
Noncanonical Parsing

Sylvain Schmitz ⋆

Laboratoire I3S, Université de Nice - Sophia Antipolis, France
schmitz@i3s.unice.fr

Abstract. The talk advocates the use of noncanonical parsers wherever
deterministic parsers are needed: they preserve the linear time parsing
and unambiguity properties, but accept a larger class of grammars.

1 Introduction

Common deterministic parser generators [1] provide a parser developer with
two interesting static guarantees: that the input grammar is unambiguous, and
that the resulting parser will process its input string in linear time. There is
however a major issue with these parser generation algorithms: they cannot
provide a deterministic parser for an arbitrary context-free grammar, resulting
in the infamous conflicts between possible parsing actions. Their inability to
deal with parsing decisions that need more than the pre-established k lookahead
terminal symbols is to blame for a large part of it.

Two different parsing techniques allow to circumvent this limitation to boun-
ded lookaheads in bottom-up parsers, but to keep the unambiguity guarantee.
The first, called regular lookahead parsing, uses a finite state automaton to
explore an unbounded right context [2, 3]. The linear time guarantee is however
lost. The second, called noncanonical parsing, explores the right context using the
parser itself. The latter can thus perform some reductions in this right context,
return to the conflict point, and use a bounded number of the newly reduced
symbols—representing an entire context-free language—to yield a deterministic
decision [4, 5].

We briefly describe a noncanonical LALR(1) parser construction.

2 Noncanonical Parser Construction

Suppose we can generate a canonical LALR(1) parser C for a given context-
free grammar G [1]. This parser is a pushdown automaton making decisions
on configurations of form [α]‖a where [α] is the state reached upon reading the
valid prefix α from the initial state [ε] and a is a single lookahead terminal in the
remaining input. Several parsing actions—shift or reduces—might be possible in
a single configuration of C. In such a case a noncanonical parser will shift and
explore the right context; it will resume to the conflict point after a reduction
and use the reduced symbols to help the decision.

⋆ Joint work with Jacques Farré and José Fortes Gálvez.

2 S. Schmitz

Valid Covers We say that string γ is a valid cover in G for string δ if and only
if γ is a valid prefix and γ⇒∗δ. We write δ̂ to denote some cover of δ.

Noncanonical Lookaheads The NLALR(1) parser is able to use nonterminal
symbols—resulting from reductions done to the right of the current position—as
lookahead symbols. Let us denote by RLA([δ], A→α) the set of totally reduced
lookahead symbols for the reduction A→α in canonical state [δ], and similarily
by DLA([δ], A→α) the set of all lookahead symbols. We define the conflict and
noncanonical lookahead sets for a reduction A→α in a set s of canonical states:

CLA(s,A→α) =
{X ∈ DLA([δ], A→α) | [δ] ∈ s,X 6∈ RLA([δ], A→α),

([δ],X) or (∃[γ] ∈ s,X ∈ DLA([γ], B→β))},

NLA(s,A→α) =
(

⋃

[δ]∈s

DLA([δ], A→α)
)

− CLA(s,A→α).

Noncanonical Parser The noncanonical parser is a two-stack pushdown automa-
ton; the second stack acts as an input. We allow a limited amount of backtrack
by having reductions push the reduced symbols on top of this second stack in-
stead of the first stack. The states we construct are sets of canonical states [α];
let us denote noncanonical states by JαK:

JεK ={[ε]} and

JδXK ={[̂̂γAX] | X ∈ CLA(JδK, A→α), [γ̂α] ∈ JδK} ∪ {[ϕX] | [ϕ] ∈ JδK}.

Noncanonical transition from JδK to JδXK on symbol X, denoted by (JδK,X),
exists if and only if JδXK 6= ∅. Reduction (JδK, A→α) exists if and only if there
exists a reduction ([γ], A→α) and [γ] is in JδK; this reduction uses the noncanon-
ical lookahead set NLA(JδK, A→α).

3 Further Developments

The computations for the valid covers and for the noncanonical lookahead sets
are expressed as relational equations amenable to efficient processing [5].

More powerful noncanonical parsers with adaptive lookahead lengths are cur-
rently considered.

References

1. Donnely, C., Stallman, R.: Bison, The YACC-compatible Parser Generator. The
Free Software Foundation (2002)

2. Bermudez, M.E., Schimpf, K.M.: Practical arbitrary lookahead LR parsing. Journal
of Computer and System Sciences 41 (1990) 230–250

3. Farré, J., Fortes Gálvez, J.: A bounded-connect construction for LR-regular parsers.
In Wilhelm, R., ed.: CC’01. Volume 2027 of LNCS., Springer (2001) 244–258

4. Szymanski, T.G., Williams, J.H.: Noncanonical extensions of bottom-up parsing
techniques. SIAM Journal on Computing 5 (1976) 231–250

5. Schmitz, S.: Noncanonical LALR(1) parsing. In Dang, Z., Ibarra, O.H., eds.:
DLT’06. Volume 4036 of LNCS., Springer (2006) 95–107

