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REACHABILITY PROBLEM
input: a vector addition system and two
configurations source and target
question: source —* target?

» modelling of discrete resources (items, money,
molecules, active threads, active data domain, ...)

» many decision problems interreducible with reachability
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[Mayr'81, Kosaraju'82, Lambert'92]
can we build a “simple run”? no
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ffﬂ"’\qf /

> no 35: no execution ~» empty decomposition
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> no é&\ :
» bounded oo: saturate with bounded value

» bounded transition use: unfold and track bounded
transition count

» no s or no /: unfold and track bounded counter value
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RANK OF A VAS

wy A

For a transition t in (0,1)————»———» (00,0)
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here, rank(t) =(1,0,0) e N9+

DEFINITION

rank(G) £ Zrank(t) e N4*1

teG ordered lexicographically
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CONSEQUENCE OF (S.’14)

The decomposition tree is of size at most Fgq.4(e(n)) for
some elementary function e.
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VAS Reachability is in F,, and in ¥4 4 in fixed dimension d

THEOREM
VAS Reachability reduces to bounded VAS Reachability
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A RELATED PROBLEM

DowNWARDS LANGUAGE INCLUSION PROBLEM
input: two labelled VASV and V' and configurations
source, target, source’, target’
question: JL(V,source,target) C |L(V’,source’,target’)?

COROLLARY
The Downwards Language Inclusion is in ACKERMANN.

THEOREM (Zetzsche'16)

The Downwards Language Inclusion is ACKERMANN-hard.
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PERSPECTIVES

1. complexity gap for VAS reachability
» TOwWER-hard [Czerwinski et al/19]

» decomposition algorithm: requires F, = ACKERMANN time,
because downward language inclusion is F ,-hard [zetzsche'16]

2. reachability in VAS extensions?

» decidable in VAS with hierarchical zero tests [Reinhardt'08]
» what about

» branching VAS

» unordered data Petri nets

> pushdown VAS
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