Games with Discrete Resources

Sylvain Schmitz with Th. Colcombet, J.-B. Courtois, M. Jurdziński, and R. Lazić

LSV, ENS Paris-Saclay & CNRS

IBISC, October 19, 2017

Outline

multi-dimensional energy parity games

complexity through perfect half-space games (Colcombet et al., LICS '17)

related problems:

- multi-dimensional mean-payoff parity games (Chatterjee et al., Concur '12)
- VASS games (too many references!)
- regular VASS simulations (Courtois and S., MFCS '14)
- ▶ (!, ⊕)-Horn linear logic (Kanovich, APAL '95)
- ▶ µ-calculus on VASS (Abdulla et al., Concur '13)
- resource-bounded agent temporal logic RB±ATL* (Alechina et al., RP '16)

MAXIMAL DRY TEMPERATURE

М

Where to Treck in Iceland?

н

Maximal dry temperature as a parity objective

R

0

Where to Treck in Iceland?

н

MAXIMAL DRY TEMPERATURE as a parity objective

R

Multi-Energy Parity Games

WHERE TO TRECK IN ICELAND? Uncontrolled events

M

Where to Treck in Iceland?

н

Maximal dry temperature as a parity objective UNCONTROLLED EVENTS as a two-players game

М

Where to Treck in Iceland?

Maximal dry temperature as a parity objective UNCONTROLLED EVENTS as a two-players game

DISCRETE RESOURCES

Multi-Dimensional Energy Parity Games

Player 1 wins a play if both

- energy objective: no component goes negative
- parity objective: the maximal priority is odd

Example $R(0,0) \xrightarrow{(1,0)} R(1,0) \xrightarrow{(1,0)} R(2,0) \xrightarrow{(-1,0)} H(1,0) \xrightarrow{(0,0)} R(1,0) \rightarrow \cdots$

Decision problems: Does Player 1 have a winning strategy

- siven initial credit as part of the input
- existential: for some initial credit

Multi-Dimensional Energy Parity Games

Player 1 wins a play if both

- energy objective: no component goes negative
- parity objective: the maximal priority is odd

 $\begin{array}{c} \mathsf{Example} \\ \mathsf{R}(0,0) \xrightarrow{(1,0)} \mathsf{R}(1,0) \xrightarrow{(1,0)} \mathsf{R}(2,0) \xrightarrow{(-1,0)} \mathsf{H}(1,0) \xrightarrow{(0,0)} \mathsf{R}(1,0) \to \cdots \end{array}$

Decision problems: Does Player 1 have a winning strategy

- siven initial credit as part of the input
- existential: for some initial credit

Multi-Dimensional Energy Parity Games

- energy objective: no component goes negative
- parity objective: the maximal priority is odd

 $\begin{array}{c} \mathsf{Example} \\ \mathsf{R}(0,0) \xrightarrow{(1,0)} \mathsf{R}(1,0) \xrightarrow{(1,0)} \mathsf{R}(2,0) \xrightarrow{(-1,0)} \mathsf{H}(1,0) \xrightarrow{(0,0)} \mathsf{R}(1,0) \to \cdots \end{array}$

Decision problems: Does Player 1 have a winning strategy

- given initial credit as part of the input
- existential: for some initial credit

COMPLEXITY

lower bound

upper bound

w. initial credit

 \exists initial credit

Complexity

lower bound

upper bound

w. initial credit

EXPSPACE

(Lasota, IPL '09)

 \exists initial credit

COMPLEXITY

lower bound

upper bound

w. initial credit

EXPSPACE

(Lasota, IPL '09)

TOWER

(Brázdil et al., ICALP '10)

∃ initial credit

coNP

(Chatterjee et al., FSTTCS '10)

coNP

(Chatterjee et al., FSTTCS '10)

Complexity

lower bound

upper bound

w. initial credit

2-EXP (Courtois and S., MFCS '14)

TOWER

(Brázdil et al., ICALP '10)

∃ initial credit

coNP

(Chatterjee et al., FSTTCS '10)

coNP

(Chatterjee et al., FSTTCS '10)

Complexity

lower bound

upper bound

w. initial credit

2-EXP (Courtois and S., MFCS '14) 2-EXP

(Jurdziński et al., ICALP '15)

∃ initial credit

coNP

(Chatterjee et al., FSTTCS '10)

coNP

(Chatterjee et al., FSTTCS '10)

Multi-Dimensional Energy Parity Games

COMPLEXITY

lower bound

upper bound

w. initial credit

2-EXP (Courtois and S., MFCS '14)

 \exists initial credit

coNP

(Chatterjee et al., Concur '12)

coNP

Multi-Dimensional Energy Parity Games

Complexity

lower bound

upper bound

w. initial credit

2-EXP (Courtois and S., MFCS '14)

decidable

(Abdulla et al., Concur '13)

∃ initial credit

coNP

(Chatterjee et al., Concur '12)

coNP

Multi-Dimensional Energy Parity Games

Complexity

lower bound

upper bound

w. initial credit

2-EXP (Courtois and S., MFCS '14)

TOWER

(Jančar, RP '15)

∃ initial credit

coNP

(Chatterjee et al., Concur '12)

coNP

Multi-Dimensional Energy Parity Games

Complexity

lower bound

upper bound

w. initial credit

2-EXP (Courtois and S., MFCS '14) 2-EXP

(Colcombet et al., LICS '17)

∃ initial credit

coNP

(Chatterjee et al., Concur '12)

coNP

Fixed-Dimensional Energy Parity Games

Complexity

lower bound

upper bound

w. initial credit

EXP for $d \ge 2$

(Jurdziński et al., LMCS '08)

pseudoP

(Colcombet et al., LICS '17)

 \exists initial credit

pseudoP

(Colcombet et al., LICS '17)

Complexity of Multi-Energy Parity Games

THEOREM (Colcombet et al., LICS '17)

- 1. The given initial credit problem for multi-dimensional energy parity games is in 2-EXP.
- 2. With fixed dimension and number of priorities, it is in pseudo polynomial time.
 - series of reductions using notably perfect half-space games
 - fine understanding of Player 2's strategies:
 Player 2 can win by announcing in which perfect half space he will escape

Complexity of Multi-Energy Parity Games

THEOREM (Colcombet et al., LICS '17)

- 1. The given initial credit problem for multi-dimensional energy parity games is in 2-EXP.
- 2. With fixed dimension and number of priorities, it is in pseudo polynomial time.
 - series of reductions using notably perfect half-space games
 - fine understanding of Player 2's strategies:
 Player 2 can win by announcing in which perfect half space he will escape

Reductions and Strategy Transfers

EXTENDED MULTI-DIMENSIONAL ENERGY GAMES ENCODE PRIORITIES AS ENERGY (Jančar, RP '15)

Two new dimensions: tolerance to humid low/high temperature

Encoding Extended Energy Games

Player 2's Objective in a Bounding Game

Key Intuition Player 2 can escape in a perfect half space

Player 2's Objective in a Bounding Game

Key INTUITION Player 2 can escape in a perfect half space

Perfect Half Space

 $\{(x,y): x+y < 0\}$

Perfect Half Space

$$\{(x,y): x + y < 0\}$$

boundary: $\{(x,y): x + y = 0\}$

Perfect Half Space

$$\{(x,y): x + y < 0\}$$

 $\cup \{(x,y): x + y = 0 \land x < 0\}$

Plays

pairs of vertices and perfect half spaces:

$$(\mathbf{v}_0,\mathbf{H}_0) \xrightarrow{\mathbf{w}_1} (\mathbf{v}_1,\mathbf{H}_1) \xrightarrow{\mathbf{w}_2} (\mathbf{v}_2,\mathbf{H}_2) \cdots$$

in his vertices, Player 2 chooses the current perfect half space

 \blacktriangleright Player 2 wins if $\exists i \text{ s.t. } \sum_{j \geqslant 0} w_j \text{ diverges into } \bigcap_{j > i} H_j$

SOLVING PERFECT HALF SPACE GAMES

Тнеокем Perfect half space games on multi-weighted game graphs (V,E,d) are solvable in $(|V| \cdot ||E||)^{O(d^3)}$.

Proof Idea

- reduce to a lexicographic energy game (Colcombet and Niwiński)
- hinspace pprox perfect half space game with a single fixed ${f H}$
- ▶ itself reduced to a mean-payoff game

SOLVING PERFECT HALF SPACE GAMES

Тнеокем Perfect half space games on multi-weighted game graphs (V,E,d) are solvable in $(|V| \cdot ||E||)^{O(d^3)}$.

Proof Idea

- reduce to a lexicographic energy game (Colcombet and Niwiński)
- hinspace perfect half space game with a single fixed ${f H}$
- itself reduced to a mean-payoff game

Player 2 Strategies

Oblivious Strategy Player 2 chooses the same H_ν every time it visits vertex ν

THEOREM If Player 2 has a winning strategy in a perfect half space game, then it has an oblivious one.

"Counterless" Strategy

COROLLARY (Brázdil et al., ICALP '10)

If Player 2 has a winning strategy in an existential multi-dimensional energy parity game, then it has a positional one.

Player 2 Strategies

Oblivious Strategy Player 2 chooses the same H_{ν} every time it visits vertex ν

THEOREM If Player 2 has a winning strategy in a perfect half space game, then it has an oblivious one.

"Counterless" Strategy

COROLLARY (Brázdil et al., ICALP '10)

If Player 2 has a winning strategy in an existential multi-dimensional energy parity game, then it has a positional one.

VASS GAMES

multi-energy game configuration arena over $Q \times \mathbb{Z}^d$ + energy objective

VASS game configuration arena over $Q\times \mathbb{N}^d$

Example

$$R(0,0) \not\rightarrow H(-1,0)$$

Monotone objectives:

state reachability given $q_\ell \in Q$, Player 1 wins if any configuration in $\{q_\ell\} \times {\rm I\!N}^d$ is visited

non-termination Player 1 wins if the play is infinite

parity given a colouring $c \colon Q \to \{1, \dots, k\}$, Player 1 wins if the least colour seen infinitely often is odd

Non-monotone objective:

configuration reachability given $q_{\ell} \in Q$, Player 1 wins if the configuration $(q_{\ell}, 0)$ is visited

Monotone objectives:

state reachability given $q_\ell \in Q,$ Player 1 wins if any configuration in $\{q_\ell\} \times {\rm I\!N}^d$ is visited

non-termination Player 1 wins if the play is infinite

parity given a colouring $c \colon Q \to \{1, \dots, k\}$, Player 1 wins if the least colour seen infinitely often is odd

Non-monotone objective:

configuration reachability given $q_{\ell} \in Q$, Player 1 wins if the configuration $(q_{\ell}, 0)$ is visited

Monotone objectives:

state reachability given $q_\ell \in Q$, Player 1 wins if any configuration in $\{q_\ell\} \times {\rm I\!N}^d$ is visited

non-termination Player 1 wins if the play is infinite

parity given a colouring $c \colon Q \to \{1, \dots, k\}$, Player 1 wins if the least colour seen infinitely often is odd

Non-monotone objective:

configuration reachability given $q_{\ell} \in Q$, Player 1 wins if the configuration $(q_{\ell}, \mathbf{0})$ is visited

Monotone objectives:

state reachability given $q_{\ell} \in Q$, Player 1 wins if any configuration in $\{q_{\ell}\} \times \mathbb{N}^d$ is visited

non-termination Player 1 wins if the play is infinite

parity given a colouring $c \colon Q \to \{1, \dots, k\}$, Player 1 wins if the least colour seen infinitely often is odd

Non-monotone objective:

STATE REACHABILITY VASS GAMES

Player 2 can enforce zero-tests:

Minsky machine

Symmetric VASS Game

THEOREM (RASKIN ET AL., AVoCS '04)

State reachability VASS games with given initial credit are undecidable.

STATE REACHABILITY VASS GAMES

Player 2 can enforce zero-tests:

Minsky machine

Symmetric VASS Game

THEOREM (RASKIN ET AL., AVoCS '04)

State reachability VASS games with given initial credit are undecidable.

Asymmetric VASS Games

Player 2 moves restricted to use the zero vector.

A FREQUENT ASSUMPTION

- and-branching VASS (Lincoln et al., APAL '92)
- vector games (Kanovich, APAL '95)
- B-games (Raskin et al., AVoCS '04)
- single-sided games (Abdulla et al., Concur '13)
- alternating VASS (Courtois and S., MFCS '14)

(1/2)

LEMMA (MONOTONE OBJECTIVES) If Player 1 wins a monotone AVASS game from a configuration q, v and v' \geq v, then she also wins from q, v'.

COROLLARY (BY DICKSON'S LEMMA)

- ▶ finite-memory strategies suffice for Player 1
- state reachability and non-termination objectives are decidable

(1/2)

LEMMA (MONOTONE OBJECTIVES) If Player 1 wins a monotone AVASS game from a configuration q, v and v' \geq v, then she also wins from q, v'.

COROLLARY (BY DICKSON'S LEMMA)

- ▶ finite-memory strategies suffice for Player 1
- state reachability and non-termination objectives are decidable

(1/2)

LEMMA (MONOTONE OBJECTIVES) If Player 1 wins a monotone AVASS game from a configuration q, v and v' \ge v, then she also wins from q, v'.

COROLLARY (BY DICKSON'S LEMMA)

- finite-memory strategies suffice for Player 1
- state reachability and non-termination objectives are decidable

THEOREM (ABDULLA ET AL., CONCUR '13)

Monotone AVASS games and multi-dimensional energy games are LOGSPACE-equivalent.

COROLLARY Monotone AVASS games with given initial credit are 2-EXP-complete.

Configuration Reachability Objective (1/2) Player 2 can enforce zero-tests using the reachability objective $(q_l, \mathbf{0})$:

THEOREM (LINCOLN ET AL., APAL '92)

Configuration reachability AVASS games with given initial credit are undecidable.

CONFIGURATION REACHABILITY OBJECTIVE (2/2)

Existential initial credit \cong gainy game where $\forall q \in Q. \forall 1 \leqslant i \leqslant d.q \xrightarrow{e_i} q$

THEOREM (URQUHART, JSL '99; LAZIĆ AND S., TOCL '15)

Configuration reachability AVASS games with existential initial credit are ACKERMANN-complete.

Model-Checking Resource-Aware Logics

VASS models fragment of the $\mu\text{-calculus}$ on VASS executions

(Abdulla et al., Concur '13)

resource-bounded concurrent game structures RB±ATL* (Alechina et al., RP '16)

Both are 2-EXP-complete by reduction to multi-energy parity games / parity AVASS games.

Model-Checking Resource-Aware Logics

VASS models fragment of the $\mu\text{-calculus}$ on VASS executions

(Abdulla et al., Concur '13)

resource-bounded concurrent game structures RB±ATL* (Alechina et al., RP '16)

Both are 2-EXP-complete by reduction to multi-energy parity games / parity AVASS games.

PROPOSITIONAL (INTUITIONISTIC) LINEAR LOGIC

PROPOSITIONAL (INTUITIONISTIC) LINEAR LOGIC

$$\begin{split} & \frac{\Gamma, A \vdash A}{A \vdash A}(I) \qquad \frac{\Gamma, IA \vdash B}{\Gamma, IA \vdash B}(C!) \qquad \frac{\Gamma, A \vdash B}{\Gamma, IA \vdash B}(L!) \\ & \frac{\Gamma \vdash A \quad \Delta, B \vdash C}{\Gamma, \Delta, A \multimap B \vdash C}(L_{\multimap}) \qquad \frac{\Gamma, A \vdash B}{\Gamma \vdash A \multimap B}(R_{\multimap}) \\ & \frac{\Gamma, A \vdash C}{\Gamma, A \& B \vdash C} \qquad \frac{\Gamma, B \vdash C}{\Gamma, A \& B \vdash C}(L_{\&}) \qquad \frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \& B}(R_{\&}) \\ & \frac{\Gamma, A \vdash C \quad \Gamma, B \vdash C}{\Gamma, A \& B \vdash C}(L_{\oplus}) \qquad \frac{\Gamma \vdash A}{\Gamma \vdash A \oplus B} \qquad \frac{\Gamma \vdash B}{\Gamma \vdash A \oplus B}(R_{\oplus}) \\ & \frac{\Gamma, A, B \vdash C}{\Gamma, A \otimes B \vdash C}(L_{\otimes}) \qquad \frac{\Gamma \vdash A \quad \Delta \vdash B}{\Gamma, \Delta \leftrightarrow B}(R_{\otimes}) \end{split}$$

. . .

PROPOSITIONAL (INTUITIONISTIC) LINEAR LOGIC

$$\frac{\Gamma, A \vdash A}{A \vdash A} (I) \qquad \frac{\Gamma, IA, IA \vdash B}{\Gamma, IA \vdash B} (C!) \qquad \frac{\Gamma, A \vdash B}{\Gamma, IA \vdash B} (L!)$$

$$\frac{\Gamma \vdash A}{\Gamma, \Delta, A \multimap B \vdash C} (L_{\multimap}) \qquad \frac{\Gamma, A \vdash B}{\Gamma \vdash A \multimap B} (R_{\multimap})$$

$$\frac{\Gamma, A \vdash C}{\Gamma, A \& B \vdash C} \qquad \frac{\Gamma, B \vdash C}{\Gamma, A \& B \vdash C} (L_{\&}) \qquad \frac{\Gamma \vdash A}{\Gamma \vdash A \& B} (R_{\&})$$

$$\frac{\Gamma, A \vdash C}{\Gamma, A \oplus B \vdash C} (L_{\oplus}) \qquad \frac{\Gamma \vdash A}{\Gamma \vdash A \oplus B} \qquad \frac{\Gamma \vdash B}{\Gamma \vdash A \oplus B} (R_{\oplus})$$

$$\frac{\Gamma, A, B \vdash C}{\Gamma, A \otimes B \vdash C} (L_{\otimes}) \qquad \frac{\Gamma \vdash A}{\Gamma, \Delta \oplus B} (R_{\otimes})$$

. . .

$(!,\oplus)$ -Horn Programs

(1/3)

connectives $\{\otimes, \neg \circ, \oplus, !\}$

simple products $W,X,Y,Z ::= p_1 \otimes p_2 \otimes \cdots \otimes p_m$ for atomic $p_i{'s}$

Horn implications $X \multimap Y$

 \oplus -Horn implications $X \multimap (Y_1 \oplus \cdots \oplus Y_n)$

 $(!,\oplus)$ -Horn sequents $W,!\Gamma \vdash Z$ where Γ contains Horn and \oplus -Horn implications

Multi-Energy Parity Games

$(!,\oplus)$ -Horn Programs

(3/3)

THEOREM (KANOVICH, APAL '95)

Provability of $(!, \oplus)$ -Horn sequents and configuration reachability AVASS games are PSPACE equivalent.

COROLLARY (LINCOLN ET AL., APAL '92)

Provability in propositional linear logic is undecidable.

COROLLARY (COURTOIS AND S., MFCS '14; LAZIĆ AND S., TOCL '15)

- ► Provability of affine (!,⊕)-Horn sequents is 2-EXP-complete.
- ▶ Provability of contractive (!, ⊕)-Horn sequents is ACKERMANN-complete.

$(!,\oplus)$ -Horn Programs

(3/3)

THEOREM (KANOVICH, APAL '95)

Provability of $(!, \oplus)$ -Horn sequents and configuration reachability AVASS games are PSPACE equivalent.

COROLLARY (LINCOLN ET AL., APAL '92)

Provability in propositional linear logic is undecidable.

COROLLARY (COURTOIS AND S., MFCS '14; LAZIĆ AND S., TOCL '15)

- ► Provability of affine (!,⊕)-Horn sequents is 2-EXP-complete.
- ▶ Provability of contractive (!,⊕)-Horn sequents is ACKERMANN-complete.

Concluding Remarks

- tight 2-EXP bounds for multi-energy parity games
- impacts numerous problems
 - ► affine (⊕,!)-Horn linear logic (Kanovich, APAL '95)
 - (weak) simulation of finite-state systems by Petri nets (Abdulla et al., Concur '13)
 - model-checking Petri nets with a fragment of μ-calculus (Abdulla et al., Concur '13)
 - resource-bounded agent temporal logic RB±ATL* (Alechina et al., RP '16)
- fine understanding of Player 2's strategies:
 Player 2 can win by announcing in which perfect half space he will escape
Concluding Remarks

- tight 2-EXP bounds for multi-energy parity games
- impacts numerous problems
 - ► affine (⊕,!)-Horn linear logic (Kanovich, APAL '95)
 - (weak) simulation of finite-state systems by Petri nets (Abdulla et al., Concur '13)
 - model-checking Petri nets with a fragment of μ-calculus (Abdulla et al., Concur '13)
 - resource-bounded agent temporal logic RB±ATL* (Alechina et al., RP '16)
- fine understanding of Player 2's strategies:
 Player 2 can win by announcing in which perfect half space he will escape

Concluding Remarks

- tight 2-EXP bounds for multi-energy parity games
- impacts numerous problems
 - ► affine (⊕,!)-Horn linear logic (Kanovich, APAL '95)
 - (weak) simulation of finite-state systems by Petri nets (Abdulla et al., Concur '13)
 - model-checking Petri nets with a fragment of μ-calculus (Abdulla et al., Concur '13)
 - resource-bounded agent temporal logic RB±ATL* (Alechina et al., RP '16)
- fine understanding of Player 2's strategies:
 Player 2 can win by announcing in which perfect half space he will escape

References

(1/2)

- Abdulla, P.A., Mayr, R., Sangnier, A., and Sproston, J., 2013. Solving parity games on integer vectors. In Concur 2013, volume 8052 of LNCS, pages 106–120. Springer. doi:10.1007/978-3-642-40184-8_9.
- Alechina, N., Bulling, N., Demri, S., and Logan, B., 2016. On the complexity of resource-bounded logics. In RP 2016, volume 9899 of LNCS, pages 36–50. Springer. doi:10.1007/978-3-319-45994-3_3.
- Alechina, N., Bulling, N., Logan, B., and Nguyen, H.N., 2017. The virtues of idleness: A decidable fragment of resource agent logic. Artif. Intell. doi:10.1016/j.artint.2016.12.005. to appear.
- Brázdil, T., Jančar, P., and Kučera, A., 2010. Reachability games on extended vector addition systems with states. In *ICALP 2010*, volume 6199 of *LNCS*, pages 478–489. Springer. doi:10.1007/978-3-642-14162-1_40. arXiv version available from http://arxiv.org/abs/1002.2557.
- Chatterjee, K., Randour, M., and Raskin, J.F., 2014. Strategy synthesis for multi-dimensional quantitative objectives. Acta Inf., 51(3–4):129–163. doi:10.1007/s00236-013-0182-6.
- Colcombet, T. and Niwiński, D., 2017. Lexicographic energy games. Manuscript.
- Colcombet, Th., Jurdziński, M., Lazić, R., and Schmitz, S., 2017. Perfect half-space games. In LICS 2017. IEEE. doi:10.1109/LICS.2017.8005105.
- Comin, C. and Rizzi, R., 2016. Improved pseudo-polynomial bound for the value problem and optimal strategy synthesis in mean payoff games. *Algorithmica*. doi:10.1007/s00453-016-0123-1. To appear.
- Courtois, J. and Schmitz, S., 2014. Alternating vector addition systems with states. In MFCS 2014, volume 8634 of LNCS, pages 220–231. Springer. doi:10.1007/978-3-662-44522-8_19.

References

(2/2)

- Jurdziński, M., Sproston, J., and Laroussinie, F., 2008. Model checking probabilistic timed automata with one or two clocks. Logic. Meth. in Comput. Sci., 4(3):12:1–12:38. doi:10.2168/LMCS-4(3:12)2008.
- Jurdziński, M., Lazić, R., and Schmitz, S., 2015. Fixed-dimensional energy games are in pseudo-polynomial time. In ICALP 2015, volume 9135 of LNCS, pages 260–272. Springer. doi:10.1007/978-3-662-47666-6_21. arXiv version available from https://arxiv.org/abs/1502.06875.
- Kanovich, M.I., 1995. Petri nets, Horn programs, linear logic and vector games. Ann. Pure App. Logic, 75(1–2): 107–135. doi:10.1016/0168-0072(94)00060-G.
- Lasota, S., 2009. EXPSPACE lower bounds for the simulation preorder between a communication-free Petri net and a finite-state system. *Information Processing Letters*, 109(15):850–855. doi:10.1016/j.ipl.2009.04.003.
- Lazić, R. and Schmitz, S., 2015. Non-elementary complexities for branching VASS, MELL, and extensions. ACM Transactions on Computational Logic, 16(3):20:1–20:30. doi:10.1145/2733375.
- Lincoln, P., Mitchell, J., Scedrov, A., and Shankar, N., 1992. Decision problems for propositional linear logic. Ann. Pure App. Logic, 56(1–3):239–311. doi:10.1016/0168-0072(92)90075-B.
- Raskin, J.F., Samuelides, M., and Begin, L.V., 2005. Games for counting abstractions. In AVoCS 2004, volume 128(6) of Elec. Notes in Theor. Comput. Sci., pages 69–85. Elsevier. doi:10.1016/j.entcs.2005.04.005.
- Urquhart, A., 1999. The complexity of decision procedures in relevance logic II. J. Symb. Log., 64(4):1774–1802. doi:10.2307/2586811.
- Velner, Y., Chatterjee, K., Doyen, L., Henzinger, T.A., Rabinovich, A., and Raskin, J.F., 2015. The complexity of multi-mean-payoff and multi-energy games. *Inform. and Comput.*, 241:177–196. doi:10.1016/j.ic.2015.03.001.