Home Assignment 1: Safety and Liveness (Solutions)

Here are partial solutions and hints for the exercises that caused some difficulties.
Exercise 1 (A Mutual Exclusion Protocol).

1. The construction of the transition system was, quite surprisingly, often incorrect. (A very similar mutual exclusion protocol is detailed in the lecture notes...) Very often, the loops on the waiting and critical section states were missing.

2. The best way to see that mutual exclusion holds is to construct the "low level" transition system and check that no state with both c_{0} and c_{1} holding at the same time is accessible. Here is half of it:

3. A LTL formula for mutual exclusion is $G\left(\neg\left(c_{0} \wedge c_{1}\right)\right)$.
4. In the transition system above, one can see that the fairness constraint ("the other process does not stay forever in the critical section") takes care of the loops on the states labeled with c_{0} or c_{1}, but not on the states labeled with both w_{0} and w_{1} (middle state). There is an infinite execution that stays forever in this state, without ever granting the access to the critical section although the processes are waiting. In short, the fairness assumption is not strong enough to guarantee freedom of starvation.
5. A LTL formula for freedom of starvation has to include the fairness constraint: $\bigwedge_{i \in\{0,1\}}\left(\mathrm{GF} \neg \mathrm{c}_{1-i}\right) \Rightarrow \mathrm{G}\left(\mathrm{w}_{i} \Rightarrow \mathrm{Fc}_{i}\right)$, or other reasonable variations.

Exercise 4 (Separation into Past and Future). Aperiodic languages seem to have been a source of difficulties. There are several characterizations of these languages over Σ^{∞} :

- as the languages defined by $\operatorname{LTL}(\mathrm{Y}, \mathrm{S}, \mathrm{X}, \mathrm{U})$ or $\operatorname{LTL}(\mathrm{X}, \mathrm{U})$ formulæ, (this was the definition proposed in the subject),
- as the languages defined by first order $\mathrm{FO}(<)$ formulæ,
- as the languages defined by star-free regular expressions with complement,
- as the languages recognized by morphisms into aperiodic finite structures (monoids or ω-semigroups depending whether we are considering finite or infinite words),
- as the languages defined by counter-free finite or Büchi automata (depending whether we are considering finite or infinite words).

Any of these definitions could be used, depending on your personal taste, but everything could be done using the first.

1. Let $L \subseteq \Sigma^{+}$be an aperiodic language of finite words. The exercise was to show that L can be associated with a pure past formula φ such that

$$
L=\left\{w=a_{0} a_{1} \cdots a_{n} \in \Sigma^{+}|w, n|=\varphi\right\}
$$

The first thing to observe is that aperiodic languages are closed under reversal (aka mirror). Using the $\operatorname{LTL}(\mathrm{Y}, \mathrm{S}, \mathrm{X}, \mathrm{U})$ characterization of aperiodic languages, this can be proved by exhibiting a formula φ for L, by exchanging past and future modalities (i.e. $\mathrm{X} \leftrightarrow \mathrm{Y}$ and $\mathrm{U} \leftrightarrow \mathrm{S}$) in φ (obtaining a new formula φ^{\prime}), and adding the constraint that the formula should be evaluated from the end of the string (by considering $\mathrm{F}\left(\varphi^{\prime} \wedge \neg \mathrm{X} \top\right)$ - this last formula defines the reversal of $\left.L\right)$.
Then, by the $\operatorname{LTL}(X, U)$ characterization of aperiodic languages, one can find a pure future formula ψ for the reversal of L, from which the desired pure past formula φ is obtained by exchanging Y for X and S for U .
2. The purpose of this exercise was to find a decomposition

$$
L=\bigcup_{j \in J} P_{j} \cdot a_{j} \cdot F_{j}
$$

Of course, given the next question, not any decomposition would do. We have a simple decomposition:

$$
L=\bigcup_{w \in L} w=\bigcup_{u a v \in L, u \in \Sigma^{*}, a \in \Sigma, v \in \Sigma^{\omega}} u a v
$$

Then each such uav is such that

$$
[u] \cdot a \cdot[v] \subseteq[u] \cdot[a] \cdot[v] \subseteq[u a v]
$$

since $a \in[a]$ and $[x] \cdot[y] \subseteq[x y]$ for any x in Σ^{*} and y in Σ^{ω} (here we extend \sim_{μ} to a relation on Σ^{*} with $[\varepsilon]=\{\varepsilon\}$, this simplifies matters later). Since furthermore $w \in L$ implies $[w] \subseteq L$, we have

$$
\bigcup_{u a v \in L, u \in \Sigma^{*}, a \in \Sigma, v \in \Sigma^{\omega}}[u] \cdot a \cdot[v] \subseteq L
$$

The reverse inclusion holds vacuously since $u a v \in[u] \cdot a \cdot[v]$. Hence we have the desired decomposition since \sim_{μ} and \approx_{μ} are of finite index, Σ is a finite alphabet, and each equivalence class is an aperiodic language.

Let us anticipate the next question and consider

$$
P=\bigcup_{u a v \in L, u \in \Sigma^{*}, a \in \Sigma, v \in \Sigma^{\omega}}[u] \cdot a
$$

That $\operatorname{Pref}(L) \backslash\{\varepsilon\} \subseteq P$ is again obvious. The converse inclusion holds because any word in any $[u] \cdot a$ can be completed with any word in $[v]$ into a word of L (again $[u] \cdot a \cdot[v] \subseteq[u a v] \subseteq L)$.
3. The separation theorem and how to prove it were mostly well understood, but the details were usually not quite right. The best was probably to define the separation formula as

$$
\varphi=\bigvee_{j \in J, P_{j} \neq\{\varepsilon\}} \mathrm{Y} \varphi_{j} \wedge a_{j} \wedge \mathrm{X} \varphi_{j}^{\prime} \vee \bigvee_{j \in J, P_{j}=\{\varepsilon\}}(\neg \mathrm{Y} \top) \wedge a_{j} \wedge \mathrm{X} \varphi_{j}^{\prime}
$$

with φ_{j} the $\operatorname{LTL}(\mathrm{Y}, \mathrm{S})$ formula associated with $P_{j} \neq\{\varepsilon\}$ (thanks to Question 4.1) and φ_{j}^{\prime} the $\operatorname{LTL}(\mathrm{X}, \mathrm{U})$ formula associated with F_{j}.

Exercise 6 (Characteristic Liveness Formulæ).

1. The characteristic liveness formula for the starvation freedom property was seldom correct. Here is one for process P_{0}; we set $\left.\varphi_{0}=\mathrm{G}\left(\mathrm{w}_{0} \Rightarrow \mathrm{Fc}_{0}\right)\right)$:

$$
\begin{aligned}
& \mathrm{F}\left(\bigvee_{a \in \Sigma} \top \wedge a \wedge \mathrm{XGc}_{1}\right. \\
& \quad \vee\left(\left(\left(\neg \mathrm{w}_{0}\right) \mathrm{S} \mathrm{c}_{0}\right) \vee \neg\left(\top \mathrm{S} \mathrm{w}_{0}\right)\right) \wedge a \wedge \varphi_{0} \\
& \left.\quad \vee\left(\neg \mathrm{c}_{0} \mathrm{~S} \mathrm{w}_{0}\right) \wedge a \wedge \mathrm{Fc}_{0} \wedge \varphi_{0}\right)
\end{aligned}
$$

One can easily check that the disjunction of past parts forms a valid formulaalthough some conjuncts might not be satisfiable, e.g. $\left(\neg \mathrm{c}_{0} \mathrm{~S} \mathrm{w}_{0}\right) \wedge a$ if $\mathrm{c}_{0} \in a$.

Exercise 7 (Model Checking Safety Formulæ).
4. We want to prove that the model checking problem for finite Kripke structures and characteristic safety formulæ is PSPACE-complete. By the previous question, you should have an algorithm in polynomial space for this problem, and thus the remaining issue is to prove PSPACE-hardness.

The reduction from QBF given in the lecture notes is easy to adapt for this purpose: given a QBF instance $\gamma=Q_{1} x_{1} \cdots Q_{n} x_{n} \bigwedge_{1 \leq i \leq m} \bigvee_{1 \leq j \leq k_{i}} a_{i j}$ with each Q_{l} a quantifier in $\{\forall, \exists\}$ and each $a_{i j}$ a literal of form x_{l} or $\neg x_{l}$ for some $1 \leq l \leq m$, construct the same Kripke structure and the formulæ

$$
\begin{aligned}
& \psi=\bigwedge_{1 \leq l \leq m}\left(s_{l} \Rightarrow\left(\left(\neg e_{l} \wedge \bigwedge_{a_{i j}=x_{l}} \neg a_{i j}\right) \mathrm{SY} x_{l}^{f}\right) \vee\left(\left(\neg e_{l} \wedge \bigwedge_{a_{i j}=\neg x_{l}} \neg a_{i j}\right) \mathrm{SY} x_{l}^{t}\right) \vee \neg\left(\mathrm{TS} e_{l}\right)\right) \\
& \varphi=\bigwedge_{l \mid Q_{l}=\forall}\left(s_{l-1} \Rightarrow\left(\left(\neg e_{l-1} \mathrm{~S} x_{l}^{t}\right) \wedge\left(\neg e_{l-1} \mathrm{~S} x_{l}^{f}\right)\right) \vee \neg\left(\mathrm{T} e_{l}\right)\right)
\end{aligned}
$$

Then, γ is valid iff the system verifies existentially $\mathrm{G}(\psi \wedge \varphi)$. The runs that verify this formula are indeed the same as the ones in the lecture notes.

