
Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Reachability in Vector Addition
Systems is Primitive-Recursive

in Fixed Dimension

Jérôme Leroux & Sylvain Schmitz

LICS 2019

1/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Outline

vector addition systems (VAS)
I central model of computation

reachability problem
I hard conceptually and computationally

I decision via decomposition algorithm

this talk
I new complexity upper bounds

2/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Outline

vector addition systems (VAS)
I central model of computation

reachability problem
I hard conceptually and computationally

I decision via decomposition algorithm

this talk
I new complexity upper bounds

2/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Outline

vector addition systems (VAS)
I central model of computation

reachability problem
I hard conceptually and computationally

I decision via decomposition algorithm

this talk
I new complexity upper bounds

2/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Vector Addition Systems

3/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Vector Addition Systems

3/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Vector Addition Systems

3/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Vector Addition Systems

Springfield Power Plant

(1,1)

(-1,-2)

produce electricity

recycle uranium

electricity
ur

an
iu

m
w

as
te

(0,1)

Can we produce unbounded electricity with no left-
over uranium waste?

Yes, (∞,0) is reachable

3/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Vector Addition Systems

Springfield Power Plant

(1,1)

(-1,-2)

produce electricity

recycle uranium

electricity
ur

an
iu

m
w

as
te

(0,1)

Can we produce unbounded electricity with no left-
over uranium waste? Yes, (∞,0) is reachable

3/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Importance of the Problem

Reachability Problem
input: a vector addition system and two

configurations source and target
question: source→∗ target?

I modelling of discrete resources (items, money,
molecules, active threads, active data domain, . . .)

I many decision problems interreducible with reachability

4/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Importance of the Problem

Reachability Problem
input: a vector addition system and two

configurations source and target
question: source→∗ target?

I modelling of discrete resources (items, money,
molecules, active threads, active data domain, . . .)

I many decision problems interreducible with reachability

4/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Importance of the Problem
1962

2019

R. J. Lipton: EXPSPACE lower bound

1976

E. W. Mayr: decidability by decomposition

1981

S. R. Kosaraju: decidability by decomposition

1982 J.-L. Lambert: decidability by decomposition

1992

J. Leroux: decidability by Presburger inductive
invariants

2011

J. Leroux & S.: cubic Ackermann upper bound (F
ω3)

2015

S.: quadratic Ackermann upper bound (F
ω2)

2017

W. Czerwinski, S. Lasota, R. Lazić, J. Leroux,
F. Mazowiecki: Tower lower bound (F3)

4/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

New Upper Bounds

F0(x) = x+1

F1(x) =

x+1 times︷ ︸︸ ︷
F0 ◦ ··· ◦F0(x) = 2x+1

F2(x) =

x+1 times︷ ︸︸ ︷
F1 ◦ ··· ◦F1(x) ≈ 2x

F3(x) =

x+1 times︷ ︸︸ ︷
F2 ◦ ··· ◦F2(x) ≈ tower(x)

...

Fω(x) = Fx+1(x) ≈ ackermann(x)

Elementary

Primitive Recursive

Multiply Recursive

F3 =
Tower

Fω =
Ackermann

Upper Bound Theorem
VAS Reachability is in Fω, and in Fd+4 in fixed dimension d

Theorem
VAS Reachability reduces to bounded VAS Reachability

5/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

New Upper Bounds

F0(x) = x+1

F1(x) =

x+1 times︷ ︸︸ ︷
F0 ◦ ··· ◦F0(x) = 2x+1

F2(x) =

x+1 times︷ ︸︸ ︷
F1 ◦ ··· ◦F1(x) ≈ 2x

F3(x) =

x+1 times︷ ︸︸ ︷
F2 ◦ ··· ◦F2(x) ≈ tower(x)

...

Fω(x) = Fx+1(x) ≈ ackermann(x)

Elementary

Primitive Recursive

Multiply Recursive

F3 =
Tower

Fω =
Ackermann

Upper Bound Theorem
VAS Reachability is in Fω, and in Fd+4 in fixed dimension d

Theorem
VAS Reachability reduces to bounded VAS Reachability

5/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

New Upper Bounds

F0(x) = x+1

F1(x) =

x+1 times︷ ︸︸ ︷
F0 ◦ ··· ◦F0(x) = 2x+1

F2(x) =

x+1 times︷ ︸︸ ︷
F1 ◦ ··· ◦F1(x) ≈ 2x

F3(x) =

x+1 times︷ ︸︸ ︷
F2 ◦ ··· ◦F2(x) ≈ tower(x)

...

Fω(x) = Fx+1(x) ≈ ackermann(x)

Elementary

Primitive Recursive

Multiply Recursive

F3 =
Tower

Fω =
Ackermann

Upper Bound Theorem
VAS Reachability is in Fω, and in Fd+4 in fixed dimension d

Theorem
VAS Reachability reduces to bounded VAS Reachability

5/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

(∞,∞)

(1,1)

(-1,-2)

(0,1) (∞,0)
c

Path

6/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

solution path

×1

unbounded path

×

(0,1)

(0,0) (2,0) (4,0) (6,0)
(0,−1)

6/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

(∞,∞)

a (1,1)

b (-1,-2)

(0,1) (∞,0)
c

Characteristic System

0+1 ·a−1 ·b= c
1+1 ·a−2 ·b= 0

Solution Path
(0,−1)

6/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

solution path

×1

unbounded path

×

(0,1)

(0,0) (2,0) (4,0) (6,0)
(0,−1)

6/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

solution path

×1

unbounded path

×

(0,1)

(0,0) (2,0) (4,0) (6,0)
(0,−1)

6/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

(∞,∞)

a (1,1)

b (-1,-2)

(0,1) (∞,0)
c

Homogeneous System

1 ·a−1 ·b= c
1 ·a−2 ·b= 0

a,b,c > 0

Unbounded Path
(2,0)

6/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

solution path

×1

unbounded path

×1
(0,1)

(0,0) (2,0) (4,0) (6,0)
(0,−1)

6/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

solution path

×1

unbounded path

×2
(0,1)

(0,0) (2,0) (4,0) (6,0)
(0,−1)

6/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

solution path

×1

unbounded path

×3
(0,1)

(0,0) (2,0) (4,0) (6,0)
(0,−1)

6/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

Pumpable Paths

unbounded path

−

pump up

(0,1)

(∞,∞)

−

pump down
(∞,∞)

(∞,0)

=

remainder

6/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

Pumpable Paths

unbounded path

−

pump up

(0,1)

(∞,∞)

−

pump down
(∞,∞)

(∞,0)

=

remainder

6/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

pump up

×1

(0,1)

(4,0)

6/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

pump up

×2

(0,1)

(4,0)

6/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

pump up

×2

solution path

×1

(0,1)

(4,0)

6/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

pump up

×2

solution path

×1

remainder

×1

(0,1)

(4,0)

6/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

pump up

×2

solution path

×1

remainder

×2

(0,1)

(4,0)

6/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

pump up

×2

solution path

×1

remainder

×2

pump down

×1
(0,1)

(4,0)

6/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

pump up

×2

solution path

×1

remainder

×2

pump down

×2
(0,1)

(4,0)

6/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

“Simple Runs” (Θ Condition)
[Mayr’81, Kosaraju’82, Lambert’92]

pump up

×3

solution path

×1

remainder

×3

pump down

×3
(0,1)

(6,0)

6/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

can we build a “simple run”?{
, , ,

} yesno

decompose
I no : no execution empty decomposition

I no :

I bounded∞: saturate with bounded value
I bounded transition use: unfold and track bounded

transition count

I no or no : unfold and track bounded counter value

, ∅

,

7/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

can we build a “simple run”?{
, , ,

} yesno

decompose
I no : no execution empty decomposition

I no :

I bounded∞: saturate with bounded value
I bounded transition use: unfold and track bounded

transition count

I no or no : unfold and track bounded counter value

, ∅

,

7/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

can we build a “simple run”?{
, , ,

} yesno

decompose
I no : no execution empty decomposition

I no :

I bounded∞: saturate with bounded value
I bounded transition use: unfold and track bounded

transition count

I no or no : unfold and track bounded counter value

,

/

∅

,

7/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

can we build a “simple run”?{
, , ,

} yesno

decompose
I no : no execution empty decomposition

I no :

I bounded∞: saturate with bounded value
I bounded transition use: unfold and track bounded

transition count

I no or no : unfold and track bounded counter value

, ∅

,

7/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

can we build a “simple run”?{
, , ,

} yesno

decompose
I no : no execution empty decomposition

I no :

I bounded∞: saturate with bounded value
I bounded transition use: unfold and track bounded

transition count

I no or no : unfold and track bounded counter value

, ∅

,

7/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

can we build a “simple run”?{
, , ,

} yesno

decompose
I no : no execution empty decomposition

I no :

I bounded∞: saturate with bounded value
I bounded transition use: unfold and track bounded

transition count

I no or no : unfold and track bounded counter value

, ∅

,

7/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

can we build a “simple run”?{
, , ,

} yesno

decompose
I no : no execution empty decomposition

I no :

I bounded∞: saturate with bounded value
I bounded transition use: unfold and track bounded

transition count

I no or no : unfold and track bounded counter value

, ∅

,

7/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

can we build a “simple run”?{
, , ,

} yesno

decompose
I no : no execution empty decomposition

I no :

I bounded∞: saturate with bounded value
I bounded transition use: unfold and track bounded

transition count

I no or no : unfold and track bounded counter value

, ∅

,

7/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Termination

Ranking Function

α0

∨

α1

∨

α2

∨...

8/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Termination

Ranking Function

α0

∨

α1

∨

α2

∨...

8/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Termination

Ranking Function

α0

∨

α1

∨

α2

∨...

8/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Termination

Ranking Function

α0

∨

α1

∨

α2

∨...

8/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Technical Contributions

1. new ranking function:

order typeωd+1

ωω3
in [Leroux & S. ’15]

ωω · (d+1) in [S. ’17]

2. refined analysis of pumpable paths:

Rackoff-style analysis
improves complexity from F2d+2 to Fd+4

9/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Technical Contributions

1. new ranking function:

order typeωd+1

ωω3
in [Leroux & S. ’15]

ωω · (d+1) in [S. ’17]

2. refined analysis of pumpable paths:

Rackoff-style analysis
improves complexity from F2d+2 to Fd+4

9/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Technical Contributions

1. new ranking function:

order typeωd+1

ωω3
in [Leroux & S. ’15]

ωω · (d+1) in [S. ’17]

2. refined analysis of pumpable paths:

Rackoff-style analysis
improves complexity from F2d+2 to Fd+4

9/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Technical Contributions

1. new ranking function:

order typeωd+1

ωω3
in [Leroux & S. ’15]

ωω · (d+1) in [S. ’17]

2. refined analysis of pumpable paths:

Rackoff-style analysis
improves complexity from F2d+2 to Fd+4

9/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Rank of a Transition

For a transition t in (∞,∞)

(1,1)

(-1,-2)

(0,1) (∞,0)

dim

(
span

Q

(

{
effects of cycles C | t ∈ C

}

)
=Q

2

)
= 2

here, rank(t) = (1,0,0) ∈N
d+1

Definition

rank(G) def
=
∑
t∈G

rank(t) ∈N
d+1

ordered lexicographically

10/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Rank of a Transition

For a transition t in (∞,∞)

(1,1)

(-1,-2)

(0,1) (∞,0)

dim

(
span

Q

(

{
m · +n · |m> 0,n > 0

}

)
=Q

2

)
= 2

here, rank(t) = (1,0,0) ∈N
d+1

Definition

rank(G) def
=
∑
t∈G

rank(t) ∈N
d+1

ordered lexicographically

10/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Rank of a Transition

For a transition t in (∞,∞)

(1,1)

(-1,-2)

(0,1) (∞,0)

dim

(

span
Q

({
m · +n · |m> 0,n > 0

})
=Q

2

)
= 2

here, rank(t) = (1,0,0) ∈N
d+1

Definition

rank(G) def
=
∑
t∈G

rank(t) ∈N
d+1

ordered lexicographically

10/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Rank of a Transition

For a transition t in (∞,∞)

(1,1)

(-1,-2)

(0,1) (∞,0)

dim

(
span

Q

({
m · +n · |m> 0,n > 0

})
=Q

2

)
= 2

here, rank(t) = (1,0,0) ∈N
d+1

Definition

rank(G) def
=
∑
t∈G

rank(t) ∈N
d+1

ordered lexicographically

10/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Rank of a Transition

For a transition t in (∞,∞)

(1,1)

(-1,-2)

(0,1) (∞,0)

dim

(
span

Q

({
m · +n · |m> 0,n > 0

})
=Q

2

)
= 2

here, rank(t) = (1,0,0) ∈N
d+1

Definition

rank(G) def
=
∑
t∈G

rank(t) ∈N
d+1

ordered lexicographically

10/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Rank of a VAS

For a transition t in (∞,∞)

(1,1)

(-1,-2)

(0,1) (∞,0)

dim

(
span

Q

({
m · +n · |m> 0,n > 0

})
=Q

2

)
= 2

here, rank(t) = (1,0,0) ∈N
d+1

Definition

rank(G) def
=
∑
t∈G

rank(t) ∈N
d+1

ordered lexicographically

10/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Decreasing Ranks

Recall:

I no : no execution empty decomposition

I no :

I bounded∞: saturate with bounded value
I bounded transition use: unfold and track bounded transition

count

I no or no : unfold and track bounded counter value

11/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Decreasing Ranks

Recall:

I no : no execution empty decomposition

I no :

I bounded∞: saturate with bounded value
I bounded transition use: unfold and track bounded transition

count

I no or no : unfold and track bounded counter value

11/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Decreasing Ranks

Proof Idea
Consider a strongly connected VAS G:

z
x u

v

Claim: if T ′ (T , then rank(G ′)< rank(G)

I let V, resp. V ′ be the vector space associated to cycles of T , resp. T ′

I we want to show dim(V ′)< dim(V)

I as V ′ ⊆V, it suffices to show that V ′ =V implies T ′ = T

I pick cycle using every transition: effect x+ z+u+ v ∈V
I V=V ′ thus ∃λ ∈Q s.t. x+ z+u+ v= λ(x+u+ v)
I pick p ∈N>0 s.t. pλ ∈Z

I ∃q ∈N s.t. qa,qb,qc> pλ
I [(p+qa−pλ)x,pz,(p+qb−pλ)u,(p+qc−pλ)v] also hom. sol

11/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Decreasing Ranks

Proof Idea
Consider a strongly connected VAS G:

z
T \T ′: not in any
hom. sol.

x u

v

T ′: in an homogeneous solution
[ax,bu,cv]

Claim: if T ′ (T , then rank(G ′)< rank(G)

I let V, resp. V ′ be the vector space associated to cycles of T , resp. T ′

I we want to show dim(V ′)< dim(V)

I as V ′ ⊆V, it suffices to show that V ′ =V implies T ′ = T

I pick cycle using every transition: effect x+ z+u+ v ∈V
I V=V ′ thus ∃λ ∈Q s.t. x+ z+u+ v= λ(x+u+ v)
I pick p ∈N>0 s.t. pλ ∈Z

I ∃q ∈N s.t. qa,qb,qc> pλ
I [(p+qa−pλ)x,pz,(p+qb−pλ)u,(p+qc−pλ)v] also hom. sol

11/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Decreasing Ranks

Proof Idea
Consider a strongly connected VAS G:

z
T \T ′: not in any
hom. sol.

x u

v

T ′: in an homogeneous solution
[ax,bu,cv]

Claim: if T ′ (T , then rank(G ′)< rank(G)

I let V, resp. V ′ be the vector space associated to cycles of T , resp. T ′

I we want to show dim(V ′)< dim(V)

I as V ′ ⊆V, it suffices to show that V ′ =V implies T ′ = T

I pick cycle using every transition: effect x+ z+u+ v ∈V
I V=V ′ thus ∃λ ∈Q s.t. x+ z+u+ v= λ(x+u+ v)
I pick p ∈N>0 s.t. pλ ∈Z

I ∃q ∈N s.t. qa,qb,qc> pλ
I [(p+qa−pλ)x,pz,(p+qb−pλ)u,(p+qc−pλ)v] also hom. sol

11/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Decreasing Ranks

Proof Idea
Consider a strongly connected VAS G:

z
T \T ′: not in any
hom. sol.

x u

v

T ′: in an homogeneous solution
[ax,bu,cv]

Claim: if T ′ (T , then rank(G ′)< rank(G)

I let V, resp. V ′ be the vector space associated to cycles of T , resp. T ′

I we want to show dim(V ′)< dim(V)

I as V ′ ⊆V, it suffices to show that V ′ =V implies T ′ = T

I pick cycle using every transition: effect x+ z+u+ v ∈V
I V=V ′ thus ∃λ ∈Q s.t. x+ z+u+ v= λ(x+u+ v)
I pick p ∈N>0 s.t. pλ ∈Z

I ∃q ∈N s.t. qa,qb,qc> pλ
I [(p+qa−pλ)x,pz,(p+qb−pλ)u,(p+qc−pλ)v] also hom. sol

11/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Decreasing Ranks

Proof Idea
Consider a strongly connected VAS G:

z
T \T ′: not in any
hom. sol.

x u

v

T ′: in an homogeneous solution
[ax,bu,cv]

Claim: if T ′ (T , then rank(G ′)< rank(G)

I let V, resp. V ′ be the vector space associated to cycles of T , resp. T ′

I we want to show dim(V ′)< dim(V)

I as V ′ ⊆V, it suffices to show that V ′ =V implies T ′ = T

I pick cycle using every transition: effect x+ z+u+ v ∈V
I V=V ′ thus ∃λ ∈Q s.t. x+ z+u+ v= λ(x+u+ v)
I pick p ∈N>0 s.t. pλ ∈Z

I ∃q ∈N s.t. qa,qb,qc> pλ
I [(p+qa−pλ)x,pz,(p+qb−pλ)u,(p+qc−pλ)v] also hom. sol

11/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Decreasing Ranks

Proof Idea
Consider a strongly connected VAS G:

z
T \T ′: not in any
hom. sol.

x u

v

T ′: in an homogeneous solution
[ax,bu,cv]

Claim: if T ′ (T , then rank(G ′)< rank(G)

I let V, resp. V ′ be the vector space associated to cycles of T , resp. T ′

I we want to show dim(V ′)< dim(V)

I as V ′ ⊆V, it suffices to show that V ′ =V implies T ′ = T

I pick cycle using every transition: effect x+ z+u+ v ∈V
I V=V ′ thus ∃λ ∈Q s.t. x+ z+u+ v= λ(x+u+ v)
I pick p ∈N>0 s.t. pλ ∈Z

I ∃q ∈N s.t. qa,qb,qc> pλ
I [(p+qa−pλ)x,pz,(p+qb−pλ)u,(p+qc−pλ)v] also hom. sol

11/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Decreasing Ranks

Proof Idea
Consider a strongly connected VAS G:

z
T \T ′: not in any
hom. sol.

x u

v

T ′: in an homogeneous solution
[ax,bu,cv]

Claim: if T ′ (T , then rank(G ′)< rank(G)

I let V, resp. V ′ be the vector space associated to cycles of T , resp. T ′

I we want to show dim(V ′)< dim(V)

I as V ′ ⊆V, it suffices to show that V ′ =V implies T ′ = T

I pick cycle using every transition: effect x+ z+u+ v ∈V
I V=V ′ thus ∃λ ∈Q s.t. x+ z+u+ v= λ(x+u+ v)
I pick p ∈N>0 s.t. pλ ∈Z

I ∃q ∈N s.t. qa,qb,qc> pλ
I [(p+qa−pλ)x,pz,(p+qb−pλ)u,(p+qc−pλ)v] also hom. sol

11/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Decreasing Ranks

Proof Idea
Consider a strongly connected VAS G:

z
T \T ′: not in any
hom. sol.

x u

v

T ′: in an homogeneous solution
[ax,bu,cv]

Claim: if T ′ (T , then rank(G ′)< rank(G)

I let V, resp. V ′ be the vector space associated to cycles of T , resp. T ′

I we want to show dim(V ′)< dim(V)

I as V ′ ⊆V, it suffices to show that V ′ =V implies T ′ = T

I pick cycle using every transition: effect x+ z+u+ v ∈V
I V=V ′ thus ∃λ ∈Q s.t. x+ z+u+ v= λ(x+u+ v)
I pick p ∈N>0 s.t. pλ ∈Z

I ∃q ∈N s.t. qa,qb,qc> pλ
I [(p+qa−pλ)x,pz,(p+qb−pλ)u,(p+qc−pλ)v] also hom. sol

11/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Decreasing Ranks

Proof Idea
Consider a strongly connected VAS G:

z
T \T ′: not in any
hom. sol.

x u

v

T ′: in an homogeneous solution
[ax,bu,cv]

Claim: if T ′ (T , then rank(G ′)< rank(G)

I let V, resp. V ′ be the vector space associated to cycles of T , resp. T ′

I we want to show dim(V ′)< dim(V)

I as V ′ ⊆V, it suffices to show that V ′ =V implies T ′ = T

I pick cycle using every transition: effect x+ z+u+ v ∈V
I V=V ′ thus ∃λ ∈Q s.t. x+ z+u+ v= λ(x+u+ v)
I pick p ∈N>0 s.t. pλ ∈Z

I ∃q ∈N s.t. qa,qb,qc> pλ
I [(p+qa−pλ)x,pz,(p+qb−pλ)u,(p+qc−pλ)v] also hom. sol

11/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

The Length of Decomposition Branches

α0

ωd+1

∨

∨

α1

∨

α2

∨...

Consequence of (S. ’14)
The decomposition tree is of size at most Fd+4(e(n)) for
some elementary function e.

12/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

The Length of Decomposition Branches

4-exp

4-exp

4-exp

α0

ωd+1

∨

∨

α1

∨

α2

∨...

Consequence of (S. ’14)
The decomposition tree is of size at most Fd+4(e(n)) for
some elementary function e.

12/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

The Length of Decomposition Branches

4-exp

4-exp

4-exp

α0

ωd+1

∨

∨

α1

∨

α2

∨...

Consequence of (S. ’14)
The decomposition tree is of size at most Fd+4(e(n)) for
some elementary function e.

12/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

New Upper Bounds

F0(x) = x+1

F1(x) =

x+1 times︷ ︸︸ ︷
F0 ◦ ··· ◦F0(x) = 2x+1

F2(x) =

x+1 times︷ ︸︸ ︷
F1 ◦ ··· ◦F1(x) ≈ 2x

F3(x) =

x+1 times︷ ︸︸ ︷
F2 ◦ ··· ◦F2(x) ≈ tower(x)

...

Fω(x) = Fx+1(x) ≈ ackermann(x)

Elementary

Primitive Recursive

Multiply Recursive

F3 =
Tower

Fω =
Ackermann

Upper Bound Theorem
VAS Reachability is in Fω, and in Fd+4 in fixed dimension d

Theorem
VAS Reachability reduces to bounded VAS Reachability

13/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

New Upper Bounds

F0(x) = x+1

F1(x) =

x+1 times︷ ︸︸ ︷
F0 ◦ ··· ◦F0(x) = 2x+1

F2(x) =

x+1 times︷ ︸︸ ︷
F1 ◦ ··· ◦F1(x) ≈ 2x

F3(x) =

x+1 times︷ ︸︸ ︷
F2 ◦ ··· ◦F2(x) ≈ tower(x)

...

Fω(x) = Fx+1(x) ≈ ackermann(x)

Elementary

Primitive Recursive

Multiply Recursive

F3 =
Tower

Fω =
Ackermann

Upper Bound Theorem
VAS Reachability is in Fω, and in Fd+4 in fixed dimension d

Theorem
VAS Reachability reduces to bounded VAS Reachability

13/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

A Related Problem

labelled VAS transitions carry labels from some alphabet

L(V,source,target) the language of labels in runs from
source to target

↓L the set of scattered subwords of the words in
the language L

Example
aba6∗ baaacabbab

14/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

A Related Problem

labelled VAS transitions carry labels from some alphabet

L(V,source,target) the language of labels in runs from
source to target

↓L the set of scattered subwords of the words in
the language L

Downwards Language Inclusion Problem
input: two labelled VAS V and V ′ and configurations

source, target, source ′, target ′

question: ↓L(V,source,target)⊆ ↓L(V ′,source ′,target ′)?

14/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

A Related Problem

Downwards Language Inclusion Problem
input: two labelled VAS V and V ′ and configurations

source, target, source ′, target ′

question: ↓L(V,source,target)⊆ ↓L(V ′,source ′,target ′)?

Theorem (Habermehl, Meyer & Wimmel’10)
Given a labelled VAS V and configurations source and
target and its decomposition, one can construct a finite
automaton for ↓L(V,source,target) in polynomial time.

Corollary
The Downwards Language Inclusion is in Ackermann.

14/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

A Related Problem

Downwards Language Inclusion Problem
input: two labelled VAS V and V ′ and configurations

source, target, source ′, target ′

question: ↓L(V,source,target)⊆ ↓L(V ′,source ′,target ′)?

Theorem (Habermehl, Meyer & Wimmel’10)
Given a labelled VAS V and configurations source and
target and its decomposition, one can construct a finite
automaton for ↓L(V,source,target) in polynomial time.

Corollary
The Downwards Language Inclusion is in Ackermann.

14/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

A Related Problem

Downwards Language Inclusion Problem
input: two labelled VAS V and V ′ and configurations

source, target, source ′, target ′

question: ↓L(V,source,target)⊆ ↓L(V ′,source ′,target ′)?

Corollary
The Downwards Language Inclusion is in Ackermann.

Theorem (Zetzsche’16)
The Downwards Language Inclusion is Ackermann-hard.

14/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Perspectives

1. complexity gap for VAS reachability
I Tower-hard [Czerwinski et al.’19]

I decomposition algorithm: requires Fω = Ackermann time,
because downward language inclusion is Fω-hard [Zetzsche’16]

2. reachability in VAS extensions?
I decidable in VAS with hierarchical zero tests [Reinhardt’08]
I what about
I branching VAS
I unordered data Petri nets
I pushdown VAS

15/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Perspectives

1. complexity gap for VAS reachability
I Tower-hard [Czerwinski et al.’19]

I decomposition algorithm: requires Fω = Ackermann time,
because downward language inclusion is Fω-hard [Zetzsche’16]

2. reachability in VAS extensions?
I decidable in VAS with hierarchical zero tests [Reinhardt’08]
I what about
I branching VAS
I unordered data Petri nets
I pushdown VAS

15/15

Vector Addition Systems Decomposition Algorithm New Ingredients Complexity

Perspectives

1. complexity gap for VAS reachability
I Tower-hard [Czerwinski et al.’19]

I decomposition algorithm: requires Fω = Ackermann time,
because downward language inclusion is Fω-hard [Zetzsche’16]

2. reachability in VAS extensions?
I decidable in VAS with hierarchical zero tests [Reinhardt’08]
I what about
I branching VAS
I unordered data Petri nets
I pushdown VAS

15/15

	Vector Addition Systems
	Decomposition Algorithm
	New Ingredients
	Complexity

	anm0:
	anm1:

