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Outline
ν-Petri nets (νPN)

Petri nets with data management and
creation
(Rosa-Velardo and de Frutos-Escrig, 2008, 2011)

coverability

I decidable by classical backward coverability
algorithm (Abdulla et al., 2000)

I dual view using downwards-closed sets
(Lazić and S., 2015)

complexity νPN coverability is complete for double
Ackermann (Fω·2-complete)
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(Lazić and S., 2015)

complexity νPN coverability is complete for double
Ackermann (Fω·2-complete)

2/22



ν-Petri Nets Fast-Growing Complexity Backward Coverability Upper Bound

ν-Petri Nets
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Petri Nets as ν-Petri Nets
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Reset Petri Nets as ν-Petri Nets
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Coverability Problem
verification of safety properties “nothing bad happens”

ordering of configurations by multiset embedding

[u1, . . . ,un]v [v1, . . . ,vp]

iff ∃f : {1, . . . ,n}→ {1, . . . ,p} injective ,
∀1 6 i6 n,ui 6 vf(i)
Example: 1
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input a νPN, a source configuration src, and a

“bad” configuration tgt

question ∃m, tgtvm and src→∗m?
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Polyadic ν-Petri Nets
(Rosa-Velardo and Martos-Salgado, 2012)

I hold tuples of tokens in places

I equivalent to the full π-calculus

I model of dynamic database systems with existential
positive guards

I undecidable coverability
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Taxonomy of Petri Net Extensions

ordered data Petri nets (Lazić et al., 2008)
F
ωω

ω -complete (Haddad et al., 2012)

complexity of coverability ordered data nets (Lazić et al., 2008)
F
ωω

ω -complete (Haddad et al., 2012)

ν-Petri nets (Rosa-Velardo and de Frutos-Escrig, 2008)
Fω·2-complete (this talk)Fω 6? 6 Fωω (Rosa-Velardo, 2014)

unordered data nets (Lazić et al., 2008)
Fωω -complete (Rosa-Velardo, 2014)

affine nets (Finkel et al., 2004)
Fω-complete
(Schnoebelen, 2010;
Figueira et al., 2011)

unordered data Petri nets (Lazić et al., 2008)
F3 6? (Lazić et al., 2008, )

Petri nets
ExpSpace-complete (Lipton, 1976; Rackoff, 1978)

+whole-place
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or

de
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de
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+fresh +whole-place

+
da

ta

+
da

ta
+whole-place
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Fast-Growing Complexity
(S., 2016)

Elementary

F3 = Tower

⋃
kFk=Primitive-Recursive

FωFω+1
Fω·2

⋃
α<ωω Fα =Multiply-Recursive

Fωω

Fω·2
def
=
⋃
p∈F<ω·2 DTime

(
Aω·2(p(n))

)

I Ackermann: “Ackermannian in” x 7→ 2x

A1(x)
def
= 2x Ak+2(x)

def
=Axk+1(1) Aω(x)

def
=Ax+1(x)

I double Ackermann: “Ackermannian in” Aω(x)

Aω+k+1(x)
def
=Axω+k(1) Aω·2(x)

def
=Aω+x+1(x)
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Main Result

Theorem
Coverability in νPNs is Fω·2-complete.

lower bound extends Lipton’s “object-oriented”
programming in Petri nets
I basic block: Ackermann counters using

Schnoebelen’s construction for reset Petri
nets

I pushed to double Ackermann: composition
and iteration operations

upper bound analyses a dual view of the backward
coverability algorithm
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ν-Petri Nets are Well-Structured
(Finkel and Schnoebelen, 2001; Abdulla et al., 2000)

1. ((NP)⍟,v) is a well-quasi-order (wqo), which entails
finite bad sequences any sequencem0,m1,m2, . . . with

∀i < j,mi 6vmj, is finite

finite basis property any upwards-closed subset U has a
finite basis B such that U= ↑B

ascending chain property all the ascending chains
U0 (U1 (U2 ( · · · of upwards-closed subsets
are finite

2. compatibility: ifm1 vm ′1 andm1→m2, then there exists
m ′2,m2 vm ′2 andm ′1→m ′2
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“Classical” Backward Coverability
(Abdulla et al., 2000)

compute Uk = {m ′ | ∃mw tgt,m ′→6km} ; U∗ =
⋃
kUk :

initially U0
def
= ↑tgt

step Uk+1
def
= Pre∃(Uk)∪Uk

where
Pre∃(S)

def
= {m | ∃s ∈ S,m→ s}

representation of upwards-closed subsets U through
their minimal elements thanks to finite basis
property

termination guaranteed by ascending chain property
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Ideal Decompositions for a wqo (X,6)
(Bonnet, 1975; Finkel and Goubault-Larrecq, 2009; Goubault-Larrecq et al., 2016)

I a subset ∆⊆ X is directed iff ∆ , ∅ and
∀x,y ∈ ∆,∃z ∈ ∆,x6 z and y6 z

I an ideal I is a downwards-closed and directed subset

I equivalently, I is downwards-closed and irreducible:
if I⊆D1 ∪D2 forD1,D2 downwards-closed,
then I⊆D1 or I⊆D2

I every downwards-closed subsetD⊆ X is the union of a
unique finite family of incomparable ideals:
D= I1 ∪ ·· · ∪ In, called its canonical ideal decomposition

I finite ideal representations for many wqos
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I extended configurations:
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I (B,S) is reduced iff S is an antichain and
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Dual Backward Coverability
(Lazić and S., 2015)

compute Dk = {m ′ | ∀mw tgt,m ′���→6km} ;D∗ =
⋂
kDk :

initially D0
def
= (NP)⍟ \ (↑tgt)

step Dk+1
def
= Pre∀(Dk)∩Dk

where
Pre∀(S)

def
= {m | ∀s,m→ s =⇒ s ∈ S}

representation of downwards-closed subsetsD through
finite representations of their ideal
decompositions

termination guaranteed by descending chain property
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Dual Backward Coverability: Example

p0 p12
tgt= (0,5)

D0 = ↓(ω,4)
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Dual Backward Coverability: Example

p0 p12
tgt= (0,5)

D1 = ↓(1,4)∪↓(ω,3)
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Dual Backward Coverability: Example

p0 p12
tgt= (0,5)

D2 = ↓(1,4)∪↓(3,3)∪↓(ω,2)
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Dual Backward Coverability: Example

p0 p12
tgt= (0,5)

D3 = ↓(1,4)∪↓(3,3)∪↓(5,2)∪↓(ω,1)
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Dual Backward Coverability: Example

p0 p12
tgt= (0,5)

D4 = ↓(1,4)∪↓(3,3)∪↓(5,2)∪↓(7,1)∪↓(ω,0)
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Dual Backward Coverability: Example

p0 p12
tgt= (0,5)

D5 = ↓(1,4)∪↓(3,3)∪↓(5,2)∪↓(7,1)∪↓(9,0) =D∗
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Controlled Sequences
I consider a norm ‖.‖ : X→N with
∀n,X6n

def
= {x ∈ X | ‖x‖6 n} finite:

‖u‖ def
= max
p∈P|u(p)<ω

u(p) for u ∈NP
ω

‖B,S‖ def
= max

u∈Support(B),v∈S
(|B|,‖u‖,‖v‖) for ↓(B,S) ∈ Idl((NP)⍟)

‖D‖ def
= max

16i6n
‖Bi,Si‖ forD= ↓(B1,S1)∪ ·· · ∪ ↓(Bn,Sn)

I consider a control function g :N→N strictly monotone
and an initial norm n ∈N

I a sequence x0,x1, . . . of elements of X is
(g,n)-controlled if ∀i,‖xi‖6 gi(n)

strongly (g,n)-controlled if ‖x0‖6 n and
∀i,‖xi+1‖6 g(‖xi‖)

17/22
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Length Function Theorems (1/3)
(Figueira et al., 2011; S. and Schnoebelen, 2012)

Fact (Length Function Theorem for Bad Sequences
inNP

ω)
Let n > 0. Any (g,n)-controlled bad sequence e0,e1, . . . ,e`
of extended markings in (NP

ω,6) has length at most
“Ackermannian in” g(max(n, |P|)).

18/22



ν-Petri Nets Fast-Growing Complexity Backward Coverability Upper Bound

Length Function Theorems (2/3)
(Lazić and S., 2015)

I consider a descending chainD0 )D1 ) · · · )D`

I extract at each step 0 6 k < ` a proper ideal Ik from the
canonical decomposition ofDk, s.t. Ik *Dk+1

I bad sequence of proper ideals I0,I1, . . . ,I`−1

I in particular, for descending chains ↓S0 ) ↓S1 ) · · · ) ↓S`
of antichains

Corollary (Length Function Theorem for
Hoare-Descending Chains overNP

ω)
Let n > 0. Any (g,n)-controlled descending chain
↓S0 ) ↓S1 ) · · · ) ↓S` of antichains of (NP

ω,6) has length
at most “Ackermannian in” g(max(n, |P|)).
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Length Function Theorems (3/3)

I a descending chainD0 )D1 ) · · · )D` over (NP)⍟ is
star-monotone if ∀0 6 k < `−1, ∀Ik+1 = ↓(Bk+1,Sk+1)
proper ideal from the canonical decomposition ofDk+1,
∃Ik = ↓(Bk,Sk) proper ideal from the canonical
decomposition ofDk s.t. ↓Sk+1 ⊆ ↓Sk

Theorem (Length Function Theorem for
Star-Monotone Descending Chains over (NP

ω)
⍟)

Let n > 0. Any strongly (g,n)-controlled star-monotone
descending chainD0 )D1 ) · · · )D` of configurations in
(NP

ω)
⍟ has length at most “double Ackermannian in”

g(max(n, |P|).
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Wrapping Up

Lemma (Strong Control for νPNs)
The descending chain computed by the backward
algorithm for a νPNN and target tgt is strongly
(g,n)-controlled for g(x)

def
= x+ |N| and n

def
= ‖tgt‖.

Lemma (νPN Descending Chains are Star-Monotone)
The descending chains computed by the backward
coverability algorithm for νPNs are star-monotone.

Theorem (Upper Bound)
The coverability problem for νPNs is in Fω·2.

21/22



ν-Petri Nets Fast-Growing Complexity Backward Coverability Upper Bound

Concluding Remarks

I first “natural” decision problem complete for Fω·2

I ideals and downwards-closed sets as algorithmic tools
I here, backward analysis (Lazić and S., 2015)

I forward analysis (Finkel and Goubault-Larrecq, 2009, 2012)

I reachability in Petri nets (Leroux and S., 2015)

I formal languages (Zetzsche, 2015; Hague et al., 2016)

I invariant inference (Padon et al., 2016)

I piecewise testable separability (Goubault-Larrecq and S.,
2016)
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Departamento de Sistemas Informáticos y Computación, Universidad Complutense de Madrid.
http://antares.sip.ucm.es/frosa/docs/complexityUDN.pdf.

Schmitz, S. and Schnoebelen, Ph., 2012. Algorithmic aspects of WQO theory. Lecture notes.
http://cel.archives-ouvertes.fr/cel-00727025.

Schmitz, S., 2016. Complexity hierarchies beyond Elementary. ACM Trans. Comput. Theory.
http://arxiv.org/abs/1312.5686. To appear.

Schnoebelen, Ph., 2010. Revisiting Ackermann-hardness for lossy counter machines and reset Petri nets. In Proc.
MFCS 2010 , volume 6281 of Lect. Notes in Comput. Sci., pages 616–628. Springer.
doi:10.1007/978-3-642-15155-2 54.

Zetzsche, G., 2015. An approach to computing downward closures. In ICALP 2015 , volume 9135 of Lect. Notes in
Comput. Sci., pages 440–451. Springer. doi:10.1007/978-3-662-47666-6 35.

24/22

http://dx.doi.org/10.1145/2837614.2837640
http://dx.doi.org/10.1016/0304-3975(78)90036-1
http://dx.doi.org/10.1016/j.tcs.2011.05.007
http://dx.doi.org/10.1016/j.ic.2012.03.004
http://antares.sip.ucm.es/frosa/docs/complexityUDN.pdf
http://cel.archives-ouvertes.fr/cel-00727025
http://arxiv.org/abs/1312.5686
http://dx.doi.org/10.1007/978-3-642-15155-2_54
http://dx.doi.org/10.1007/978-3-662-47666-6_35

	-Petri Nets
	Fast-Growing Complexity
	Backward Coverability
	Upper Bound
	Appendix
	References


