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results
» structural result

> generic upper bounds
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strongly increasing or invertible affine nets
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| 2

at every step k, there must
exist an ideal in Dy but not
in Dyy1: we say it is proper
at step k

the chain is w- monotone if,
VIks1 proper at stepk+1,
dIy proper at step k s.t.
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MONOTONICITY

[Novikov and Yakovenko, 1999; Benedikt et al., 2017]

> at every step k, there must
exist an ideal in Dy but not
in Dyy1: we say it is proper
at step k
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“ o=

S
N
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> the chain is strongly
monotone if, VIx ;1 proper at
step k+ 1, JIy proper at
step k s.t.

o7 0%
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THE LENGTH OF DESCENDING CHAINS

CoNTROL
Forg:IN—Nandng€IN: a

ID| & max|I| chainDg2D; 2 is
e (g,no)-controlled if, Vk,

Il & max I(1)
k
tew(I) [Dy| < g*(no)

IN OUR VAS EXTENSIONS
The descending chains of the dual backward coverability
algorithm are (g,ng)-controlled by

gix)Ex+n ng¥n
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» setupsuitable Lg>L43.1>---andNg>Ng_1>---, that
depend on the control (g,ng)

> extend the definition of thinness to ideals in (N U{w})4

> consider a (g,ng)-controlled strongly monotone
descending chain Dg2 D1 2---2 Dy

LEMMA
Every ideal in the decompositions of the Dy is thin.

THEOREM
The length of the chain satisfies{ < Lg+ 1.
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IN OUR VAS EXTENSIONS

For g(x) € x +n and ng ¥ n, this yields

(<Lg+1en2

and the same bound applies to the running time of the
(dual) backward coverability algorithm.
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CONCLUDING REMARKS

> generic approach to the complexity of coverability
problems

» explanatory: 7 thinness is an inherent property of the
backward coverability algorithm

> thanks to the conditional lower bounds of [Kiinnemann et
al., 2023]: optimality of the backward coverability
algorithm

» applications beyond coverability problems?
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