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alternating VASS and asymmetric vector
addition games

applications
» substructural logics

» regular simulations
» energy games

complexity
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VECTOR ADDITION GAMES

» two Players ¢ and 0: 1
partitioned state space 0,0
b
Q= Q<> W Qg L1 .
» dimension d € IN: o< 230,
transitions labelled AN o
. . d
with vectors in Z o
» defines an infinite &2
arena in Q x IN“ 42.22]
> .a 0,0
transition is blocked if it <p22>

makes a value negative
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GAME OBJECTIVES
Monotone objectives:

coverability given g, € Q, & wins if any
configuration in {g} x N4 is visited

non-termination < wins if the play is infinite

parity given a colouring c:Q —{1,...,k},
¢ wins if the least colour seen
infinitely often is even
objective:
reachability given g, € Q, ¢ wins if the
configuration (g, 0) is visited



INITIAL CREDIT

Given g, € Q:
fixed start from the configuration (g,,0)

unknown < chooses an initial vector v, € N4
start from the configuration (g,,v,)
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CovERrABILITY VASS GAMES

(Raskin, Samuelides, and Van Begin, 2005)

Player O can enforce zero-tests:

Minsky machine Symmetric VASS Game
o L
q¢ = q0< °oq
N Oq2 —e; oqz

T Reoremm Rasknetat, 2005
Coverability VASS games with fixed initial credit

are undecidable.



Y
AsyMMETRIC VASS GAMES

aka. vector games (Kanovich, 1995), B-games (Raskin et al., 2005), single-sided games (Abdulla et al., 2013)

» Q=0QsWQg, resp. and
» To C Qo x Z% x Q:

qo-%q'
» T C Qo x {0} x Q:

q1
do
N
qz
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ALTERNATING VASS

aka. “and-branching” (Lincoln et al., 1992; Urquhart, 1999)

O finite set of states
g, initial state in Q

T, finite set of transitions
CQOxZ%xQ:
!/

g9

Tr setof transitions C Q3:

q1

q/'
N\
a»
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TREE SEMANTICS = WINNING STRATEGIES

in T(Q x IN%):
Initial unary rule in T, fork rule in Ty
0g:,0 q,v q,v
SECV+41 ,vo o2V
transition

v+u=>0
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MoNoOoTONE GAMES

Lemma
If Controller wins a monotone AVASS game from

some configuration (q,v) andv' > v, then he
also wins from (g,v’).



MoNoOoTONE GAMES

Lemma

If Controller wins a monotone AVASS game from
some configuration (q,v) andv' > v, then he
also wins from (g,v’).

Corollary (using Dickson’s Lemma)
> strategies suffice for Controller

» coverability and non-termination AVASS games
are decidable

- from Figueira et al.
(2011) apply
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REACHABILITY OBJECTIVE (1/2)

(Lincoln, Mitchell, Scedrov, and Shankar, 1992)

Player O can enforce zero-tests using the
reachability objective (g¢, 0):

Minsky machine AVASS
Vizi: —e; EO—>0qy
o Oq1 E<
s = q<>< 41
~Yog g,

T h eorerm (tnconetal,1992)
Reachability AVASS games with fixed initial

credit are undecidable.
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REACHABILITY OBJECTIVE (2/2)

(Urquhart, 1999)

Unknown initial credit = game
whereVg e Q.V1 <i<dyg R geT,

Th E0rerm Urauhart, 1999; Lazic and S, 2014)
Reachability AVASS games with unknown initial

credit are ACKERMANN-complete.



COMPLEXITY PREVIEW

initial credit

objective fixed unknown
coverability 2Exp P
(Courtois and S., 2014) (trivial)
non-termination 2Exp <? < TOWER coNP
(Brazdil et al., 2010) (Chatterjee et al., 2010)
parity 2Exp <? < A‘l) coNP
(Abdulla et al., 2013) (Chatterjee et al., 2012)
reachability 39 Ack

(Lincoln et al., 1992) (Urquhart, 1999)
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SoME APPLICATIONS OF AVASS

» substructural logics

(Lincoln et al., 1992; Kanovich, 1995; Urquhart, 1999; Lazi¢ and S., 2014)
> energy galmes i et al, 2010; Chatterjee et al., 2012)
» mean-payoff games (catereeetat, 2010)
» one-sided p-calculus msauaetat, 2013

» regular simulation games

(Janéar and Moller, 1995; Lasota, 2009; Abdulla et al., 2013, 2014; Courtois and S., 2014)
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SUBSTRUCTURAL Locics

» Restrict the use of rules: e.g.

F,A,AI—BC I'FB
INAFB © INAFB

(W)

» track resource usage in logic



SUBSTRUCTURAL Loaics

» Restrict the use of rules: e.g.

INAAFB I'FB

rAars @ Tars™W

» track resource usage in logic

» example:
» in A — B, A should be relevant to the proof of B

» forbids weakening (W) but allows contraction (C)

» cannot prove e.g. A — (B— A) and (A&—A) — B
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(INTUITIONISTIC) LINEAR LOGIC

a0

AFA
rAkcC rB-C r-4 TeB
I ABF C ﬂA&BFC(w r-Acp e

rA-C T,BFC reA r-B

L R
rA®BFC (o) r'-A®B FFA@B(®
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(INTUITIONISTIC) LINEAR LOGIC

()

AFA
FEA ABFC rALB
FAAoBrC™  Traws®™
FAFC  T.BFC FFA THB
FARBILC T.A&BrC'®  ~Tragp
FALC TBEC FeA reB
rAacBrCc ) TraeB Traaspr®
ABEC A AFB

FrAoBrCc® TArAsmB e
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(INTUITIONISTIC) LINEAR LOGIC

INAJJAEB INAFB

a2 Tars @ rarsY
FEA ABFC rALB
FAAoBrC™  Traws®™
FAFC  T.BFC FFA THB
FARBILC T.A&BrC'®  ~Tragp
FALC T,BEC FeA reB
rAacBrCc )  TraeB Traapr®
ABEC A AFB

FrAcBrCc®  TaAraAsB e
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(1,d)-HORN PROGRAMS (1/3)

(Kanovic h, 1995)

connectives {®,—o,®,!}

simple products W, X,Y,Z:=p1 @p2 @+ Q@ Pm
for atomic p;’s

Horn implications X —oo Y
&-Horn implications X o (Y1 ®---®Y,,)

(I,&)-Horn sequents W,II' Z where I' contains
Horn and &-Horn implications



S VASS Games AVASS Substructural Logics Energy Games Regular Simulations Complexity

(1,®)-HoOrRN PROGRAMS (2/3)

Horn programs AVASS
X—oY = o500

N
S

X—o(Y1®-dY,) = o—%> ;/o
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(1,d)-HORN PROGRAMS

Horn programs

X—-oY

X—o(Y1® @Yy

qu” —q'®@u’

go —o (q1 ®q2)
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(1,d)-HORN PROGRAMS (3/3)

Th eore|m (Kanovih, 1995)
Provability of (1,&)-Horn sequents and AVASS
reachability are PSPACE equivalent.

CO rO l. l.a ry (Lincoln et al., 1992)
Provability in propositional linear logic is
undecidable.



S VASS Games ~ AVASS  Substructural Logics

Energy Games Regular Simulations

CONTROLLER SYNTHESIS

Property

F'Fp

Environment

Complexity

- ) [I00000 Yj”
e i = TE A5

=



3R  VASSGames  AVASS  Substructural Logics

Energy Games

CONTROLLER SYNTHESIS

Property
F'Fp

4

Controller

Regular Simulations Complexity

Enwronment

— —
oooog. ﬂ!“l
Ch 2
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CONTROLLER SYNTHESIS

Property Enwronment
F'Fp
U
~ T s N E
Controller il 5T ILJ0
Resources

-0 & 8

must remain non-negative
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MuULTIDIMENSIONAL ENERGY GAMES  (1/2)

(Brazdil, Jancar, and Kucera, 2010; Chatterjee, Doyen, Henzinger, and Raskin, 2010)
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MuULTIDIMENSIONAL ENERGY GAMES  (1/2)

(Brazdil, Jancar, and Kuéera, 2010; Chatterjee, Doyen, Henzinger, and Raskin, 2010)

» defines an infinite
arena in Q x Z¢

transitions are
non-blocking

» non-termination +

Controller must keep

the values <5 1>

non-negative along an

infinite play
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MuULTIDIMENSIONAL ENERGY GAMES  (2/2)

(Abdulla, Mayr, Sangnier, and Sproston, 2013)

Energy Games AVASSo ,
q
qo——0q’ = <
qgo—
oL

Theorem wduaea, 2013
Non-termination AVASS games and
multidimensional energy games are
LoGSPACE-equivalent.



MuULTIDIMENSIONAL MEAN-PAYoFF GAMES

(Chatterjee, Doyen, Henzinger, and Raskin, 2010)

» integer vector game over Q x Z¢

> : liminf, %Vn if v,, is the nth vector of
the play

> vectorr € Q%: a payoff > r is sought

Th E0Ore|M (Cnatteree etal, 2010)
There exists a finite-memory winning strategy

for a multidimensional mean-payoff game iff
there is a winning strategy in the corresponding
multidimensional energy game.
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FINITE-STATE SPECIFICATIONS

Required behaviours  Implementation Safe behaviours

= ¢ € ECTL* =1 € ACTL*
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SiMULATION GAME

» two labelled transition
systems S; and S,

» two players and
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SiMULATION GAME

>

two labelled transition
systems S; and S,

two players and

at each turn

. Spoiler chooses a

successor state in S1
Duplicator must choose a
successor state in S; with
the same action label

any blocked player loses;
Duplicator wins if the play is
infinite

|
g

"

95 -

~.
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VASS REGULAR SIMULATIONS

Simulation relations between
» a labelled VASS V (i.e. an AVASS with Qg =)

» a finite-state system &

Th eore m (Janéar and Moller, 1995)
Both V < F andF <V are decidable.

Th eorem (Lasota, 2009)
BothV < JF andJ <V are ExpSpAce-hard,

already if'V is a BPP.
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VASS < FS

Simulation Game AVASS

@ _ <AP>—2g p,a

@@

Th eorerm (Courteisands., 2014)
V £ F and coverability AVASS games are

LoGSpPAce-equivalent (already holds for BPP).
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FS < VASS

Simulation Game AVASS

@)

T h e O re m (Abdulla et al., 2013; Courtois and S., 2014)
F <V and non-termination AVASS games are

LocSpPAce-equivalent (already holds for BPP).



COMPLEXITY
initial credit
objective fixed unknown
coverability P
(Courtois and S., 2014) (trivial)
non-termination 2Exp <? < ToOwEeRr coNP
(Brazdil et al., 2010) (Chatterjee et al., 2010)
parity 2Exp <? < A‘l) coNP
(Abdulla et al., 2013) (Chatterjee et al., 2012)
reachability 39 Ack

(Lincoln et al., 1992) (Urquhart, 1999)
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CoOVERABILITY WITH FIXED INITIAL CREDIT

(Courtois and S., 2014)

Proposition (Lower Bounds)

AVASS Coverability and Non-termination are
2Exp-hard, and Exp-hard in fixed dimension

d>4.

Proposition (Upper Bound)

AVASS Coverability is in 2Exp, and in Exp in fixed
dimension (more precisely pseudo-polynomial).
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CoOVERABILITY WITH FIXED INITIAL CREDIT

(Courtois and S., 2014)

upper bound Rackoff (1978)’s technique: small
witness property

lower bounds Lipton (1976)’s technique:
reduction from alternating Minsky
machines
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ProoF PLAN FOR UPPER BOUND

» if coverable, then there exists a small withess of
double exponential height

» alternating TM can check the existence of a witness in
AEXPSPACE = 2ExpP

» induction on dimension:
> root label g,v

» enforces coverability: every leaf labelled by g

> allows negative values on coordinates i <j < d

» H;: bound on sup, , of the heights of
i-witnesses for (g,v)
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SMALL WITNESSES: BASE CASE

v

No state can appear twice along a branch of a
minimal O-witness:

Hy =1Q|



S Complexity

SMALL WITNESSES: INDUCTION STEP

an (i+1)-witness t
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SMALL WITNESSES: INDUCTION STEP

B = || Tyl - Hi

q,v
c 3
< B; N
f\» S
q1,v1 qan,vn °€.
x
t tn
an (i+1)-witness t = Clty,..., tn]
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SMALL WITNESSES: INDUCTION STEP

Bi = || Tulloo - H

< Bi
q1,v1 qn,vn ,\»

10l ()

B\ Sty

an (i+1)-witness t = Clty,..., tn]

1—|—1 |Q| BZ_H +H

1
" 101 (1Y



CoMPLEXITY OF NON-TERMINATION

Marcin Jurdzinski and Ranko Lazi¢:

Claim
Non-termination AVASS games with fixed initial
credit are in 2Exp.

This relies on a new bound:

Claim

Non-termination AVASS games with unknown
initial credit and fixed dimension d are
pseudo-polynomial.



CONCLUDING REMARKS

» alternating VASS / asymmetric VASS games as
a sensible model for counter games

» forgotten connections with substructural logics

» upcoming 2ExP-completeness for
non-termination AVASS games and FS < VASS

» open gap for parity AVASS games
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