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Complexity of VAS Coverability

Minimal covering path
sup
s∈Nd

(length of shortest path s→∗ t ′ ⩾ t)

Lipton 1976: EXPSPACE-hard

Rackoff 1978: in EXPSPACE

Künneman et al. 2023: n2O(d)
length

▶ algorithm in time n2O(d)

▶ under ETH: no algorithm in time no(2d)
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Künneman et al. 2023: n2O(d)
length

▶ algorithm in time n2O(d)

▶ under ETH: no algorithm in time no(2d)

4/16



Context Motivation Results

Complexity of (Unary) VAS Coverability

Minimal covering path
sup
s∈Nd

(length of shortest path s→∗ t ′ ⩾ t)

Lipton 1976: n2Ω(d)
length

Rackoff 1978: n2O(d logd)
length
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Context Motivation Results

Key Idea: Thinness
[Künnemann et al., 2023]

▶ by induction:
Ld−1 > Ld−2 > . . . are bounds
on minimal covering paths in
dimension d−1,d−2, . . .

▶ let Ni
def= n ·Li−1 for all i⩽ d

▶ a vector u ∈N
d is thin if

there is a permutation
σ ∈ Sd s.t. ∀i:

u(i)⩽Nσ(i)

Ld
def= d! ·

∏
i

Ni+Ld−1
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[Künnemann et al., 2023]

▶ by induction:
Ld−1 > Ld−2 > . . . are bounds
on minimal covering paths in
dimension d−1,d−2, . . .

▶ let Ni
def= n ·Li−1 for all i⩽ d

▶ a vector u ∈N
d is thin if

there is a permutation
σ ∈ Sd s.t. ∀i:

u(i)⩽Nσ(i)

thin
Nd−1

Nd−1

Nd

Nd

⩽ Ld−1

⩽ d! ·
∏

iNi

Ld
def= d! ·

∏
i

Ni+Ld−1

5/16



Context Motivation Results

Key Idea: Thinness
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Context Motivation Results

Well Structured Transition Systems
[Abdulla, Čerāns, Jonsson & Tsay ’00; Finkel & Schnoebelen ’01]

▶ general algorithmic framework
▶ algorithms for several verification problems
▶ exploit an underlying well-quasi-order (wqo) for

termination

Information and Computation 160, 109�127 (2000)

Algorithmic Analysis of Programs with

Well Quasi-ordered Domains 1Parosh Aziz Abdulla
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and
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Department of Information Management, National Taiwan University, Taipei, Taiwan

E-mail: tsay�im.ntu.edu.twOver the past few years increasing research effort has been directed

towards the automatic verification of infinite-state systems. This paper is

concerned with identifying general mathematical structures which can

serve as sufficient conditions for achieving decidability. We present

decidability results for a class of systems (called well-structured systems)

which consist of a finite control part operating on an infinite data domain.

The results assume that the data domain is equipped with a preorder

which is a well quasi-ordering, such that the transition relation is

``monotonic'' (a simulation) with respect to the preorder. We show that

the following properties are decidable for well-structured systems:

v Reachability: whether a certain set of control states is reachable.

Other safety properties can be reduced to the reachability problem.
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Context Motivation Results

Dual Backward Coverability Algorithm
[Lazić and S., 2021]

Configurations that do not
cover t in ⩽ k steps:

Dk
def= {u ∈N

d | ¬(∃t ′.u→∗ t ′ ⩾ t)}

▶ yields a descending chain of
downwards-closed sets

▶ which must be finite over a
wqo

t

D0 ⊋ D1 ⊋ D2 ⊋ D3 ⊋ D4 ⊋ D5
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Context Motivation Results

Ideal Representations

▶ downwards-closed sets over
a wqo have a unique
decomposition as finite
unions of ideals

▶ over Nd: ideals as vectors in
(N∪ {ω})d

t
(ω,4)(1,4)

(ω,3)

(1,4)

(3,3)
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Context Motivation Results

Coverability in VAS Extensions

VAS

EXPSPACE-c. Lipton, Rackoff

AVAS (top-down)

2EXP-c. Blockelet and S.

BVAS (bottom-up)

2EXP-c. Demri et al.

affine nets

Ackermann-c. Schnoebelen, S.

strictly incr. affine nets

EXPSPACE-c. Bonnet et al.

invertible affine nets

EXPSPACE-c. this work

▶ the backward coverability algorithm applies

▶ generic complexity upper bounds for the (dual) backward
coverability algorithm [Lazić and S., 2021]

▶ here: generic complexity upper bounds in n2O(d)
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Context Motivation Results

Dimension of Ideals overN
d

For an ideal I seen as a vector in (N∪ {ω})d

ω(I) def= {1 ⩽ i⩽ d | I(i) =ω}

dimI def= |ω(I)|

Example
For d= 3, ω((2,10,ω)) = {3} and dim(2,10,ω) = 1.
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Context Motivation Results

Monotonicity
[Lazić and S., 2021]

▶ at every step k, there must
exist an ideal in Dk but not
in Dk+1: we say it is proper
at step k

▶ the chain is strongly
monotone if, ∀Ik+1 proper at
step k+1, ∃Ik proper at
step k s.t.

dimIk+1 ⩽ dimIk

t
(ω,4)

(ω,3)

(ω,2)

(ω,1)

(ω,0)

D0⊋ D1⊋ D2⊋ D3⊋ D4⊋ D5
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Context Motivation Results

Monotonicity
[Novikov and Yakovenko, 1999; Benedikt et al., 2017]
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Context Motivation Results

Monotonicity in VAS Extensions

For the descending chains of the dual backward
coverability algorithm:

ω-monotone strongly monotone

VAS ✓ ✓

AVAS (top-down) ✓ ✓

BVAS (bottom-up) ✓ ✓

affine nets ✗ ✗

strictly incr. affine nets ✓ ✓

invertible affine nets ✗ ✓

12/16



Context Motivation Results

The Length of Descending Chains

Issue
The length can be arbitrary (also for strongly monotone
chains): for all n,

{(0,ω)} ⊋ {(0,n)} ⊋ {(0,n−1)} ⊋ · · · ⊋ {(0,1)} ⊋ {(0,0)}

Control

|D| def= max
I∈D

|I|

|I| def= max
i<ω(I)

I(i)

For g : N→N and n0 ∈N: a
chain D0 ⊋D1 ⊋ · · · is
(g,n0)-controlled if, ∀k,

|Dk|⩽ gk(n0)
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The Length of Descending Chains

Control

|D| def= max
I∈D

|I|

|I| def= max
i<ω(I)

I(i)

For g : N→N and n0 ∈N: a
chain D0 ⊋D1 ⊋ · · · is
(g,n0)-controlled if, ∀k,

|Dk|⩽ gk(n0)

In our VAS Extensions
The descending chains of the dual backward coverability
algorithm are (g,n0)-controlled by

g(x) def= x+n n0
def= n

(n the size of the coverability instance)
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Context Motivation Results

Main Results

▶ set up suitable Ld > Ld−1 > · · · and Nd >Nd−1 > · · · , that
depend on the control (g,n0)

▶ extend the definition of thinness to ideals in (N∪ {ω})d

▶ consider a (g,n0)-controlled strongly monotone
descending chain D0 ⊋D1 ⊋ · · · ⊋Dℓ

Lemma
Every ideal in the decompositions of the Dk is thin.

Theorem
The length of the chain satisfies ℓ⩽ Ld+1.
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Context Motivation Results

In our VAS Extensions

For g(x) def= x+n and n0
def= n, this yields

ℓ⩽ Ld+1 ∈ n2O(d)

and the same bound applies to the running time of the
(dual) backward coverability algorithm.

15/16



Context Motivation Results

Concluding Remarks

▶ generic approach to the complexity of coverability
problems

▶ explanatory: thinness is an inherent property of the
backward coverability algorithm

▶ thanks to the conditional lower bounds of [Künnemann et
al., 2023]: optimality of the backward coverability
algorithm

▶ applications beyond coverability problems?
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