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Outline

I vector addition systems (VAS)
and their reachability problem

I ideals of well-quasi-orders

I a counter-example guided abstraction refinement
(CEGAR) procedure

I the KLMST decomposition algorithm
named after Sacerdote and Tenney (1977), Mayr (1981),
Kosaraju (1982), and Lambert (1992)
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Vector Addition Systems (VAS)
(Karp and Miller, 1969)

Syntax

I dimension d ∈N

I finite set A⊆fin Z
d of actions a ∈A

Semantics

I configurations u,v, . . . ∈N
d

I transitions u a−→ v ∈N
d×A×N

d with v= u+ a
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Example VAS

Example

d= 2 A=

{
,

}

x

y

x=(0,2)−−→(2,4)−−→(3,5)−−→(4,6)−−→(3,4)−−→(2,2)−−→(0,1)=y
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Runs and Preruns
Definition (Prerun)
A prerun is an element

(u, (u1,a1,v1) · · ·(uk,ak,vk), v)

from PreRunsA
def
=N

d× (Nd×A×N
d)∗×N

d

Definition (Run)
A prerun is connected (is a run) if

(source) u= u1

(transitions) ∀1 6 j6 k, uj+ aj = vj

(contiguity) ∀1< j6 k, vj−1 = uj

(target) vk = v
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The Reachability Problem
RunsA(x,y) def

= {ρ ∈ PreRunsA | ρ is a run with source x and target y}

VAS Reachability

input A⊆fin Z
d, x,y ∈N

d

question Is y reachable from x in A?
I.e., is RunsA(x,y) , ∅?

Theorem (Mayr, 1981; Kosaraju, 1982; Lambert, 1992;
Leroux, 2011)
VAS Reachability is decidable.

I by the KLMST decomposition algorithm (Mayr, 1981;
Kosaraju, 1982; Lambert, 1992)

I by Presburger invariants (Leroux, 2011)
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Decomposition Theorem
Theorem (Leroux and S., 2015)
The KLMST decomposition algorithm computes the ideal
decomposition of

↓RunsA(x,y)
def
= {ρ ′ ∈ PreRunsA | ∃ρ ∈ RunsA(x,y) . ρ ′ E ρ}

I entails decidability of VAS Reachability:

RunsA(x,y) = ∅ iff ↓RunsA(x,y) = ∅

Upcoming

I definition of a wqo over preruns (Jančar, 1990)

I wqo ideals (Finkel and Goubault-Larrecq, 2009, 2012)
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Well-Quasi-Orders (wqo)
Definition
A quasi-order (X,6) is a wqo if in any infinite sequence
x0,x1, . . . of elements of X, ∃i < j s.t. xi 6 xj.

Example

I finite sets with equality (X,=)

I natural numbers (N,6)

I Dickson’s Lemma: if (A,6A) and (B,6B) are wqos, then
(A×B,6×) is a wqo, where
(a,b)6× (a ′,b ′) iff a6A a ′ and b6B b ′

I Higman’s Lemma: if (A,6) is a wqo, then (A∗,6∗) is a
wqo, where
u6∗ v iff u= a1 · · ·ak and v= v0b1v1 · · ·vk−1bbvk with
v0, . . . ,vk ∈A∗ and ∀1 6 j6 k .aj 6 bj ∈A.

8/23



VAS Reachability WQO Ideals Abstraction Refinement KLMST Decomposition

Well-Quasi-Orders (wqo)
Definition
A quasi-order (X,6) is a wqo if in any infinite sequence
x0,x1, . . . of elements of X, ∃i < j s.t. xi 6 xj.

Example

I finite sets with equality (X,=)

I natural numbers (N,6)

I Dickson’s Lemma: if (A,6A) and (B,6B) are wqos, then
(A×B,6×) is a wqo, where
(a,b)6× (a ′,b ′) iff a6A a ′ and b6B b ′

I Higman’s Lemma: if (A,6) is a wqo, then (A∗,6∗) is a
wqo, where
u6∗ v iff u= a1 · · ·ak and v= v0b1v1 · · ·vk−1bbvk with
v0, . . . ,vk ∈A∗ and ∀1 6 j6 k .aj 6 bj ∈A.

8/23



VAS Reachability WQO Ideals Abstraction Refinement KLMST Decomposition

Well-Quasi-Orders (wqo)
Definition
A quasi-order (X,6) is a wqo if in any infinite sequence
x0,x1, . . . of elements of X, ∃i < j s.t. xi 6 xj.

Example

I finite sets with equality (X,=)

I natural numbers (N,6)

I Dickson’s Lemma: if (A,6A) and (B,6B) are wqos, then
(A×B,6×) is a wqo, where
(a,b)6× (a ′,b ′) iff a6A a ′ and b6B b ′

I Higman’s Lemma: if (A,6) is a wqo, then (A∗,6∗) is a
wqo, where
u6∗ v iff u= a1 · · ·ak and v= v0b1v1 · · ·vk−1bbvk with
v0, . . . ,vk ∈A∗ and ∀1 6 j6 k .aj 6 bj ∈A.

8/23



VAS Reachability WQO Ideals Abstraction Refinement KLMST Decomposition

Well-Quasi-Orders (wqo)
Definition
A quasi-order (X,6) is a wqo if in any infinite sequence
x0,x1, . . . of elements of X, ∃i < j s.t. xi 6 xj.

Example

I finite sets with equality (X,=)

I natural numbers (N,6)

I Dickson’s Lemma: if (A,6A) and (B,6B) are wqos, then
(A×B,6×) is a wqo, where
(a,b)6× (a ′,b ′) iff a6A a ′ and b6B b ′

I Higman’s Lemma: if (A,6) is a wqo, then (A∗,6∗) is a
wqo, where
u6∗ v iff u= a1 · · ·ak and v= v0b1v1 · · ·vk−1bbvk with
v0, . . . ,vk ∈A∗ and ∀1 6 j6 k .aj 6 bj ∈A.

8/23



VAS Reachability WQO Ideals Abstraction Refinement KLMST Decomposition

Prerun Embeddings

I (Nd,6) is a wqo for the componentwise ordering

I (Nd×A×N
d,�) is a wqo, where

(u,a,v)� (u ′,b,v ′) iff u6 u ′, a= b, and v6 v ′

I ((Nd×A×N
d)∗,�∗) is a wqo

I Jančar (1990): (PreRunsA,E) is a wqo, where
(u,w,v)E (u ′,w ′,v ′) iff u6 u ′,w�∗ w ′, and v6 v ′
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I Jančar (1990): (PreRunsA,E) is a wqo, where
(u,w,v)E (u ′,w ′,v ′) iff u6 u ′,w�∗ w ′, and v6 v ′

9/23



VAS Reachability WQO Ideals Abstraction Refinement KLMST Decomposition

Characterising WQOs

Upward closure: ↑ S def
= {x ∈ X | ∃s ∈ S . s6 x}.

Lemma (Minimal Basis Property)
A qo (X,6) is a wqo iff every non-empty subset S⊆ X has
a finite set of minimal elements min6S.

Lemma (Ascending Chain Property)
A qo (X,6) is a wqo iff every ascending chain
U0 (U1 ( · · · of upward-closed sets is finite.

Template for many algorithms: represent the sets Un as
↑(min6Un) using finitely many elements.
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Characterising WQOs

Downward closure: ↓S def
= {x ∈ X | ∃s ∈ S . x6 s}.

Lemma (Minimal Basis Property)
A qo (X,6) is a wqo iff every non-empty subset S⊆ X has
a finite set of minimal elements min6S.
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Ideals as Canonical Bases

Downward closure: ↓S def
= {x ∈ X | ∃s ∈ S . x6 s}.

Lemma (Canonical Ideal Decomposition; Bonnet, 1975)
Every downward-closed subsetD⊆ X of a wqo (X,6) is
the union of a unique finite family of incomparable (for
the inclusion) ideals.

Lemma (Descending Chain Property)
A qo (X,6) is a wqo iff every descending chain
D0 )D1 ) · · · of downward-closed sets is finite.
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Ideals
I S⊆ X is directed if for every x1,x2 ∈ S there exists x ∈ S

s.t. x1 6 x and x2 6 x

I an ideal is a directed, non-empty, downward-closed
subset of X

I write Idl(X) for the set of ideals of X

Example

I in (X,=) for X finite:
I ↓x= {x} is an ideal for every x ∈ X

I in (N,6):
I ↓n is an ideal for every n ∈N

I N itself is an ideal

11/23
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Effectivity
I represent canonical decompositionsD= I1 t ·· · t Ik

where the Ij’s are maximal for inclusion

I must allow effective operations over ideals: I⊆ J, I∩ J,
I \ ↑x for x ∈ X

I Finkel and Goubault-Larrecq (2009, 2012): effective
representations exist for all the wqos in this talk

I for Cartesian products:
Idl(A×B) = {I× J | I ∈ Idl(A) and J ∈ Idl(B)}

I for finite sequences: Idl(X∗) = (Atoms(X))∗ where an
atom is
I I∪ {ε} for I ∈ Idl(X), or
I D∗ whereD⊆ X is downward-closed
D= I1 t ·· · t Ik can be represented by a finite subset of Idl(X)

12/23



VAS Reachability WQO Ideals Abstraction Refinement KLMST Decomposition

Effectivity
I represent canonical decompositionsD= I1 t ·· · t Ik

where the Ij’s are maximal for inclusion

I must allow effective operations over ideals: I⊆ J, I∩ J,
I \ ↑x for x ∈ X

I Finkel and Goubault-Larrecq (2009, 2012): effective
representations exist for all the wqos in this talk

I for Cartesian products:
Idl(A×B) = {I× J | I ∈ Idl(A) and J ∈ Idl(B)}

I for finite sequences: Idl(X∗) = (Atoms(X))∗ where an
atom is
I I∪ {ε} for I ∈ Idl(X), or
I D∗ whereD⊆ X is downward-closed
D= I1 t ·· · t Ik can be represented by a finite subset of Idl(X)

12/23



VAS Reachability WQO Ideals Abstraction Refinement KLMST Decomposition

Effectivity
I represent canonical decompositionsD= I1 t ·· · t Ik

where the Ij’s are maximal for inclusion

I must allow effective operations over ideals: I⊆ J, I∩ J,
I \ ↑x for x ∈ X

I Finkel and Goubault-Larrecq (2009, 2012): effective
representations exist for all the wqos in this talk

I for Cartesian products:
Idl(A×B) = {I× J | I ∈ Idl(A) and J ∈ Idl(B)}

I for finite sequences: Idl(X∗) = (Atoms(X))∗ where an
atom is
I I∪ {ε} for I ∈ Idl(X), or
I D∗ whereD⊆ X is downward-closed
D= I1 t ·· · t Ik can be represented by a finite subset of Idl(X)

12/23



VAS Reachability WQO Ideals Abstraction Refinement KLMST Decomposition

Effectivity
I represent canonical decompositionsD= I1 t ·· · t Ik

where the Ij’s are maximal for inclusion

I must allow effective operations over ideals: I⊆ J, I∩ J,
I \ ↑x for x ∈ X

I Finkel and Goubault-Larrecq (2009, 2012): effective
representations exist for all the wqos in this talk

I for Cartesian products:
Idl(A×B) = {I× J | I ∈ Idl(A) and J ∈ Idl(B)}

I for finite sequences: Idl(X∗) = (Atoms(X))∗ where an
atom is
I I∪ {ε} for I ∈ Idl(X), or
I D∗ whereD⊆ X is downward-closed
D= I1 t ·· · t Ik can be represented by a finite subset of Idl(X)

12/23



VAS Reachability WQO Ideals Abstraction Refinement KLMST Decomposition

An Abstraction Refinement Procedure
(CEGAR)

Build a sequenceD0 )D1 ) · · · of ↓-closed sets s.t.

∀n . ↓RunsA(x,y)⊆Dn
initially D0

def
= PreRunsA

∀n I ifDn = ItD and
∃ρ ∈ I \ ↓RunsA(x,y),

Dn+1
def
=D∪ (I \ ↑ρ)

I otherwise stop:

Dn = ↓RunsA(x,y)

terminates by Descending Chain
Property

D0

Dn

I

ρDn+1

13/23



VAS Reachability WQO Ideals Abstraction Refinement KLMST Decomposition

An Abstraction Refinement Procedure
(CEGAR)

Build a sequenceD0 )D1 ) · · · of ↓-closed sets s.t.

∀n . ↓RunsA(x,y)⊆Dn
initially D0

def
= PreRunsA

∀n I ifDn = ItD and
∃ρ ∈ I \ ↓RunsA(x,y),

Dn+1
def
=D∪ (I \ ↑ρ)

I otherwise stop:

Dn = ↓RunsA(x,y)

terminates by Descending Chain
Property

D0

Dn

I

ρDn+1

13/23



VAS Reachability WQO Ideals Abstraction Refinement KLMST Decomposition

An Abstraction Refinement Procedure
(CEGAR)

Build a sequenceD0 )D1 ) · · · of ↓-closed sets s.t.

∀n . ↓RunsA(x,y)⊆Dn
initially D0

def
= PreRunsA

∀n I ifDn = ItD and
∃ρ ∈ I \ ↓RunsA(x,y),

Dn+1
def
=D∪ (I \ ↑ρ)

I otherwise stop:

Dn = ↓RunsA(x,y)

terminates by Descending Chain
Property

D0

Dn

I

ρDn+1

13/23



VAS Reachability WQO Ideals Abstraction Refinement KLMST Decomposition

An Abstraction Refinement Procedure
(CEGAR)

Build a sequenceD0 )D1 ) · · · of ↓-closed sets s.t.

∀n . ↓RunsA(x,y)⊆Dn
initially D0

def
= PreRunsA

∀n I ifDn = ItD and
∃ρ ∈ I \ ↓RunsA(x,y),

Dn+1
def
=D∪ (I \ ↑ρ)

I otherwise stop:

Dn = ↓RunsA(x,y)

terminates by Descending Chain
Property

D0

Dn

I

ρDn+1

13/23



VAS Reachability WQO Ideals Abstraction Refinement KLMST Decomposition

An Abstraction Refinement Procedure
(CEGAR)

Build a sequenceD0 )D1 ) · · · of ↓-closed sets s.t.

∀n . ↓RunsA(x,y)⊆Dn
initially D0

def
= PreRunsA

∀n I ifDn = ItD and
∃ρ ∈ I \ ↓RunsA(x,y),

Dn+1
def
=D∪ (I \ ↑ρ)

I otherwise stop:

Dn = ↓RunsA(x,y)

terminates by Descending Chain
Property

D0

Dn

I

ρDn+1

13/23



VAS Reachability WQO Ideals Abstraction Refinement KLMST Decomposition

An Abstraction Refinement Procedure
(CEGAR)

Build a sequenceD0 )D1 ) · · · of ↓-closed sets s.t.

∀n . ↓RunsA(x,y)⊆Dn
initially D0

def
= PreRunsA

∀n I ifDn = ItD and
∃ρ ∈ I \ ↓RunsA(x,y),

Dn+1
def
=D∪ (I \ ↑ρ)

I otherwise stop:

Dn = ↓RunsA(x,y)

terminates by Descending Chain
Property

D0

Dn

I

ρDn+1

13/23



VAS Reachability WQO Ideals Abstraction Refinement KLMST Decomposition

An Abstraction Refinement Procedure
(CEGAR)

Build a sequenceD0 )D1 ) · · · of ↓-closed sets s.t.

∀n . ↓RunsA(x,y)⊆Dn
initially D0

def
= PreRunsA

∀n I ifDn = ItD and
∃ρ ∈ I \ ↓RunsA(x,y),

Dn+1
def
=D∪ (I \ ↑ρ)

I otherwise stop:

Dn = ↓RunsA(x,y)

terminates by Descending Chain
Property

D0

Dn

I

ρDn+1

13/23



VAS Reachability WQO Ideals Abstraction Refinement KLMST Decomposition

An Abstraction Refinement Procedure
(CEGAR)

Build a sequenceD0 )D1 ) · · · of ↓-closed sets s.t.

∀n . ↓RunsA(x,y)⊆Dn
initially D0

def
= PreRunsA

∀n I ifDn = ItD and
∃ρ ∈ I \ ↓RunsA(x,y),

Dn+1
def
=D∪ (I \ ↑ρ)

I otherwise stop:

Dn = ↓RunsA(x,y)

terminates by Descending Chain
Property

D0

Dn

I

ρDn+1

13/23



VAS Reachability WQO Ideals Abstraction Refinement KLMST Decomposition

Containment Oracles
Ideal Containment (into VAS Runs) Problem

input A⊆fin Z
d, x,y ∈N

d, I ∈ Idl(PreRunsA)

question ∃ρ ∈ I \ ↓RunsA(x,y)?

Proposition
VAS Reachability reduces to Ideal Containment.

Proof.
Because ↓(0,ε,0)⊆ ↓RunsA(x,y) iff RunsA(x,y) , ∅.

Proposition
Ideal Containment is decidable.

Proof.
Consequence of the Decomposition Theorem.
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Adherence Oracles

Adherence (of VAS Runs) Membership Problem

input A⊆fin Z
d, x,y ∈N

d, I ∈ Idl(PreRunsA)

question ∃∆⊆ RunsA(x,y) directed s.t. ↓∆= I?

Claim
In the context of the CEGAR procedure, containment
checks are equivalent to adherence membership checks.

Theorem
Adherence Membership is undecidable.

Proof Idea.
By a reduction from Boundedness in Lossy Counter Machines.
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VAS Reachability WQO Ideals Abstraction Refinement KLMST Decomposition

How to Salvage the CEGAR Procedure?
I both containment and adherence miss a crucial point:

if ↓RunsA(x,y) =Dn = ItD, then I is some maximal ideal
of ↓RunsA(x,y)

I find ‘nice’ invariants of such ideals:

initially D0
def
= PreRunsA is nice

∀n I ifDn = ItD and
∃ρ ∈ I \ ↓RunsA(x,y), which is decidable,

Dn+1
def
=D∪ (I \ ↑ρ) is nice

I otherwise stop:

Dn = ↓RunsA(x,y)

I template for the KLMST decomposition algorithm
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Run Embeddings

(3,3) (2,1) (3,2) (2,0) (3,1)

(1,0) (2,1)

>

6

> 6=

Fix ρ= c0
a1−→ c1 · · ·ck−1

ak−→ ck from RunsA(x,y)
If ρ ′ D ρ is a run, ∃v0, . . . ,vk+1 ∈N

d and σ0, . . . ,σk ∈A∗:

ρ ′ = (v0+c0)
σ0−−→ (v1+c0)

a1−→ (v1+c1) · · ·(vk+ck−1)
ak−→ (vk+ck)

σk−−→ (vk+1+ck)

Lemma (Run Amalgamation)
If ρE ρ1,ρ2 are runs, then there exists a run ρ ′ D ρ1,ρ2.
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Maximal Run Ideals (1/2)

Since E is a wqo, B def
= minERunsA(x,y) is finite:

↓RunsA(x,y) =
⋃
ρ∈B
↓(↑ρ∩RunsA(x,y))

For any run ρ, ↓(↑ρ∩RunsA(x,y)) is
I non-empty: it contains at least ρ
I directed by run amalgamation
I downward-closed by definition

Proposition
The maximal ideals of ↓RunsA(x,y) are the ideals of the
form ↓(↑ρ∩RunsA(x,y)) for ρ ∈ RunsA(x,y).
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Maximal Run Ideals (2/2)

Transformer Relations

I
c
y

def
= {(u,v) | ∃σ ∈A∗ .u+ c σ−→ v+ c}

I
c
y is periodic: it contains 0, and if u

c
y v and u ′

c
y v ′,

then u+u ′
c
y v+ v ′

Decomposition of ↑ρ∩RunsA(x,y)

I let ρ= c0
a1−→ c1 · · ·ck−1

ak−→ ck

I consider all the (k+1)-tuples

(v0,v1),(v1,v2), . . . ,(vk−1,vk) s.t. v0
c0
y v1

c1
y · · ·

ck
y vk

every projection Pj
def
= {(vj,vj+1) | . . . } is also periodic

I defineΩj as the set of runs vj+ cj
σj−→ vj+1 + cj for each j
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Marked Witness Graphs
Example

A= {a,b} where a= (1,1,−1) b= (−1,0,1)

cj = (1,0,1) Pj = {((0,0,0),(0,n,0)) | n ∈N}

Ωj = {cj
w1···wn−−−−−→ cj+(0,n,0) | n ∈N,wi ∈ {ab,ba}}

(1,0,1)

(2,1,0) (0,0,2)

(1,1,1)
...

(1,n−1,1)

(2,n,0) (0,n−1,2)

(1,n,1)

a b

ab

a b

ab
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Marked Witness Graphs
EachΩj can be represented as a finite marked witness
graphMj.

Example
A= {a,b} where a= (1,1,−1) b= (−1,0,1)

cj = (1,0,1) Pj = {((0,0,0),(0,n,0)) | n ∈N}

Ωj = {cj
w1···wn−−−−−→ cj+(0,n,0) | n ∈N,wi ∈ {ab,ba}}

(1,0,1) (1,ω,1)

(2,ω,0) (1,ω,1) (0,ω,2)

b

b

a

a
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Marked Witness Graph Sequences
Back to ρ= c0

a1−→ c1 · · ·ck−1
ak−→ ck:

I ↑ρ∩RunsA(x,y) can be represented using a sequence of
marked witness graphs and actions from A:

ξ=M0,a1,M1, . . . ,ak,Mk

I conversely, each such sequence defines an associated
set of runsΩξ and an associated prerun ideal Iξ.

I conditions on such sequences:
I consistent markings (Mayr, 1981)
I θ condition (Kosaraju, 1982)
I perfectness condition (Lambert, 1992)

Lemma (Perfectness implies Adherence Membership)
If ξ is perfect then Iξ = ↓Ωξ.

21/23
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I ↑ρ∩RunsA(x,y) can be represented using a sequence of
marked witness graphs and actions from A:

ξ=M0,a1,M1, . . . ,ak,Mk

I conversely, each such sequence defines an associated
set of runsΩξ and an associated prerun ideal Iξ.

I perfectness condition on such sequences

Lemma (Perfectness implies Adherence Membership)
If ξ is perfect then Iξ = ↓Ωξ.

Theorem
There exists a finite set Ξ of perfect marked witness
graph sequences s.t. ↓RunsA(x,y) =

⋃
ξ∈Ξ Iξ.
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KLMST Algorithm (schematically)
Construct a sequence Ξ0,Ξ1, . . . of finite sets of marked
witness graph sequences with ∀n

Dn
def
=

⋃
ξ∈Ξn

Iξ ⊇ ↓RunsA(x,y)

initially Ξ0 is s.t.D0 = PreRunsA

∀n I if Ξn = {ξ}]Ξ and
ξ is not perfect, which is decidable,

Ξn+1
def
= Ξ∪ (decompose(ξ))

I otherwise stop:

Dn = ↓RunsA(x,y)

terminates via a ranking function argument
22/23
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Concluding Remarks

I ideals as an algorithmic tool to work with
downward-closed sets

I new understanding of the KLMST decomposition
extension to other models (BVASS, PDVAS,. . . )?

I complexity of VAS Reachability :
I PSpace-complete with states if d= 2 (Blondin et al., 2015)

I ExpSpace-hard (Lipton, 1976) and in Fω3 (Leroux and S., 2015)
in general

I to learn more: references in the next slide and
http://arxiv.org/abs/1503.00745 (Leroux and S., 2015)
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