On the Length of Strongly Monotone Descending Chains over ${\rm I\!N}^d$

Sylvain Schmitz & Lia Schütze

ICALP 2024, July 9, 2024

Outline

context

- coverability in vector addition systems (VAS)
- breakthrough on the complexity [Künnemann, Mazowiecki, Schütze, Sinclair-Banks, and Węgrzycki, ICALP 2023]

motivation

 generic algorithm: (dual) backward coverability [Lazić and S., 2021]

results

- structural result
- generic upper bounds
- applications: branching or alternating VAS, strongly increasing or invertible affine nets

Outline

context

- coverability in vector addition systems (VAS)
- breakthrough on the complexity [Künnemann, Mazowiecki, Schütze, Sinclair-Banks, and Węgrzycki, ICALP 2023]

motivation

 generic algorithm: (dual) backward coverability [Lazić and S., 2021]

results

- structural result
- generic upper bounds
- applications: branching or alternating VAS, strongly increasing or invertible affine nets

Outline

context

- coverability in vector addition systems (VAS)
- breakthrough on the complexity [Künnemann, Mazowiecki, Schütze, Sinclair-Banks, and Węgrzycki, ICALP 2023]

motivation

 generic algorithm: (dual) backward coverability [Lazić and S., 2021]

results

- structural result
- generic upper bounds
- applications: branching or alternating VAS, strongly increasing or invertible affine nets

VECTOR ADDITION SYSTEMS

Definition finite set of actions $A \subseteq \mathbb{Z}^d$

Example $A \stackrel{\text{def}}{=} \left\{ \begin{array}{c} \bullet \bullet \bullet \\ \bullet \bullet \bullet \end{array} \right\}$

VECTOR ADDITION SYSTEMS

Definition finite set of actions $A \subseteq \mathbb{Z}^d$

Example

$$\mathsf{A} \stackrel{\text{\tiny def}}{=} \left\{ \checkmark \right\}$$

Semantics (over \mathbb{N}^d

VECTOR ADDITION SYSTEMS

Definition finite set of actions $A \subseteq \mathbb{Z}^d$

Example

$$\mathsf{A} \stackrel{\text{\tiny def}}{=} \left\{ \checkmark \right\}$$

Semantics (over \mathbb{N}^d

VECTOR ADDITION SYSTEMS

Definition finite set of actions $A \subseteq \mathbb{Z}^d$

Example

$$A \stackrel{\text{\tiny def}}{=} \left\{ \checkmark \right\}$$

VECTOR ADDITION SYSTEMS

Definition finite set of actions $A \subseteq \mathbb{Z}^d$

Example

$$\mathsf{A} \stackrel{\text{\tiny def}}{=} \left\{ \overset{\mathsf{def}}{=} \right\}$$

VECTOR ADDITION SYSTEMS

Definition finite set of actions $A \subseteq \mathbb{Z}^d$

Example

$$A \stackrel{\text{\tiny def}}{=} \left\{ \stackrel{\texttt{M}}{=} \right\}$$

Semantics (over \mathbb{N}^d

VECTOR ADDITION SYSTEMS

Definition finite set of actions $A\subseteq \mathbb{Z}^d$

Example $A \stackrel{\text{def}}{=} \left\{ 1 \stackrel{\text{s}}{=} \right\}$

Coverability Problem input VAS A and $s, t \in \mathbb{N}^d$

question $\exists t' . s \rightarrow^* t' \ge t$?

Semantics (over \mathbb{N}^d

VECTOR ADDITION SYSTEMS

Definition finite set of actions $A\subseteq \mathbb{Z}^d$

Example $A \stackrel{\text{def}}{=} \left\{ 1 \stackrel{\text{solution}}{=} \right\}$

Coverability Problem input VAS A and $s, t \in \mathbb{N}^d$

question $\exists t' . s \rightarrow^* t' \ge t$?

Semantics (over \mathbb{N}^d

VECTOR ADDITION SYSTEMS

Definition finite set of actions $A\subseteq \mathbb{Z}^d$

Example $A \stackrel{\text{def}}{=} \left\{ \begin{array}{c} \bullet \bullet \bullet \\ \bullet \bullet \bullet \end{array} \right\}$

Coverability Problem input VAS A and $s, t \in \mathbb{N}^d$

question $\exists t' . s \rightarrow^* t' \ge t$?

Semantics (over \mathbb{N}^d

COMPLEXITY OF VAS COVERABILITY

Lipton 1976: EXPSPACE-hard

Rackoff 1978: in EXPSPACE

MINIMAL COVERING PATH $\sup_{s \in \mathbb{N}^d} (\text{length of shortest path } s \to^* t' \ge t)$ Lipton 1976: $n^{2^{\Omega(d)}}$ length Rackoff 1978: $n^{2^{O(d \log d)}}$ length

Minimal covering path sup (length of shortest path $s \rightarrow^* t' \ge t$) s∈Nd Lipton 1976: $n^{2^{\Omega(d)}}$ length Rackoff 1978: $n^{2O(d \log d)}$ length Künneman et al. 2023: $n^{2^{O(d)}}$ length • algorithm in time $n^{2^{O(d)}}$ • under ETH: no algorithm in time $n^{o(2^d)}$

Minimal covering path sup (length of shortest path $s \rightarrow^* t' \ge t$) s∈Nd Lipton 1976: $n^{2^{\Omega(d)}}$ length Rackoff 1978: $n^{2O(d \log d)}$ length Künneman et al. 2023: $n^{2^{O(d)}}$ length • algorithm in time $n^{2^{O(d)}}$ • under ETH: no algorithm in time $n^{o(2^d)}$

Minimal covering path sup (length of shortest path $s \rightarrow^* t' \ge t$) s∈Nd Lipton 1976: $n^{2^{\Omega(d)}}$ length Rackoff 1978: $n^{2O(d \log d)}$ length Künneman et al. 2023: $n^{2^{O(d)}}$ length • algorithm in time $n^{2^{O(d)}}$ • under ETH: no algorithm in time $n^{o(2^d)}$

[Künnemann et al., 2023]

- by induction:
 - $$\label{eq:lambda} \begin{split} L_{d-1} > L_{d-2} > \dots \text{ are bounds} \\ \text{on minimal covering paths in} \\ \text{dimension } d-1, d-2, \dots \end{split}$$
- $\blacktriangleright \ \text{let} \ N_i \mathop{\stackrel{\text{\tiny def}}{=}} n \cdot L_{i-1} \text{ for all } i \leqslant d$
- a vector $u \in \mathbb{N}^d$ is thin if there is a permutation $\sigma \in S_d$ s.t. $\forall i$:

 $u(i) \leqslant N_{\sigma(i)}$

[Künnemann et al., 2023]

- by induction:
 - $$\label{eq:loss} \begin{split} L_{d-1} > L_{d-2} > \dots \text{ are bounds} \\ \text{on minimal covering paths in} \\ \text{dimension } d-1, d-2, \dots \end{split}$$
- $\blacktriangleright \text{ let } N_i \stackrel{\text{\tiny def}}{=} n \cdot L_{i-1} \text{ for all } i \leqslant d$
- a vector $u \in \mathbb{N}^d$ is thin if there is a permutation $\sigma \in S_d$ s.t. $\forall i$:

 $u(i) \leqslant N_{\sigma(i)}$

- by induction:
 - $$\label{eq:loss} \begin{split} L_{d-1} > L_{d-2} > \dots \text{ are bounds} \\ \text{on minimal covering paths in} \\ \text{dimension } d-1, d-2, \dots \end{split}$$
- $\blacktriangleright \text{ let } N_i \mathop{\stackrel{\text{\tiny def}}{=}} n \cdot L_{i-1} \text{ for all } i \leqslant d$
- a vector $u \in \mathbb{N}^d$ is thin if there is a permutation $\sigma \in S_d$ s.t. $\forall i$:

$$\mathfrak{u}(\mathfrak{i})\leqslant N_{\sigma(\mathfrak{i})}$$

- by induction:
 - $$\label{eq:loss} \begin{split} L_{d-1} > L_{d-2} > \dots \text{ are bounds} \\ \text{on minimal covering paths in} \\ \text{dimension } d-1, d-2, \dots \end{split}$$
- $\blacktriangleright \text{ let } N_i \stackrel{\text{\tiny def}}{=} n \cdot L_{i-1} \text{ for all } i \leqslant d$
- a vector $u \in \mathbb{N}^d$ is thin if there is a permutation $\sigma \in S_d$ s.t. $\forall i$:

$$\mathfrak{u}(\mathfrak{i})\leqslant N_{\sigma(\mathfrak{i})}$$

- by induction:
 - $$\label{eq:loss} \begin{split} L_{d-1} > L_{d-2} > \dots \text{ are bounds} \\ \text{on minimal covering paths in} \\ \text{dimension } d-1, d-2, \dots \end{split}$$
- $\blacktriangleright \text{ let } N_i \stackrel{\text{\tiny def}}{=} n \cdot L_{i-1} \text{ for all } i \leqslant d$
- a vector $u \in \mathbb{N}^d$ is thin if there is a permutation $\sigma \in S_d$ s.t. $\forall i$:

$$\mathfrak{u}(\mathfrak{i})\leqslant N_{\sigma(\mathfrak{i})}$$

- by induction:
 - $$\label{eq:loss} \begin{split} L_{d-1} > L_{d-2} > \dots \text{ are bounds} \\ \text{on minimal covering paths in} \\ \text{dimension } d-1, d-2, \dots \end{split}$$
- $\blacktriangleright \text{ let } N_i \stackrel{\text{\tiny def}}{=} n \cdot L_{i-1} \text{ for all } i \leqslant d$
- a vector $u \in \mathbb{N}^d$ is thin if there is a permutation $\sigma \in S_d$ s.t. $\forall i$:

$$\mathfrak{u}(\mathfrak{i})\leqslant N_{\sigma(\mathfrak{i})}$$

- by induction:
 - $$\label{eq:loss} \begin{split} L_{d-1} > L_{d-2} > \dots \text{ are bounds} \\ \text{on minimal covering paths in} \\ \text{dimension } d-1, d-2, \dots \end{split}$$
- $\blacktriangleright \text{ let } N_i \stackrel{\text{\tiny def}}{=} n \cdot L_{i-1} \text{ for all } i \leqslant d$
- a vector $u \in \mathbb{N}^d$ is thin if there is a permutation $\sigma \in S_d$ s.t. $\forall i$:

$$\mathfrak{u}(\mathfrak{i})\leqslant N_{\sigma(\mathfrak{i})}$$

- by induction:
 - $$\label{eq:loss} \begin{split} L_{d-1} > L_{d-2} > \dots \text{ are bounds} \\ \text{on minimal covering paths in} \\ \text{dimension } d-1, d-2, \dots \end{split}$$
- $\blacktriangleright \text{ let } N_i \stackrel{\text{\tiny def}}{=} n \cdot L_{i-1} \text{ for all } i \leqslant d$
- a vector $u \in \mathbb{N}^d$ is thin if there is a permutation $\sigma \in S_d$ s.t. $\forall i$:

$$\mathfrak{u}(\mathfrak{i})\leqslant N_{\sigma(\mathfrak{i})}$$

- by induction:
 - $$\label{eq:loss} \begin{split} L_{d-1} > L_{d-2} > \dots \text{ are bounds} \\ \text{on minimal covering paths in} \\ \text{dimension } d-1, d-2, \dots \end{split}$$
- $\blacktriangleright \text{ let } N_i \stackrel{\text{\tiny def}}{=} n \cdot L_{i-1} \text{ for all } i \leqslant d$
- a vector $u \in \mathbb{N}^d$ is thin if there is a permutation $\sigma \in S_d$ s.t. $\forall i$:

$$\mathfrak{u}(\mathfrak{i})\leqslant N_{\sigma(\mathfrak{i})}$$

$$L_d \stackrel{\text{\tiny def}}{=} d! \cdot \prod N_i + L_{d-1}$$

Well Structured Transition Systems

[Abdulla, Čerāns, Jonsson & Tsay '00; Finkel & Schnoebelen '01]

- general algorithmic framework
- algorithms for several verification problems
- exploit an underlying well-quasi-order (wqo) for termination

Well Structured Transition Systems

[Abdulla, Čerāns, Jonsson & Tsay '00; Finkel & Schnoebelen '01]

- general algorithmic framework
- algorithms for several verification problems
- exploit an underlying well-quasi-order (wqo) for termination

Well Structured Transition Systems

[Abdulla, Čerāns, Jonsson & Tsay '00; Finkel & Schnoebelen '01]

- general algorithmic framework
- algorithms for several verification problems
- exploit an underlying well-quasi-order (wqo) for termination

Dual Backward Coverability Algorithm

[Lazić and S., 2021]

Configurations that do not cover t in $\leq k$ steps:

$$D_k \stackrel{\text{\tiny def}}{=} \{ u \in \mathbb{N}^d \mid \neg (\exists t'. u \rightarrow^* t' \ge t) \}$$

- yields a descending chain of downwards-closed sets
- which must be finite over a wqo

Dual Backward Coverability Algorithm

[Lazić and S., 2021]

Configurations that do not cover t in $\leqslant k$ steps:

$$D_{k} \stackrel{\text{def}}{=} \{ u \in \mathbb{N}^{d} \mid \neg (\exists t'. u \to^{*} t' \ge t) \}$$

- yields a descending chain of downwards-closed sets
- which must be finite over a wqo

Dual Backward Coverability Algorithm

[Lazić and S., 2021]

Configurations that do not cover t in $\leqslant k$ steps:

$$\mathsf{D}_{k} \stackrel{\text{\tiny def}}{=} \{ u \in \mathbb{N}^{d} \mid \neg (\exists t'. u \to^{*} t' \geqslant t)$$

- yields a descending chain of downwards-closed sets
- which must be finite over a wqo

Dual Backward Coverability Algorithm

[Lazić and S., 2021]

Configurations that do not cover t in $\leqslant k$ steps:

$$\mathsf{D}_{k} \stackrel{\text{\tiny def}}{=} \{ u \in \mathbb{N}^{d} \mid \neg (\exists t'. u \to^{*} t' \ge t) \}$$

- yields a descending chain of downwards-closed sets
- which must be finite over a wqo

 $D_0 \supsetneq D_1$

Dual Backward Coverability Algorithm

[Lazić and S., 2021]

Configurations that do not cover t in $\leqslant k$ steps:

$$\mathsf{D}_{k} \stackrel{\text{\tiny def}}{=} \{ u \in \mathbb{N}^{d} \mid \neg (\exists t'. u \rightarrow^{*} t' \geqslant t) \}$$

- yields a descending chain of downwards-closed sets
- which must be finite over a wqo

 $\mathsf{D}_0 \supsetneq \mathsf{D}_1 \supsetneq \mathsf{D}_2$

Dual Backward Coverability Algorithm

[Lazić and S., 2021]

Configurations that do not cover t in $\leqslant k$ steps:

$$\mathsf{D}_{k} \stackrel{\text{\tiny def}}{=} \{ u \in \mathbb{N}^{d} \mid \neg (\exists t'. u \rightarrow^{*} t' \geqslant t) \}$$

- yields a descending chain of downwards-closed sets
- which must be finite over a wqo

 $\mathsf{D}_0 \supsetneq \mathsf{D}_1 \supsetneq \mathsf{D}_2 \supsetneq \mathsf{D}_3$
Dual Backward Coverability Algorithm

[Lazić and S., 2021]

Configurations that do not cover t in $\leqslant k$ steps:

$$\mathsf{D}_{k} \stackrel{\text{\tiny def}}{=} \{ u \in \mathbb{N}^{d} \mid \neg (\exists t'. u \to^{*} t' \ge t) \}$$

- yields a descending chain of downwards-closed sets
- which must be finite over a wqo

Dual Backward Coverability Algorithm

[Lazić and S., 2021]

Configurations that do not cover t in $\leqslant k$ steps:

$$D_k \stackrel{\text{\tiny def}}{=} \{ u \in \mathbb{N}^d \mid \neg (\exists t'. u \rightarrow^* t' \geqslant t) \}$$

- yields a descending chain of downwards-closed sets
- which must be finite over a wqo

 $\mathsf{D}_0 \supsetneq \mathsf{D}_1 \supsetneq \mathsf{D}_2 \supsetneq \mathsf{D}_3 \supsetneq \mathsf{D}_4 \supsetneq \mathsf{D}_5$

Dual Backward Coverability Algorithm

[Lazić and S., 2021]

Configurations that do not cover t in $\leqslant k$ steps:

$$\mathsf{D}_{k} \stackrel{\text{\tiny def}}{=} \{ u \in \mathbb{N}^{d} \mid \neg (\exists t'. u \to^{*} t' \ge t) \}$$

- yields a descending chain of downwards-closed sets
- which must be finite over a wqo

Dual Backward Coverability Algorithm

[Lazić and S., 2021]

Configurations that do not cover t in $\leqslant k$ steps:

$$\mathsf{D}_{k} \stackrel{\text{\tiny def}}{=} \{ u \in \mathbb{N}^{d} \mid \neg (\exists t'. u \to^{*} t' \ge t) \}$$

- yields a descending chain of downwards-closed sets
- which must be finite over a wqo

- downwards-closed sets over a wqo have a unique decomposition as finite unions of ideals
- over \mathbb{N}^d : ideals as vectors in $(\mathbb{N} \cup \{\omega\})^d$

- downwards-closed sets over a wqo have a unique decomposition as finite unions of ideals
- over \mathbb{N}^d : ideals as vectors in $(\mathbb{N} \cup \{\omega\})^d$

- downwards-closed sets over a wqo have a unique decomposition as finite unions of ideals
- over \mathbb{N}^d : ideals as vectors in $(\mathbb{N} \cup \{\omega\})^d$

- downwards-closed sets over a wqo have a unique decomposition as finite unions of ideals
- over \mathbb{N}^d : ideals as vectors in $(\mathbb{N} \cup \{\omega\})^d$

- downwards-closed sets over a wqo have a unique decomposition as finite unions of ideals
- over \mathbb{N}^d : ideals as vectors in $(\mathbb{N} \cup \{\omega\})^d$

- downwards-closed sets over a wqo have a unique decomposition as finite unions of ideals
- over \mathbb{N}^d : ideals as vectors in $(\mathbb{N} \cup \{\omega\})^d$

- downwards-closed sets over a wqo have a unique decomposition as finite unions of ideals
- over \mathbb{N}^d : ideals as vectors in $(\mathbb{N} \cup \{\omega\})^d$

 $D_4 = \{(1,4), (3,3), (5,2), (7,1), (\omega,0)\}$

- downwards-closed sets over a wqo have a unique decomposition as finite unions of ideals
- over \mathbb{N}^d : ideals as vectors in $(\mathbb{N} \cup \{\omega\})^d$

 $D_5 = \{(1,4), (3,3), (5,2), (7,1), (9,0)\}$

COVERABILITY IN VAS EXTENSIONS

VAS AVAS (top-down) BVAS (bottom-up) affine nets strictly incr. affine nets invertible affine nets

- the backward coverability algorithm applies
- generic complexity upper bounds for the (dual) backward coverability algorithm [Lazić and S., 2021]
- here: generic complexity upper bounds in $n^{2^{O(d)}}$

COVERABILITY IN VAS EXTENSIONS

VAS EXPSPACE-c. Lipton, Rackoff AVAS (top-down) BVAS (bottom-up) affine nets strictly incr. affine nets invertible affine nets

- the backward coverability algorithm applies
- generic complexity upper bounds for the (dual) backward coverability algorithm [Lazić and S., 2021]
- here: generic complexity upper bounds in $n^{2^{O(d)}}$

COVERABILITY IN VAS EXTENSIONS

VAS
AVAS (top-down)
BVAS (bottom-up)
affine nets
strictly incr. affine nets
invertible affine nets

EXPSPACE-c. L 2EXP-c. B 2EXP-c.

Lipton, Rackoff Blockelet and S. Demri et al.

- the backward coverability algorithm applies
- generic complexity upper bounds for the (dual) backward coverability algorithm [Lazić and S., 2021]
- here: generic complexity upper bounds in $n^{2^{O(d)}}$

COVERABILITY IN VAS EXTENSIONS

VAS	EXPSPACE-c.	Lipton, Rackoff
AVAS (top-down)	2EXP-c.	Blockelet and S.
BVAS (bottom-up)	2EXP-c.	Demri et al.
affine nets	Ackermann-c.	Schnoebelen, S.
strictly incr. affine nets		
invertible affine nets		

- the backward coverability algorithm applies
- generic complexity upper bounds for the (dual) backward coverability algorithm [Lazić and S., 2021]
- \blacktriangleright here: generic complexity upper bounds in $n^{2^{O(d)}}$

COVERABILITY IN VAS EXTENSIONS

VAS	EXPSPACE-c.	Lipton, Rackoff
AVAS (top-down)	2EXP-c.	Blockelet and S.
BVAS (bottom-up)	2EXP-c.	Demri et al.
affine nets	Ackermann-c.	Schnoebelen, S.
strictly incr. affine nets	EXPSPACE-c.	Bonnet et al.
invertible affine nets	in 2EXPSPACE	Benedikt et al.

- the backward coverability algorithm applies
- generic complexity upper bounds for the (dual) backward coverability algorithm [Lazić and S., 2021]
- \blacktriangleright here: generic complexity upper bounds in $n^{2^{O(d)}}$

COVERABILITY IN VAS EXTENSIONS

VAS	EXPSPACE-c.	Lipton, Rackoff
AVAS (top-down)	2EXP-c.	Blockelet and S.
BVAS (bottom-up)	2EXP-c.	Demri et al.
affine nets	Ackermann-c.	Schnoebelen, S.
strictly incr. affine nets	EXPSPACE-c.	Bonnet et al.
invertible affine nets	in 2EXPSPACE	Benedikt et al.

- the backward coverability algorithm applies
- generic complexity upper bounds for the (dual) backward coverability algorithm [Lazić and S., 2021]

 \blacktriangleright here: generic complexity upper bounds in $n^{2^{O(d)}}$

COVERABILITY IN VAS EXTENSIONS

VAS	EXPSPACE-c.	Lipton, Rackoff
AVAS (top-down)	2EXP-c.	Blockelet and S.
BVAS (bottom-up)	2EXP-c.	Demri et al.
affine nets	Ackermann-c.	Schnoebelen, S.
strictly incr. affine nets	EXPSPACE-c.	Bonnet et al.
invertible affine nets	in 2EXPSPACE	Benedikt et al.

- the backward coverability algorithm applies
- generic complexity upper bounds for the (dual) backward coverability algorithm [Lazić and S., 2021]

• here: generic complexity upper bounds in $n^{2^{O(d)}}$

COVERABILITY IN VAS EXTENSIONS

VAS	EXPSPACE-c.	Lipton, Rackoff
AVAS (top-down)	2EXP-c.	Blockelet and S.
BVAS (bottom-up)	2EXP-c.	Demri et al.
affine nets	Ackermann-c.	Schnoebelen, S.
strictly incr. affine nets	EXPSPACE-c.	Bonnet et al.
invertible affine nets	EXPSPACE-c.	this work

- the backward coverability algorithm applies
- generic complexity upper bounds for the (dual) backward coverability algorithm [Lazić and S., 2021]
- here: generic complexity upper bounds in n^{2O(d)}

Dimension of Ideals over \mathbb{N}^d

For an ideal I seen as a vector in $(\mathbb{N} \cup \{\omega\})^d$

$$\begin{split} & \omega(I) \stackrel{\text{\tiny def}}{=} \{ \mathbf{1} \leqslant \mathbf{i} \leqslant d \mid I(\mathbf{i}) = \omega \} \\ & \dim I \stackrel{\text{\tiny def}}{=} |\omega(I)| \end{split}$$

EXAMPLE For d = 3, $\omega((2, 10, \omega)) = \{3\}$ and $\dim(2, 10, \omega) = 1$.

Μονοτονιζιτη

[Lazić and S., 2021]

- at every step k, there must exist an ideal in D_k but not in D_{k+1}: we say it is proper at step k
- ▶ the chain is strongly monotone if, $\forall I_{k+1}$ proper at step k + 1, $\exists I_k$ proper at step k s.t.

 $dimI_{k+1} \leqslant dimI_k$

Μονοτονιζιτη

[Lazić and S., 2021]

- at every step k, there must exist an ideal in D_k but not in D_{k+1}: we say it is proper at step k
- ► the chain is strongly monotone if, ∀I_{k+1} proper at step k + 1, ∃I_k proper at step k s.t.

 $\dim I_{k+1} \leqslant \dim I_k$

Motivation 0000

Μονοτονιςιτη

[Lazić and S., 2021]

- at every step k, there must exist an ideal in D_k but not in D_{k+1}: we say it is proper at step k
- the chain is ω -monotone if, $\forall I_{k+1}$ proper at step k+1, $\exists I_k$ proper at step k s.t.

 $\omega(I_{k+1})\subseteq \omega(I_k)$

Μονοτονιζιτη

[Novikov and Yakovenko, 1999; Benedikt et al., 2017]

- at every step k, there must exist an ideal in D_k but not in D_{k+1}: we say it is proper at step k
- ▶ the chain is strongly monotone if, $\forall I_{k+1}$ proper at step k+1, $\exists I_k$ proper at step k s.t.

 $dim I_{k+1} \leqslant dim I_k$

Monotonicity in VAS Extensions

For the descending chains of the dual backward coverability algorithm:

	w-monotone	strongly monotone
VAS	 Image: A start of the start of	✓
AVAS (top-down)	\checkmark	\checkmark
BVAS (bottom-up)	\checkmark	\checkmark
affine nets	×	×
strictly incr. affine nets	\checkmark	\checkmark
invertible affine nets	×	\checkmark

Issue

The length can be arbitrary (also for strongly monotone chains): for all n,

 $\{(0,\omega)\} \supsetneq \{(0,n)\} \supsetneq \{(0,n-1)\} \supsetneq \cdots \supsetneq \{(0,1)\} \supsetneq \{(0,0)\}$

Control

 $\begin{aligned} |\mathsf{D}| &\stackrel{\text{def}}{=} \max_{\mathsf{I} \in \mathsf{D}} |\mathsf{I}| \\ |\mathsf{I}| &\stackrel{\text{def}}{=} \max_{\mathsf{i} \notin \omega(\mathsf{I})} \mathsf{I}(\mathsf{i}) \end{aligned}$

For $g \colon \mathbb{N} \to \mathbb{N}$ and $\mathfrak{n}_0 \in \mathbb{N}$: a chain $\mathbb{D}_0 \supseteq \mathbb{D}_1 \supseteq \cdots$ is (g,\mathfrak{n}_0) -controlled if, $\forall k$,

 $|\mathsf{D}_k| \leq g^k(\mathfrak{n}_0)$

Issue

The length can be arbitrary (also for strongly monotone chains): for all n,

 $\{(0,\omega)\} \supsetneq \{(0,n)\} \supsetneq \{(0,n-1)\} \supsetneq \cdots \supsetneq \{(0,1)\} \supsetneq \{(0,0)\}$

Control

$$\begin{split} |D| &\stackrel{\text{def}}{=} \max_{I \in D} |I| \\ |I| &\stackrel{\text{def}}{=} \max_{i \notin \omega(I)} I(i) \end{split}$$

For $g: \mathbb{N} \to \mathbb{N}$ and $n_0 \in \mathbb{N}$: a chain $D_0 \supseteq D_1 \supseteq \cdots$ is (g, n_0) -controlled if, $\forall k$,

 $|D_k|\leqslant g^k(\mathfrak{n}_0)$

Issue

The length can be arbitrary (also for strongly monotone chains): for all n,

 $\{(0,\omega)\} \supsetneq \{(0,n)\} \supsetneq \{(0,n-1)\} \supsetneq \cdots \supsetneq \{(0,1)\} \supsetneq \{(0,0)\}$

Control

$$\begin{split} |D| &\stackrel{\text{def}}{=} \max_{I \in D} |I| \\ |I| &\stackrel{\text{def}}{=} \max_{i \not\in \omega(I)} I(i) \end{split}$$

For $g: \mathbb{N} \to \mathbb{N}$ and $n_0 \in \mathbb{N}$: a chain $D_0 \supseteq D_1 \supseteq \cdots$ is (g, n_0) -controlled if, $\forall k$,

 $|D_k|\leqslant g^k(\mathfrak{n}_0)$

Issue

The length can be arbitrary (also for strongly monotone chains): for all n,

 $\{(0,\omega)\} \supsetneq \{(0,n)\} \supsetneq \{(0,n-1)\} \supsetneq \cdots \supsetneq \{(0,1)\} \supsetneq \{(0,0)\}$

Control

$$\begin{split} |D| &\stackrel{\text{def}}{=} \max_{I \in D} |I| \\ |I| &\stackrel{\text{def}}{=} \max_{i \notin \omega(I)} I(i) \end{split}$$

For $g: \mathbb{N} \to \mathbb{N}$ and $n_0 \in \mathbb{N}$: a chain $D_0 \supseteq D_1 \supseteq \cdots$ is (g, n_0) -controlled if, $\forall k$,

$$|D_k|\leqslant g^k(\mathfrak{n}_0)$$

The Length of Descending Chains

Control

$$\begin{split} |D| &\stackrel{\text{def}}{=} \max_{I \in D} |I| \\ |I| &\stackrel{\text{def}}{=} \max_{i \notin \omega(I)} I(i) \end{split}$$

For $g: \mathbb{N} \to \mathbb{N}$ and $n_0 \in \mathbb{N}$: a chain $D_0 \supseteq D_1 \supseteq \cdots$ is (g, n_0) -controlled if, $\forall k$,

$$|D_k|\leqslant g^k(\mathfrak{n}_0)$$

In our VAS Extensions

The descending chains of the dual backward coverability algorithm are (g, n_0) -controlled by

$$g(x) \stackrel{\text{def}}{=} x + n \qquad \qquad n_0 \stackrel{\text{def}}{=} n$$

 $(n ext{ the size of the coverability instance})$

С	or	١t	e	κt
0	0			

Main Results

- ▶ set up suitable $L_d > L_{d-1} > \cdots$ and $N_d > N_{d-1} > \cdots$, that depend on the control (g, n_0)
- extend the definition of thinness to ideals in $(\mathbb{N} \cup \{\omega\})^d$
- ▶ consider a (g, n_0) -controlled strongly monotone descending chain $D_0 \supseteq D_1 \supseteq \cdots \supseteq D_\ell$

LEMMA Every ideal in the decompositions of the D_k is thin.

Тнеогем The length of the chain satisfies $\ell \leqslant L_d+1.$

С	or	١t	e	κt
0	0			

Main Results

- ▶ set up suitable $L_d > L_{d-1} > \cdots$ and $N_d > N_{d-1} > \cdots$, that depend on the control (g, n_0)
- extend the definition of thinness to ideals in $(\mathbb{N} \cup \{\omega\})^d$
- ▶ consider a (g, n_0) -controlled strongly monotone descending chain $D_0 \supseteq D_1 \supseteq \cdots \supseteq D_\ell$

LEMMA Every ideal in the decompositions of the D_k is thin.

Тнеогем The length of the chain satisfies $\ell \leqslant L_d+1.$

Main Results

- ▶ set up suitable $L_d > L_{d-1} > \cdots$ and $N_d > N_{d-1} > \cdots$, that depend on the control (g, n_0)
- extend the definition of thinness to ideals in $(\mathbb{N} \cup \{\omega\})^d$
- ▶ consider a (g, n_0) -controlled strongly monotone descending chain $D_0 \supseteq D_1 \supseteq \cdots \supseteq D_\ell$

LEMMA Every ideal in the decompositions of the D_k is thin.

Тнеогем The length of the chain satisfies $\ell \leqslant L_d+1.$

Main Results

- ▶ set up suitable L_d > L_{d-1} > · · · and N_d > N_{d-1} > · · · , that depend on the control (g,n₀)
- extend the definition of thinness to ideals in $(\mathbb{N} \cup \{\omega\})^d$
- ▶ consider a (g, n_0) -controlled strongly monotone descending chain $D_0 \supseteq D_1 \supseteq \cdots \supseteq D_\ell$

Lemma Every ideal in the decompositions of the D_k is thin.

Тнеогем The length of the chain satisfies $\ell \leqslant L_d + 1$.

Main Results

- ▶ set up suitable $L_d > L_{d-1} > \cdots$ and $N_d > N_{d-1} > \cdots$, that depend on the control (g, n_0)
- extend the definition of thinness to ideals in $(\mathbb{N} \cup \{\omega\})^d$
- ▶ consider a (g, n_0) -controlled strongly monotone descending chain $D_0 \supseteq D_1 \supseteq \cdots \supseteq D_\ell$

Lemma Every ideal in the decompositions of the D_k is thin.

Theorem The length of the chain satisfies $\ell \leqslant L_d + 1$.
In our VAS Extensions

For
$$g(x)\stackrel{\text{\tiny def}}{=} x+n$$
 and $n_0\stackrel{\text{\tiny def}}{=} n$, this yields
$$\ell\leqslant L_d+1\in n^{2^{O(d)}}$$

and the same bound applies to the running time of the (dual) backward coverability algorithm.

Concluding Remarks

- generic approach to the complexity of coverability problems
- thanks to the conditional lower bounds of [Künnemann et al., 2023]: optimality of the backward coverability algorithm
- applications beyond coverability problems?

Concluding Remarks

- generic approach to the complexity of coverability problems
- thanks to the conditional lower bounds of [Künnemann et al., 2023]: optimality of the backward coverability algorithm
- applications beyond coverability problems?