x1

x2

x3

�

�

�

�

�

�

over the suffix
x1,x2,x3, . . . , ∀i > 0,

xi ∈ X\↑x0
def
= {x ∈ X | x0 � x}

‖xi‖6 gi−1(g(n0))

Lg,X(n0) = max
x0∈X,‖x0‖6n0

1+Lg,X\↑x0
(g(n0))

27/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Descent Equation
(g,n0)-controlled bad sequence x0,x1,x2,x3, . . . over a
wqo (X,6):

norms ‖xi‖

indices i

g0(n0)

g1(n0)g0(g(n0)) =

g2(n0)g1(g(n0)) =

g3(n0)g2(g(n0)) =

x0
x1

x2

x3

�

�

�

�

�

�

over the suffix
x1,x2,x3, . . . , ∀i > 0,

xi ∈ X\↑x0
def
= {x ∈ X | x0 � x}

‖xi‖6 gi−1(g(n0))

Lg,X(n0) = max
x0∈X,‖x0‖6n0

1+Lg,X\↑x0
(g(n0))

27/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Descent Equation
(g,n0)-controlled bad sequence x0,x1,x2,x3, . . . over a
wqo (X,6):

norms ‖xi‖

indices i

g0(n0)

g1(n0)g0(g(n0)) =

g2(n0)g1(g(n0)) =

g3(n0)g2(g(n0)) =

x0
x1

x2

x3

�

�

�

�

�

�

over the suffix
x1,x2,x3, . . . , ∀i > 0,

xi ∈ X\↑x0
def
= {x ∈ X | x0 � x}

‖xi‖6 gi−1(g(n0))

Lg,X(n0) = max
x0∈X,‖x0‖6n0

1+Lg,X\↑x0
(g(n0))

27/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Descent Equation
(g,n0)-controlled bad sequence α0,α1,α2,α3, . . . over an
ordinal α:

norms ‖αi‖

indices i

g0(n0)

g1(n0)g0(g(n0)) =

g2(n0)g1(g(n0)) =

g3(n0)g2(g(n0)) =

α0
α1

α2

α3

�

�

�

�

�

�

over the suffix
α1,α2,α3, . . . , ∀i > 0,

αi ∈ α0
def
= {β ∈ α | β 66 α0}

‖αi‖6 gi−1(g(n0))

Lg,α(n0) = max
α0∈α,‖α0‖6n0

1+Lg,α0(g(n0))

27/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

The Case of Ordinals
[S.’14]

I Cantor Normal Form (CNF) for ordinals α < ε0:

α=ωα1 · c1 + · · ·+ωαk · ck
α > α1 > · · ·> αk in CNF , 0< c1, . . . ,ck <ω

I Norm of ordinals α < ε0: “maximal constant”

‖α‖ def
= max

16i6k
(max(||αi||,ci))

Example
‖ωω

2
‖= 2

‖ωω·5 +ω2 ·3‖= 5

28/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

The Case of Ordinals
[S.’14]

I Cantor Normal Form (CNF) for ordinals α < ε0:

α=ωα1 · c1 + · · ·+ωαk · ck
α > α1 > · · ·> αk in CNF , 0< c1, . . . ,ck <ω

I Norm of ordinals α < ε0: “maximal constant”

‖α‖ def
= max

16i6k
(max(||αi||,ci))

Example
‖ωω

2
‖= 2

‖ωω·5 +ω2 ·3‖= 5

28/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

The Case of Ordinals
[S.’14]

Recall the descent equation:

Lg,α(n0) = max
α0∈α,‖α0‖6n0

1+Lg,α0(g(n0))

Proposition (variant of [Buchholtz, Cichoń & Weiermann’94])

Let 0< α < ε0 and ‖α‖6 n0. Then

Lg,0(n0) = 0 Lg,α(n0) = 1+Lg,Pn0(α)
(g(n0))

Px(α) denotes the predecessor at x of α > 0: “maximal
ordinal β < α s.t. ‖β‖6 x”

28/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

The Case of Ordinals
[S.’14]

Recall the descent equation:

Lg,α(n0) = max
α0∈α,‖α0‖6n0

1+Lg,α0(g(n0))

Proposition (variant of [Buchholtz, Cichoń & Weiermann’94])

Let 0< α < ε0 and ‖α‖6 n0. Then

Lg,0(n0) = 0 Lg,α(n0) = 1+Lg,Pn0(α)
(g(n0))

Px(α) denotes the predecessor at x of α > 0: “maximal
ordinal β < α s.t. ‖β‖6 x”

28/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

The Case of Ordinals
[S.’14]

Px(α) denotes the predecessor at x of α > 0: “maximal
ordinal β < α s.t. ‖β‖6 x”

Example

P3(ω
2) =ω ·3+3

P3(ω
ω2

) =ωω·3+3 ·3+ωω·3+2 ·3+ωω·3+1 ·3+ωω·3 ·3
+ωω·2+3 ·3+ωω·2+2 ·3+ωω·2+1 ·3+ωω·2 ·3
+ωω+3 ·3+ωω+2 ·3+ωω+1 ·3+ωω ·3
+ω3 ·3+ω2 ·3+ω ·3+3

28/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

The Case of Ordinals
[S.’14]

Px(α) denotes the predecessor at x of α > 0: “maximal
ordinal β < α s.t. ‖β‖6 x”

Example

P3(ω
2) =ω ·3+3

P3(ω
ω2

) =ωω·3+3 ·3+ωω·3+2 ·3+ωω·3+1 ·3+ωω·3 ·3
+ωω·2+3 ·3+ωω·2+2 ·3+ωω·2+1 ·3+ωω·2 ·3
+ωω+3 ·3+ωω+2 ·3+ωω+1 ·3+ωω ·3
+ω3 ·3+ω2 ·3+ω ·3+3

28/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

The Case of Ordinals
[S.’14]

Proposition (variant of [Buchholtz, Cichoń & Weiermann’94])

Let 0< α < ε0 and ‖α‖6 n0. Then

Lg,0(n0) = 0 Lg,α(n0) = 1+Lg,Pn0(α)
(g(n0))

This function was already known in the literature!

Definition (Cichoń Hierarchy [Cichoń & Tahhan Bittar’98])
For g :N→N, define (gα :N→N)α by

g0(x)
def
= 0 gα(x)

def
= 1+gPx(α)(g(x)) for α > 0

28/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

The Case of Ordinals
[S.’14]

Length Function Theorem (for Ordinals)
Let α < ε0 and n0 > ‖α‖. Then the longest
(g,n0)-controlled descending sequence over α is of
length Lg,α(n0) = gα(n0)

28/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Relating Norm and Length
[Cichoń & Tahhan Bittar’98]

Recall the definition of the Cichoń Hierarchy:

g0(x)
def
= 0 gα(x)

def
= 1+gPx(α)(g(x)) for α > 0

Definition (Hardy Hierarchy)
For g :N→N, define (gα :N→N)α by

g0(x)
def
= x gα(x)

def
= gPx(α)(g(x)) for α > 0

29/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Relating Norm and Length
[Cichoń & Tahhan Bittar’98]

g0(x)
def
= 0 gα(x)

def
= 1+gPx(α)(g(x)) for α > 0

g0(x)
def
= x gα(x)

def
= gPx(α)(g(x)) for α > 0

length: Cichoń function gα(n0)

no
rm

:H
ar

dy
fu

nc
ti

on
g
α
(n

0
)

norms ‖xi‖

indices i

g0(n0)

g1(n0)

g2(n0)

g3(n0)

x0
x1

x2

x3

gα(x) = ggα(x)(x)

gα(x)> gα(x)+ x

29/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Relating Norm and Length
[Cichoń & Tahhan Bittar’98]

g0(x)
def
= 0 gα(x)

def
= 1+gPx(α)(g(x)) for α > 0

g0(x)
def
= x gα(x)

def
= gPx(α)(g(x)) for α > 0

length: Cichoń function gα(n0)

no
rm

:H
ar

dy
fu

nc
ti

on
g
α
(n

0
)

norms ‖xi‖

indices i

g0(n0)

g1(n0)

g2(n0)

g3(n0)

x0
x1

x2

x3

gα(x) = ggα(x)(x)

gα(x)> gα(x)+ x

29/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

The Length of Decomposition Branches
α0

∨

α1

∨

α2

∨...

Corollary
Assume n0 > 2 and g :N→N are such that the
sequence of ordinal ranks computed by the
decomposition algorithm is (g,n0)-controlled. The

algorithm runs in SPACE
(
gω

ω2

(n0)
)
.

30/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

The Length of Decomposition Branches
α0

∨

α1

∨

α2

∨...

Corollary
Assume n0 > 2 and g :N→N are such that the
sequence of ordinal ranks computed by the
decomposition algorithm is (g,n0)-controlled. The

algorithm runs in SPACE
(
gω

ω2

(n0)
)
.

30/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

The Length of Decomposition Branches
α0

∨

α1

∨

α2

∨...

Corollary
Assume n0 > 2 and g :N→N are such that the
sequence of ordinal ranks computed by the
decomposition algorithm is (g,n0)-controlled. The

algorithm runs in SPACE
(
gω

ω2

(n0)
)
.

30/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

The Length of Decomposition Branches
α0

∨

α1

∨

α2

∨...

Consequence of (Figueira, Figueira, S. & Schnoebelen’11)

The control g(x)
def
=Hω

ω
(e(x)) for H(x)

def
= x+1 and an

elementary function e, and n0 the size of the reachability
instance fit. Thus the decomposition algorithm runs in

SPACE((Hω
ω ◦ e)ωω

2

(n).

Corollary
Assume n0 > 2 and g :N→N are such that the
sequence of ordinal ranks computed by the
decomposition algorithm is (g,n0)-controlled. The

algorithm runs in SPACE
(
gω

ω2

(n0)
)
.

30/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Restating the Result
“SPACE

(
(Hω

ω ◦ e)ωω
2

(n)
)
” is unreadable!

1. give names
I Hω

ω
is the Ackermann function

I Hω
ω2

is the “quadratic Ackermann” function

2. define coarse-grained complexity classes

F<α
def
=
⋃
γ<ωα

FDTIME(Hγ(n)) Fα
def
=
⋃

f∈F<α

DTIME(Hω
α
(f(n))

Consequence of (S.’16, Thm. 4.4)
VAS Reachability is in Fω2 .

31/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Restating the Result
“SPACE

(
(Hω

ω ◦ e)ωω
2

(n)
)
” is unreadable!

1. give names
I Hω

ω
is the Ackermann function

I Hω
ω2

is the “quadratic Ackermann” function

2. define coarse-grained complexity classes

F<α
def
=
⋃
γ<ωα

FDTIME(Hγ(n)) Fα
def
=
⋃

f∈F<α

DTIME(Hω
α
(f(n))

Consequence of (S.’16, Thm. 4.4)
VAS Reachability is in Fω2 .

31/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Restating the Result
“SPACE

(
(Hω

ω ◦ e)ωω
2

(n)
)
” is unreadable!

1. give names
I Hω

ω
is the Ackermann function

I Hω
ω2

is the “quadratic Ackermann” function

2. define coarse-grained complexity classes

F<α
def
=
⋃
γ<ωα

FDTIME(Hγ(n)) Fα
def
=
⋃

f∈F<α

DTIME(Hω
α
(f(n))

Consequence of (S.’16, Thm. 4.4)
VAS Reachability is in Fω2 .

31/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Restating the Result
“SPACE

(
(Hω

ω ◦ e)ωω
2

(n)
)
” is unreadable!

1. give names
I Hω

ω
is the Ackermann function

I Hω
ω2

is the “quadratic Ackermann” function

2. define coarse-grained complexity classes

F<α
def
=
⋃
γ<ωα

FDTIME(Hγ(n)) Fα
def
=
⋃

f∈F<α

DTIME(Hω
α
(f(n))

Consequence of (S.’16, Thm. 4.4)
VAS Reachability is in Fω2 .

31/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Complexity Classes Beyond Elementary
[S.’16]

ExpSpace

Elementary

Primitive Recursive

Multiply Recursive

F3
= Tower

Fω
= Ackermann

Fω2

Fast-Growing Complexity

Fω2
def
=

⋃
p∈F

<ω2

DTime(Fω2(p(n)))

32/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Complexity Classes Beyond Elementary
[S.’16]

ExpSpace

Elementary

Primitive Recursive

Multiply Recursive

F3
= Tower

Fω
= Ackermann

Fω2

Fast-Growing Complexity

F3
def
=

⋃
e elementary

DTime(tower(e(n)))

Fω2
def
=

⋃
p∈F

<ω2

DTime(Fω2(p(n)))

32/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Complexity Classes Beyond Elementary
[S.’16]

ExpSpace

Elementary

Primitive Recursive

Multiply Recursive

F3
= Tower

Fω
= Ackermann

Fω2

Fast-Growing Complexity

Examples of Tower-Complete Problems:
I satisfiability of first-order logic on words [Meyer’75]

I β-equivalence of simply typed λ terms [Statman’79]

I model-checking higher-order recursion schemes [Ong’06]

F
ω2

def
=

⋃
p∈F

<ω2

DTime
(
F
ω2(p(n))

)

32/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Complexity Classes Beyond Elementary
[S.’16]

ExpSpace

Elementary

Primitive Recursive

Multiply Recursive

F3
= Tower

Fω
= Ackermann

Fω2

Fast-Growing Complexity

Fω
def
=

⋃
p primitive recursive

DTime(ackermann(p(n)))

Fω2
def
=

⋃
p∈F

<ω2

DTime(Fω2(p(n)))

32/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Complexity Classes Beyond Elementary
[S.’16]

ExpSpace

Elementary

Primitive Recursive

Multiply Recursive

F3
= Tower

Fω
= Ackermann

Fω2

Fast-Growing Complexity

Examples of Ackermann-Complete Problems:
I reachability in lossy Minsky machines [Urquhart’98, Schnoebelen’02]

I satisfiability of safety Metric Temporal Logic [Lazić et al.’16]

I satisfiability of Vertical XPath [Figueira and Segoufin’17]

F
ω2

def
=

⋃
p∈F

<ω2

DTime
(
F
ω2(p(n))

)

32/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Complexity Classes Beyond Elementary
[S.’16]

ExpSpace

Elementary

Primitive Recursive

Multiply Recursive

F3
= Tower

Fω
= Ackermann

Fω2

Fast-Growing Complexity

Fω2
def
=

⋃
p∈F

<ω2

DTime(Fω2(p(n)))

32/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Complexity Classes Beyond Elementary
[S.’16]

ExpSpace

Elementary

Primitive Recursive

Multiply Recursive

F3
= Tower

Fω
= Ackermann

Fω2

Fast-Growing Complexity

Fω2
def
=

⋃
p∈F

<ω2

DTime(Fω2(p(n)))

32/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

A Related Problem

labelled VAS transitions carry labels from some alphabet

L(V,source,target) the language of labels in runs from
source to target

↓L the set of subwords (for 6∗) of the words in
the language L

Downwards Language Inclusion Problem
input: two labelled VAS V and V ′ and configurations

source, target, source ′, target ′

question: ↓L(V,source,target)⊆
↓L(V ′,source ′,target ′)?

33/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

A Related Problem

labelled VAS transitions carry labels from some alphabet

L(V,source,target) the language of labels in runs from
source to target

↓L the set of subwords (for 6∗) of the words in
the language L

Downwards Language Inclusion Problem
input: two labelled VAS V and V ′ and configurations

source, target, source ′, target ′

question: ↓L(V,source,target)⊆
↓L(V ′,source ′,target ′)?

33/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

A Related Problem

Downwards Language Inclusion Problem
input: two labelled VAS V and V ′ and configurations

source, target, source ′, target ′

question: ↓L(V,source,target)⊆
↓L(V ′,source ′,target ′)?

Theorem (Habermehl, Meyer & Wimmel’10)
Given a labelled VAS V and configurations source and
target and its decomposition, one can construct a finite
automaton for ↓L(V,source,target) in polynomial time.

Corollary
The Downwards Language Inclusion problem is in
quadratic Ackermann.

33/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

A Related Problem

Downwards Language Inclusion Problem
input: two labelled VAS V and V ′ and configurations

source, target, source ′, target ′

question: ↓L(V,source,target)⊆
↓L(V ′,source ′,target ′)?

Theorem (Habermehl, Meyer & Wimmel’10)
Given a labelled VAS V and configurations source and
target and its decomposition, one can construct a finite
automaton for ↓L(V,source,target) in polynomial time.

Corollary
The Downwards Language Inclusion problem is in
quadratic Ackermann.

33/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

A Related Problem

Downwards Language Inclusion Problem
input: two labelled VAS V and V ′ and configurations

source, target, source ′, target ′

question: ↓L(V,source,target)⊆
↓L(V ′,source ′,target ′)?

Theorem (Zetzsche’16)
The Downwards Language Inclusion problem is
Ackermann-hard.

33/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Summary
well-quasi-orders (wqo):

I proving algorithm termination

a toolbox for wqo-based complexity
I upper bounds: length function theorems

(for ordinals, Dickson’s Lemma, Higman’s
Lemma, and combinations)

I lower bounds

I complexity classes: (Fα)α

this talk: focus on one problem
I reachability in vector addition systems

in Fω2

34/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Perspectives

1. complexity gap for VAS reachability
I ExpSpace-hard [Lipton’76]

better lower bounds?
I decomposition algorithm: at least Fω (Ackermannian) time

[Zetzsche’16]

2. reachability in VAS extensions
I decidable in VAS with hierarchical zero tests [Reinhardt’08]
I what about
I branching VAS
I unordered data Petri nets
I pushdown VAS

35/35

Vector Addition Systems Decomposition Algorithm Well-Quasi-Orders Upper Bounds Complexity Perspectives

Perspectives

1. complexity gap for VAS reachability
I ExpSpace-hard [Lipton’76]

better lower bounds?
I decomposition algorithm: at least Fω (Ackermannian) time

[Zetzsche’16]

2. reachability in VAS extensions
I decidable in VAS with hierarchical zero tests [Reinhardt’08]
I what about
I branching VAS
I unordered data Petri nets
I pushdown VAS

35/35

Demystifying Reachability
in Vector Addition Systems

[Leroux & S.’15]

Ideal Decomposition Theorem
The Decomposition Algorithm computes the ideal
decomposition of the set of runs from source to target.

Upper Bound Theorem
Reachability in vector addition systems is in cubic
Ackermann.

36/35

Ideals of Well-Quasi-Orders (X,6)

I Canonical decompositions
[Bonnet’75]

ifD⊆ X is ↓-closed, then

D= I1 ∪ ·· · ∪ In

for (maximal) ideals I1, . . . ,In

I Effective representations
[Goubault-Larrecq et al.’17]

Example (overN2)
D= ({0, . . . ,2}×N)∪ ({0, . . . ,5}× {0, . . . ,7})∪ (N× {0, . . . ,4})

37/35

Ideals of Well-Quasi-Orders (X,6)

I Canonical decompositions
[Bonnet’75]

ifD⊆ X is ↓-closed, then

D= I1 ∪ ·· · ∪ In

for (maximal) ideals I1, . . . ,In

I Effective representations
[Goubault-Larrecq et al.’17]

Example (overN2)
D= ({0, . . . ,2}×N)∪ ({0, . . . ,5}× {0, . . . ,7})∪ (N× {0, . . . ,4})

37/35

Ideals of Well-Quasi-Orders (X,6)

I Canonical decompositions
[Bonnet’75]

ifD⊆ X is ↓-closed, then

D= I1 ∪ ·· · ∪ In

for (maximal) ideals I1, . . . ,In

I Effective representations
[Goubault-Larrecq et al.’17]

Example (overN2)
D= ~(2,∞)�∪ ~(5,7)�∪ ~(∞,4)�

37/35

Decomposition Theorem
Well-Quasi-Order on Runs

combination of Dickson’s and
Higman’s lemmata

Syntax Semantics

,

, ,

/

I0

I1

I2

I3 I4

↓Runs

38/35

Decomposition Theorem
Well-Quasi-Order on Runs

combination of Dickson’s and
Higman’s lemmata

Syntax Semantics

,

, ,

/

I0

I1

I2

I3 I4

↓Runs

38/35

Decomposition Theorem
Well-Quasi-Order on Runs

combination of Dickson’s and
Higman’s lemmata

Syntax Semantics

,

, ,

/

I0

I1

I2

I3 I4

↓Runs

38/35

Decomposition Theorem
Well-Quasi-Order on Runs

combination of Dickson’s and
Higman’s lemmata

Syntax Semantics

,

, ,

/

I0

I1

I2

I3 I4

↓Runs

38/35

Adherence Membership

I I is adherent to Runs if
I⊆ ↓(I∩Runs)

I semantic equivalent to
Θ condition

I undecidable for arbitrary ideals

I decidable for the ideals arising in
the decomposition algorithm

Runs

↓Runs
I

I adherentI not adherent

39/35

Adherence Membership

I I is adherent to Runs if
I⊆ ↓(I∩Runs)

I semantic equivalent to
Θ condition

I undecidable for arbitrary ideals

I decidable for the ideals arising in
the decomposition algorithm

Runs

↓Runs
I

I adherentI not adherent

39/35

Adherence Membership

I I is adherent to Runs if
I⊆ ↓(I∩Runs)

I semantic equivalent to
Θ condition

I undecidable for arbitrary ideals

I decidable for the ideals arising in
the decomposition algorithm

Runs

↓Runs
I

I adherentI not adherent

39/35

Adherence Membership

I I is adherent to Runs if
I⊆ ↓(I∩Runs)

I semantic equivalent to
Θ condition

I undecidable for arbitrary ideals

I decidable for the ideals arising in
the decomposition algorithm

Runs

↓Runs
I

I adherentI not adherent

39/35

Adherence Membership

I I is adherent to Runs if
I⊆ ↓(I∩Runs)

I semantic equivalent to
Θ condition

I undecidable for arbitrary ideals

I decidable for the ideals arising in
the decomposition algorithm

Runs

↓Runs
I

I adherentI not adherent

39/35

Adherence Membership

I I is adherent to Runs if
I⊆ ↓(I∩Runs)

I semantic equivalent to
Θ condition

I undecidable for arbitrary ideals

I decidable for the ideals arising in
the decomposition algorithm

Runs

↓Runs
I

I adherentI not adherent

39/35

Adherence Membership

I I is adherent to Runs if
I⊆ ↓(I∩Runs)

I semantic equivalent to
Θ condition

I undecidable for arbitrary ideals

I decidable for the ideals arising in
the decomposition algorithm

Runs

↓Runs
I

I adherentI not adherent

39/35

Branching VAS Reachability

I important open problem [Bojańczyk’14]

I incorrect decidability proof in [Bimbó’15]

I application domains:

Complexity Theory Distributed Computing Computational BiologyProof Theory

Database TheoryProgramming Languages Security Computational Linguistics

40/35

Branching VAS Reachability

I important open problem [Bojańczyk’14]

I incorrect decidability proof in [Bimbó’15]

I application domains:

Complexity Theory Distributed Computing Computational BiologyProof Theory

Database TheoryProgramming Languages Security Computational Linguistics

40/35

Branching VAS Reachability

I important open problem [Bojańczyk’14]

I incorrect decidability proof in [Bimbó’15]

I application domains:

Complexity Theory

Tower-hard
[Lazić & S., ToCL’15]

Distributed Computing Computational BiologyProof Theory

Database TheoryProgramming Languages Security Computational Linguistics

40/35

Branching VAS Reachability

I important open problem [Bojańczyk’14]

I incorrect decidability proof in [Bimbó’15]

I application domains:

Complexity Theory

Tower-hard
[Lazić & S., ToCL’15]

Distributed Computing

recursive parallel programs
[Bouajjani & Emmi’13]

Computational BiologyProof Theory

Database TheoryProgramming Languages Security Computational Linguistics

40/35

Branching VAS Reachability

I important open problem [Bojańczyk’14]

I incorrect decidability proof in [Bimbó’15]

I application domains:

Complexity Theory

Tower-hard
[Lazić & S., ToCL’15]

Distributed Computing

recursive parallel programs
[Bouajjani & Emmi’13]

Computational BiologyProof Theory

linear and relevance logics
[de Groote et al.’04
Lazić & S., ToCL’15

S., JSL’16]

Database TheoryProgramming Languages Security Computational Linguistics

40/35

Branching VAS Reachability

I important open problem [Bojańczyk’14]

I incorrect decidability proof in [Bimbó’15]

I application domains:

Complexity Theory

Tower-hard
[Lazić & S., ToCL’15]

Distributed Computing

recursive parallel programs
[Bouajjani & Emmi’13]

Computational Biology

population protocols
[Bertrand et al.’17]

Proof Theory

linear and relevance logics
[de Groote et al.’04
Lazić & S., ToCL’15

S., JSL’16]

Database TheoryProgramming Languages Security Computational Linguistics

40/35

Branching VAS Reachability

I important open problem [Bojańczyk’14]

I incorrect decidability proof in [Bimbó’15]

I application domains:

Complexity Theory

Tower-hard
[Lazić & S., ToCL’15]

Distributed Computing

recursive parallel programs
[Bouajjani & Emmi’13]

Computational Biology

population protocols
[Bertrand et al.’17]

Proof Theory

linear and relevance logics
[de Groote et al.’04
Lazić & S., ToCL’15

S., JSL’16]

Database TheoryProgramming Languages

observational equivalence
[Cotton-Barratt et al.’17]

Security Computational Linguistics

40/35

Branching VAS Reachability

I important open problem [Bojańczyk’14]

I incorrect decidability proof in [Bimbó’15]

I application domains:

Complexity Theory

Tower-hard
[Lazić & S., ToCL’15]

Distributed Computing

recursive parallel programs
[Bouajjani & Emmi’13]

Computational Biology

population protocols
[Bertrand et al.’17]

Proof Theory

linear and relevance logics
[de Groote et al.’04
Lazić & S., ToCL’15

S., JSL’16]

Database Theory

data logics
[Bojańczyk et al.’09,

Abriola et al.’17]

Programming Languages

observational equivalence
[Cotton-Barratt et al.’17]

Security Computational Linguistics

40/35

Branching VAS Reachability

I important open problem [Bojańczyk’14]

I incorrect decidability proof in [Bimbó’15]

I application domains:

Complexity Theory

Tower-hard
[Lazić & S., ToCL’15]

Distributed Computing

recursive parallel programs
[Bouajjani & Emmi’13]

Computational Biology

population protocols
[Bertrand et al.’17]

Proof Theory

linear and relevance logics
[de Groote et al.’04
Lazić & S., ToCL’15

S., JSL’16]

Database Theory

data logics
[Bojańczyk et al.’09,

Abriola et al.’17]

Programming Languages

observational equivalence
[Cotton-Barratt et al.’17]

Security

security protocols
[Verma &

Goubault-Larrecq’05]

Computational Linguistics

40/35

Branching VAS Reachability

I important open problem [Bojańczyk’14]

I incorrect decidability proof in [Bimbó’15]

I application domains:

Complexity Theory

Tower-hard
[Lazić & S., ToCL’15]

Distributed Computing

recursive parallel programs
[Bouajjani & Emmi’13]

Computational Biology

population protocols
[Bertrand et al.’17]

Proof Theory

linear and relevance logics
[de Groote et al.’04
Lazić & S., ToCL’15

S., JSL’16]

Database Theory

data logics
[Bojańczyk et al.’09,

Abriola et al.’17]

Programming Languages

observational equivalence
[Cotton-Barratt et al.’17]

Security

security protocols
[Verma &

Goubault-Larrecq’05]

Computational Linguistics

dominance grammars
[Rambow’94; S., ACL’10]

minimalist syntax [Salvati’10]

40/35

	Vector Addition Systems
	Decomposition Algorithm
	Well-Quasi-Orders
	Upper Bounds
	Complexity
	Perspectives
	Appendix

	anm0:
	anm1:
	anm2:

