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If (x0,Yo) # (0,0), then choosing (x;,yj) = (57, 3%) wins.
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, i.e. play indefinitely?
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Assume there exists an infinite sequence (x;,y;); of
moves over IN?. Consider the pairs of indices i < j: color
(1,7
purple if x{ > xj but y; < yj,
red if x; >xj and yi >y,

if yi > Yj but x; < Xj.
34 52 (23
\/
By the infinite Ramsey Theorem, there exists an infinite
monochromatic subset of indices. In all cases, it implies
the existence of an infinite decreasing sequence in N, a
contradiction.
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WELL-QuASI-ORDERS

» multiple equivalent definitions

» algebraic constructions

>

Cartesian products (Dickson’s Lemma),
finite sequences (Higman’'s Lemma),
disjoint sums,

finite sets with Hoare’s quasi-ordering,
finite trees (Kruskal's Tree Theorem),

graphs with minors (Robertson and Seymour’s Graph Minor
Theorem),

etc.



ExaMPLE: ORDINALS

ordinal: well-founded linear
order

bad sequences are descending
sequences:

xLBiff x>




ExAMPLE: DICKSON’S LEMMA

LEMMA (Dickson 1913)

If (X,<x) and (Y,<y) are two wqos, then (X X
Y,<«) is a wgo, where < is the

xy) <x (XY Ex<xx' Ay <yy’

ExAamMPLE

» (N4, <) using the product ordering

» (IM(X), <) for finite multiset embedding over finite X



ExamMPLE: HIGMAN'S LEMMA

LEMMA (Higman 1952)

If (X,<) is a wqo, then (X*,<,) is a wgo where
<4 is the :

dJdI<ii < - <ip <N,
al...amg*bl...bng m\ 1 LA
NjZ1 @j <A by .

ExAaMPLE
ba <, baaacabbab



ExamMPLE: BOUNDED TREE-DEPTH

LemmA (Ding 1992)
For all k, (Graphs \ TPy, C) is wgo.

NoN-ExXAMPLES

B b

£



APPLICATION: ALGORITHM TERMINATION

sIMPLE (a,b)
c+—1
whilea>0Ab >0
(a,b,c) «— (a—1,b,2¢c)
or
(a,b,c) «— (2¢,b—1,1)
end
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APPLICATION: ALGORITHM TERMINATION

sIMPLE (a,b)
c+—1
whilea>0Ab>0
(a,b,c) «— (a—1,b,2c)
or
(a,b,c) «— (2¢,b—1,1)
end

<aO;bO,CO>
<a1lbllcl>

< :!Ci>
(05,55)

» in any execution, (ag,bg),...,(an,bn) is a bad sequence
over (NZI < X )1

» (N?,<4) is a wgo: all the runs are finite

» c.f. Podelski & Rybalchenko’s transition invariants ug



APPLICATION: RELEVANCE Locic
ExampLE (A — (B — A))

“if it’s raining (A ), then if your favorite color is green (B)
then it’s raining (A)”

A theorem in classical logic, in relevance logic.
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A theorem in classical logic, not in relevance logic.

GENTZEN-STYLE SEQUENT CALCULUS
A,B, C formula; T', A multisets of formula;

INAAFEB

AFA (Id) NAFB (C)
''EA ABEC IAFB
(—r)
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APPLICATION: RELEVANCE Locic

GENTZEN-STYLE SEQUENT CALCULUS
A, B, C formule; I', A multisets of formulae; no weakening

rAAHFB

ArA ) rAFB (€)
r'A ABKFC () rAFB ()
AA->BFC L rFA—B R

PROBLEM (PROVABILITY)
Given a sequent '+ A, is it provable?

THEOREM (KRIPKE 1959)

Provability is decidable in implicational
relevance logic.
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APPLICATION: RELEVANCE Locic

GENTZEN-STYLE SEQUENT CALCULUS
A, B, C formule; I', A multisets of formulee; no weakening

rAALB

AFA Ud r'AFB (C)
r'A ABFC (0] rAFB )
I'AA—>BFC L rFA B R

» subformula property
» irredundant proof searches

> (C) and (—r) commute: (C)’s only below a (—)
» rewrite proofs to apply (C) whenever possible

» irredundant proof branches are bad sequences for contraction

» ...whichis over the subformulae of ' A



APPLICATION: PRESERVATION THEOREMS

logic £ example hom
JFO Jzx 5 yA—(y LN z) strong injective
FOH(=) Tyy'xSyAy BzAy=y’  injective
JFOT Jy.x S, y all
FAcT

Ifp e L, hehomg,andD = VP(x), then h(D) =P (h(x)).



APPLICATION: PRESERVATION THEOREMS

logic £ example

hom

JFO Jz.x -%y A=y 5>z)
FOH(=) Fyy'x SyAy’ BzAyzy’
Jro* yx Sy

DEFINITION
D < D’ifdh € hom s.t. D’ = h(D).

strong injective
injective
all



APPLICATION: PRESERVATION THEOREMS

logic £ example hom

JFO xS yA—(y R z) strong injective
FOH(=) Fyy'x SyAy’ BzAy=zy’  injective
JFO+ Tyx Sy all

OVER ARBITRARY STRUCTURES

THEOREM (L0$, LYNDON, TARSKI)

If @ is an FO-sentence s.t. [ @] is upwards-closed for <, then
there exists P € £ with [¢] = [[V]-



APPLICATION: PRESERVATION THEOREMS

logic £ example

hom

JFO Jz.x E>y A=y E>z)
FOH(=) Tyy'x SyAy BzAyzy’
JFo+ Tyx Sy
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strong injective
injective

all



APPLICATION: PRESERVATION THEOREMS

logic £ example

hom

o

IFOT (%) [no [Ajtai & Gurevich 1994D
JFO+ [yes [Rossman 2008D

OVER FINITE (RELATIONAL) STRUCTURES?

strong injective
injective

all
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finite G—structures\
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OVER FINITE (RELATIONAL) STRUCTURES?
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(upwards-closed

class X

(downwards-closed)

finite G—structures\

» by finite basis property: if (X, <) wgo and
downwards-closed then such Aq,...,A, exist
» associate P; € £ to each Aj s.t. [Yi]] = TA;

,,,,,

[l NK € A1, ...

find finitely many structures A1

;ATL}

14/19
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t'
-y
W

incomplete
database I

~
~
~
~
S~

I (%
query

M
L
R

Vo)
AN

(1)« suonejdwod aiqissod
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APPLICATION: CERTAIN ANSWERS

—— — 1
>

A
oL

k-3
A
3

. = |
incomplete
database I
R (B o =
query certain answers:

true in all completions

(1)# suoneidwod s1gissod

arch Projects
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i

go]
o]
]
=3 o
—— 1T
5 )
L - J o
3 o ;S
R 5
’ = =2
' o
. = ! s
incomplete °
database I ]
Ny %
S —_
~~__ (p B 2 ~—

query

certaini(¢)= [ {x|D o(x)}

De#(I)
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¥ CHASEorx &2 — Hy.xiy/\y B, 2 For @ € IFOT (=)

a5 .1, a5 .,
AN NS
g @
a—— b, 2>——bs
01—G>b1/ G G
a——by
. \01 G e Cll\G/bl
RY B /

a——b, uz—ﬂjz\
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& .6 @S .5
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N T
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—_—
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~ )
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¥ CHASEorx &2 — Ely.xE)y/\y B, 2 For @ € IFOT ()

Verification

Proof Theory

\\\

Sy ‘\
G ) G
a——b; a——b;y
R l/s 1 R\‘l /B
i R/ l\B
a——by a——b
G G
u14G>b1 cq—G»bl
R B |

ﬂz\—G/-vbz uzT»bz
R L B R I B
J
1So - 1S1 - 1S>
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#* CHASEoFx Sz — Hy.xiy/\y B, zFor @ € IFOT ()

G N
a2 3
1 by alL,bl

RY B RYB

&6 / @b g o
@by 4
G G |
\al%bl/ ﬂl\%>bl
R 19 B

az——ba & .|
R\(J S b — ...
1, B RY B
1% = 151 c 1S5 -

» over a wqo: by ascending chain condition,
1So C 151 C -+ always stabilises to 15«

» certainj(¢@) = (domD)* N MNees, x| B E o(x)}
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HuMAN DIMENSION

Will you collaborate on your project?

» locally at your institution?

» internationally?

» by supervising students?

» by animating a local seminar?

» by organising specialised workshops?

» by giving lectures locally or at summer schools?
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