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OUTLINE
> (VAS)
and their reachability problem
> of well-quasi-orders

» a counter-example guided
(CEGAR) procedure

» the
named after Sacerdote and Tenney (1977), Mayr (1981),
Kosaraju (1982), and Lambert (1992)
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VECTOR ADDITION SYsSTEMS (VAS)

(KARP AND MILLER, 1969)

SYNTAX

v

dimension d € IN

finite set A Cg, Z9 of actions a € A

v

SEMANTICS

> u,v,...c Nd

> udveNtxAxNwithv=u+a
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ExamMmpPLE VAS

ExAaMPLE

x O

A A A A / / /

x=(0,2)—>(1,3)—>(2,4)—>(3,5)—>(4,6) —>(3,4) —>(2,2)—>(0,1)=y



RUNS AND PRERUNS

DerINITION (PRERUN)
A is an element

(ul (ullallvl) e (uklaklvk)l V)
from PreRunssy = IN9 x (N9 x A x N9)* x IN4

DerINITION (RUN)
A prerun is (isarun)if

(source) u=uj
(transitions) V1 <j <k, uj +aj =v;j
(contiguity) V1 <j <k, vj_1 = u;

(target) vy =V



THE REACHABILITY PROBLEM

Runsa (x,y) & [p € PreRunsy | p is a run with source x and target y}

VAS REACHABILITY
input A Cgp, Z4, X,y € N4

question Is y reachable from x in A?
l.e., is Runsa (x,y) = 0?



THE REACHABILITY PROBLEM

Runsa (x,y) & [p € PreRunsy | p is a run with source x and target y}

VAS REACHABILITY
input A Cgp, Z4, X,y € N4

question Isy reachable from x in A?
l.e., is Runsa (x,y) = 0?

THEOREM (MAYR, 1981; KosarAauu, 1982; LAMBERT, 1992;
Leroux, 2011)

VAS Reachability is decidable.



THE REACHABILITY PROBLEM
Runsa (x,y) & [p € PreRunsy | p is a run with source x and target y}

VAS REACHABILITY
input A Cgp, Z4, X,y € N4

question Is y reachable from x in A?
l.e., is Runsa (x,y) = 0?

THEOREM (MAYR, 1981; KosArAaJuu, 1982; LAMBERT, 1992;
Leroux, 2011)

VAS Reachability is decidable.

» by the (Mayr, 1981;
Kosaraju, 1982; Lambert, 1992)



THE REACHABILITY PROBLEM
Runsa (x,y) & [p € PreRunsy | p is a run with source x and target y}

VAS REACHABILITY
input A Cgp, Z4, X,y € N4
question Is y reachable from x in A?

l.e., is Runsa (x,y) = 0?

THEOREM (MAYR, 1981; KosArAaJuu, 1982; LAMBERT, 1992;
Leroux, 2011)
VAS Reachability is decidable.

» by the (Mayr, 1981;
Kosaraju, 1982; Lambert, 1992)

» by Presburger invariants (Leroux, 2011)
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DEcomMPOSITION THEOREM

THEOREM (LEROUX AND S., 2015)

The KLMST decomposition algorithm computes the
of

LRunsa (x,y) Z{p’ € PreRunsa | Jp € Runsa (x,y).p’ <p}

» entails decidability of VAS Reachability:
Runsa (x,y) =0 iff JRunsa (x,y) =0

UPCOMING

» definition of a wqo over preruns (Jancar, 1990)

> wqo (Finkel and Goubault-Larrecq, 2009, 2012)
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WELL-QuASI-ORDERS (WQO)

DEFINITION
A quasi-order (X,<) is a wqo if in any infinite sequence
X0,X1,... of elements of X, 31 < j s.t. x; <x

ExAMPLE

» finite sets with equality (X,=)

» natural numbers (N, <)

» Dickson’s Lemma: if (A,<A) and (B,<g) are wqos, then
(A x B,<«) is a wqgo, where
(a,b) <« (a’,b)iffa<ara’andb<g b’

» Higman’'s Lemma: if (A,<) is a wqo, then (A*,<,) isa
wqgo, where
u,viffu=ap---ag andv=vgbqvy - - - vk_1 bpvi with
vo,...,Vk € A¥and V1 <j <k.qy<bjeA.
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PRERUN EMBEDDINGS

» (N9%,<) is a wqo for the componentwise ordering

» (N x A x N4, <) is a wqo, where
(w,a,v) < (u/,b,v)iffu<u’,a=b, andv <v’

(N9 x A x INY)*,<,) is a wqo

v

v

Jancar (1990): (PreRunsy, <) is a wqo, where

(w,w,v) < (u/,w,v)iffu<u’,w =<, w, andv < v’



CHARACTERISING WQOs

Upward closure: 1S < {x e X|3seS.s <x}.

LEMMA (MINIMAL BAsis PROPERTY)
A go (X,<) is a wqo iff every non-empty subset S C X has
a finite set of minimal elements ming S.

LEMMA (ASCENDING CHAIN PROPERTY)
A go (X,<) is a wqo iff every ascending chain
Up € U; € --- of upward-closed sets is finite.

Template for many algorithms: represent the sets U,, as
T(ming Uy ) using finitely many elements.



CHARACTERISING WQOs

Downward closure: [SE{x e X|3seS.x <s}.

LEMMA (DESCENDING CHAIN PROPERTY)
A go (X,<) is a wqo iff every descending chain
Do 2 D; 2 - of downward-closed sets is finite.



IDEALS AS CANONICAL BASES

Downward closure: S {x e X|3seS.x <s).

LEMMA (CANONICAL IDEAL DECOMPOSITION; BONNET, 1975)

Every downward-closed subset D C X of a wgo (X, <) is
the union of a unique finite family of incomparable (for
the inclusion)

LEMMA (DESCENDING CHAIN PROPERTY)
A go (X,<) is a wqo iff every descending chain
Do 2 D; 2 - of downward-closed sets is finite.
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» SCXis if for every x1,Xx> € S there exists x € S
s.t.xg <xandxy <x
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IDEALS
» S C Xis directed if for every x1,x> € S there exists x € S

s.t.xg <xandxy <x

» anideal is a directed, non-empty, downward-closed
subset of X

» write Idl(X) for the set of ideals of X

ExAMPLE
» in (X,=) for X finite:
» |x ={x}is an ideal for every x € X
- in (N, <);

» Inis anideal for every n € IN
» N itself is an ideal
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EFFECTIVITY

» represent canonical decompositions D =17 L--- L I
where the Ij’s are maximal for inclusion

» must allow effective operations over ideals: [C ], IN],
[\TxforxeX

» Finkel and Goubault-Larrecq (2009, 2012): effective
representations exist for all the wqos in this talk

» for Cartesian products:
Id(A xB)={IxJ|I€ldl(A)and] € ldl(B)}

» for finite sequences: Idl(X*) = (Atoms(X))* where an
atom is
» TU{e}for I € lIdl(X), or
» D* where D C X is downward-closed
D =1, U---UIk can be represented by a finite subset of Idl(X)
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AN ABSTRACTION REFINEMENT PROCEDURE
(CEGAR)

Build a sequence of |-closed sets s.t.
vn.JRunsa(x,y) C Dy
initially Dg < PreRunsy

vn » if Dp =1UD and
Jp e I\ |Runsa(x,y),

def

Dn+1 =DU (I\Tp)

» otherwise stop:

Dn

Dn = | Runsa (x,)

terminates by Descending Chain
Property
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CONTAINMENT ORACLES
IDEAL CONTAINMENT (INTO VAS RUNS) PROBLEM
input A Cg, Z9, X,y € N4, I € Idl(PreRunsy )
question Is I C [Runsa(x,y)?

Proposition
VAS Reachability reduces to Ideal Containment.

PrROOF.
Because [(0,¢,0) C [ Runsy (x,y) iff Runsa (x,y) = 0.

Proposition
Ideal Containment is decidable.

PROOF.
Consequence of the Decomposition Theorem.



ADHERENCE ORACLES
ADHERENCE (OF VAS RUNS) MEMBERSHIP PROBLEM
input A Cgn Z9,x,y € N4, I € Idl(PreRuns, )
question JA C Runsa (x,y) directed s.t. JA=1?
Claim

of the CEGAR procedure, containment
checks are equivalent to adherence membership checks.



ADHERENCE ORACLES
ADHERENCE (OF VAS RUNS) MEMBERSHIP PROBLEM
input A Cgn Z9,x,y € N4, I € Idl(PreRuns, )

question JA C Runsa (x,y) directed s.t. JA=1?

Claim
of the CEGAR procedure, containment
checks are equivalent to adherence membership checks.

THEOREM
Adherence Membership is undecidable.

PROOF IDEA.
By a reduction from Boundedness in Lossy Counter Machines. [
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How 10 SALVAGE THE CEGAR PROCEDURE?

» both containment and adherence miss a crucial point:
if JRunsa (x,y) =Dn =1UD, then Iis some ideal
of [Runsy (x,y)
» find’ "invariants of such ideals:
initially Dg « PreRunsy
vn » if DL =1UD and
dp € I\ {Runsa (x,y), which ,

def

Dny1 =DU(I\1p)
» otherwise stop:
D = LRunsa (x,y)

» template for the KLMST decomposition algorithm
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RUN EMBEDDINGS

(3,‘3)_{(2 )% (3, 2)_/>(2 05 (3,1)
\\] 1// — \\\ ‘é
1,0— 7 +(21)

. a a
Fix p=cg — €1 - €1 — ¢ from Runs, (x,y)
If p’>pisarun, 3vo,..., Vsl € IN4 and 0Q,...,0x € A™:
a;

' = (Vo+co) =% (vitco) 2 (viter) - (vieher 1) 25 (vieter) =5 (Vi1 +ci)

LEMMA (RUN AMALGAMATION)
If p<p1,p> are runs, then there exists a run p’ > p1,0>.
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MAXIMAL RUN IDEALS (1/2)

Since <is awqo, B “ mingRunsy (x,y) is finite:

JRunsa (x,y) = U (TP NRunsa (x,y))
peB

For any run p, L(Tp NRunsa (x,y)) is
» non-empty: it contains at least p
» directed by run amalgamation
» downward-closed by definition

Proposition
The maximal ideals of | Runsy (x,y) are the ideals of the
form [ (Tp NRunsa (x,y)) for p € Runsa (x,y).



MAXIMAL RUN IDEALS (2/2)
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MAXIMAL RUN IDEALS (2/2)
TRANSFORMER RELATIONS

s A {(u,v)|IoEA . ut+c S vt}

c . . . . c c
> Nvis s it contains 0, andifu ~vandu’ ~ v/,
C
thenu+u’' ~v+v/

DecomposITION OF Tp N Runsa (x,y)
ap ay
» letp=cg—cC1:--Cx_1 — Ck

» consider all the (k+ 1)-tuples
(V01V1)1 (V11V2)1---1 (Vk—llvk) s.t. vo fc%’vl KC%’ T fCJ{’Vk

every projection P; « {(vj,vj41) | ...} is also periodic

(05 .
> define (); as the set of runs vj +¢; - Vj+1 + ¢ for each )



MARKED WITNESS GRAPHS

ExXAMPLE
—{a,b} where a=(1,1,—1) b=(-1,0,1)
:(1 0,1) P; ={((0,0,0),(0,n,0)) [ n € IN}

={¢; 22 ¢+ (0,m,0) | n € N, w; € {ab, ba}}

(1,0,1)

(o,
111/

(l,n—l,l

\

(2,

[y

c/.

0

—

,2)

%

)
(O,n—1,2)

(1,n,1)Aa/

N
B
7/9



MARKED WITNESS GRAPHS
Each Qj can be represented as a finite
M.
ExAMPLE
A ={a,b} where a=(1,1,—1) b=(-1,0,1)
¢;=(1,0,1) P; ={((0,0,0),(0,n,0)) [n € IN}

Q5 ={c; it ¢;+(0,m,0) [n € IN,w; € {ab,ba}}

(1,0,1) (1,w,1)
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Back top =c¢g 4, €1 Ck—1 SN Ck:
» TP NRunsy (x,y) can be represented using a sequence of
marked witness graphs and actions from A:

E. = MOIallMll"'lakle

» conversely, each such sequence defines an associated
set of runs () and an associated prerun ideal I;.
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MARKED WITNESS GRAPH SEQUENCES
Back top =c¢g 4, €1 Ck—1 SN Ck:
» TP NRunsa (x,y) can be represented using a sequence of
marked witness graphs and actions from A:

E» = MO;al;MI;---lakle

» conversely, each such sequence defines an associated
set of runs () and an associated prerun ideal I;.
» perfectness condition on such sequences

LEMMA (PERFECTNESS IMPLIES ADHERENCE MEMBERSHIP)
If & is perfect then Iz = | Q;.

THEOREM
There exists a finite set = ofperfect marked witness
graph sequences s.t. |Runsa (x,y) = Uae” I:.
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KLMST ALGORITHM (SCHEMATICALLY)

Construct a sequence Zg,=1,... of finite sets of marked
witness graph sequences with Yn

.- U I; O JRunss(x,y)
£€zn
initially =g is s.t. Dg = PreRunsy
vn » ifZ, ={&}W= and

¢ is not perfect which ,

—

_n+1 = ZU (decompose(E))

» otherwise stop:

Dn = Runsa(x,y)

terminates via a ranking function argument
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CoNCcLUDING REMARKS

» ideals as an tool to work with
downward-closed sets

> new of the KLMST decomposition
extension to other models (BVASS, PDVAS,...)?

» complexity of VAS Reachability :
> PSpace-complete with states if d = 2 (Blondin et al., 2015)

» ExpPSpAcE-hard (Lipton, 1976) and in F ;5 (Leroux and S., 2015)
in general

» to learn more: references in the next slide and
http:// arxiv.org/abs/1503.00745 (Leroux andS., 2015)


http://arxiv.org/abs/1503.00745
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