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Importance of the Problem
1962

2019

R. J. Lipton: EXPSPACE lower bound

1976

E. W. Mayr: decidability by decomposition

1981

S. R. Kosaraju: decidability by decomposition

1982 J.-L. Lambert: decidability by decomposition

1992

J. Leroux: decidability by Presburger inductive
invariants

2011

J. Leroux & S.: cubic Ackermann upper bound (F
ω3 )

2015

S.: quadratic Ackermann upper bound (F
ω2 )

2017

W. Czerwinski, S. Lasota, R. Lazić, J. Leroux,
F. Mazowiecki: Tower lower bound (F3)
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New Upper Bounds

F0(x) = x+1

F1(x) =

x+1 times︷             ︸︸             ︷
F0 ◦ ··· ◦F0(x) = 2x+1

F2(x) =

x+1 times︷             ︸︸             ︷
F1 ◦ ··· ◦F1(x) ≈ 2x

F3(x) =

x+1 times︷             ︸︸             ︷
F2 ◦ ··· ◦F2(x) ≈ tower(x)

...

Fω(x) = Fx+1(x) ≈ ackermann(x)

Elementary

Primitive Recursive

Multiply Recursive

F3 =
Tower

Fω =
Ackermann

Upper Bound Theorem
VAS Reachability is in Fω, and in Fd+4 in fixed dimension d

Theorem
VAS Reachability reduces to bounded VAS Reachability
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Decomposition Algorithm
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, , ,

} yesno

decompose
I no : no execution empty decomposition

I no :

I bounded∞: saturate with bounded value
I bounded transition use: unfold and track bounded

transition count

I no or no : unfold and track bounded counter value

, ∅

,
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Technical Contributions

1. new ranking function:

order typeωd+1

ωω3
in [Leroux & S. ’15]

ωω · (d+1) in [S. ’17]

2. refined analysis of pumpable paths:

Rackoff-style analysis
improves complexity from F2d+2 to Fd+4
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Rank of a Transition

For a transition t in (∞,∞)

(1,1)

(-1,-2)

(0,1) (∞,0)

dim

(
span

Q

(

{
effects of cycles C | t ∈ C

}

)
=Q

2

)
= 2

here, rank(t) = (1,0,0) ∈N
d+1

Definition

rank(G) def
=
∑
t∈G

rank(t) ∈N
d+1

ordered lexicographically
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Decreasing Ranks

Recall:

I no : no execution empty decomposition

I no :

I bounded∞: saturate with bounded value
I bounded transition use: unfold and track bounded transition

count

I no or no : unfold and track bounded counter value
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Decreasing Ranks

Proof Idea
Consider a strongly connected VAS G:

z
x u

v

Claim: if T ′ ( T , then rank(G ′)< rank(G)

I let V, resp. V ′ be the vector space associated to cycles of T , resp. T ′

I we want to show dim(V ′)< dim(V)

I as V ′ ⊆V, it suffices to show that V ′ =V implies T ′ = T

I pick cycle using every transition: effect x+ z+u+ v ∈V
I V=V ′ thus ∃λ ∈Q s.t. x+ z+u+ v= λ(x+u+ v)
I pick p ∈N>0 s.t. pλ ∈Z

I ∃q ∈N s.t. qa,qb,qc> pλ
I [(p+qa−pλ)x,pz,(p+qb−pλ)u,(p+qc−pλ)v] also hom. sol

11/15
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The decomposition tree is of size at most Fd+4(e(n)) for
some elementary function e.
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New Upper Bounds

F0(x) = x+1

F1(x) =

x+1 times︷             ︸︸             ︷
F0 ◦ ··· ◦F0(x) = 2x+1

F2(x) =

x+1 times︷             ︸︸             ︷
F1 ◦ ··· ◦F1(x) ≈ 2x

F3(x) =

x+1 times︷             ︸︸             ︷
F2 ◦ ··· ◦F2(x) ≈ tower(x)

...

Fω(x) = Fx+1(x) ≈ ackermann(x)

Elementary

Primitive Recursive

Multiply Recursive

F3 =
Tower

Fω =
Ackermann

Upper Bound Theorem
VAS Reachability is in Fω, and in Fd+4 in fixed dimension d

Theorem
VAS Reachability reduces to bounded VAS Reachability
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A Related Problem

labelled VAS transitions carry labels from some alphabet

L(V,source,target) the language of labels in runs from
source to target

↓L the set of scattered subwords of the words in
the language L

Example
aba6∗ baaacabbab
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Downwards Language Inclusion Problem
input: two labelled VAS V and V ′ and configurations

source, target, source ′, target ′

question: ↓L(V,source,target)⊆ ↓L(V ′,source ′,target ′)?

Corollary
The Downwards Language Inclusion is in Ackermann.

Theorem (Zetzsche’16)
The Downwards Language Inclusion is Ackermann-hard.
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Perspectives

1. complexity gap for VAS reachability
I Tower-hard [Czerwinski et al.’19]

I decomposition algorithm: requires Fω = Ackermann time,
because downward language inclusion is Fω-hard [Zetzsche’16]

2. reachability in VAS extensions?
I decidable in VAS with hierarchical zero tests [Reinhardt’08]
I what about
I branching VAS
I unordered data Petri nets
I pushdown VAS
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