
MPRI 1-22 Introduction to Verification November 9, 2009

Home Assignment 1: Safety and Liveness (Solutions)

Here are partial solutions and hints for the exercises that caused some difficulties.

Exercise 1 (A Mutual Exclusion Protocol).

1. The construction of the transition system was, quite surprisingly, often incorrect.
(A very similar mutual exclusion protocol is detailed in the lecture notes. . .) Very
often, the loops on the waiting and critical section states were missing.

∅yi ← 0 ∧ s← 0 {wi} {ci}
yi ← 1; s← i

y1−i = 1 ∧ s = i

y1−i = 0 ∨ s ∕= i

yi ← 0

2. The best way to see that mutual exclusion holds is to construct the “low level”
transition system and check that no state with both c0 and c1 holding at the same
time is accessible. Here is half of it:

{s = 0, y0 = 0, y1 = 0} {s = 0, y0 = 1, y1 = 0, w0} {s = 0, y0 = 1, y1 = 0, c0}

{s = 1, y0 = 0, y1 = 1, w1} {s = 1, y0 = 1, y1 = 1, w0, w1} {s = 1, y0 = 1, y1 = 1, c0, w1}

3. A LTL formula for mutual exclusion is G(¬(c0 ∧ c1)).

4. In the transition system above, one can see that the fairness constraint (“the other
process does not stay forever in the critical section”) takes care of the loops on
the states labeled with c0 or c1, but not on the states labeled with both w0 and
w1 (middle state). There is an infinite execution that stays forever in this state,
without ever granting the access to the critical section although the processes
are waiting. In short, the fairness assumption is not strong enough to guarantee
freedom of starvation.

5. A LTL formula for freedom of starvation has to include the fairness constraint:⋀
i∈{0,1}(GF¬c1−i)⇒ G(wi ⇒ Fci), or other reasonable variations.

1

MPRI 1-22 Introduction to Verification November 9, 2009

Exercise 4 (Separation into Past and Future). Aperiodic languages seem to have been
a source of difficulties. There are several characterizations of these languages over Σ∞:

∙ as the languages defined by LTL(Y,S,X,U) or LTL(X,U) formulæ, (this was the
definition proposed in the subject),

∙ as the languages defined by first order FO(<) formulæ,

∙ as the languages defined by star-free regular expressions with complement,

∙ as the languages recognized by morphisms into aperiodic finite structures (monoids
or !-semigroups depending whether we are considering finite or infinite words),

∙ as the languages defined by counter-free finite or Büchi automata (depending
whether we are considering finite or infinite words).

Any of these definitions could be used, depending on your personal taste, but everything
could be done using the first.

1. Let L ⊆ Σ+ be an aperiodic language of finite words. The exercise was to show
that L can be associated with a pure past formula ' such that

L = {w = a0a1 ⋅ ⋅ ⋅ an ∈ Σ+ ∣ w, n ∣= '} .

The first thing to observe is that aperiodic languages are closed under reversal
(aka mirror). Using the LTL(Y,S,X,U) characterization of aperiodic languages,
this can be proved by exhibiting a formula ' for L, by exchanging past and future
modalities (i.e. X↔ Y and U↔ S) in ' (obtaining a new formula '′), and adding
the constraint that the formula should be evaluated from the end of the string (by
considering F('′ ∧ ¬X⊤)—this last formula defines the reversal of L).

Then, by the LTL(X,U) characterization of aperiodic languages, one can find a
pure future formula for the reversal of L, from which the desired pure past
formula ' is obtained by exchanging Y for X and S for U.

2. The purpose of this exercise was to find a decomposition

L =
∪
j∈J

Pj ⋅ aj ⋅ Fj .

Of course, given the next question, not any decomposition would do. We have a
simple decomposition:

L =
∪
w∈L

w =
∪

uav∈L,u∈Σ∗,a∈Σ,v∈Σ!

uav .

Then each such uav is such that

[u] ⋅ a ⋅ [v] ⊆ [u] ⋅ [a] ⋅ [v] ⊆ [uav]

2

MPRI 1-22 Introduction to Verification November 9, 2009

since a ∈ [a] and [x] ⋅ [y] ⊆ [xy] for any x in Σ∗ and y in Σ! (here we extend ∼� to
a relation on Σ∗ with ["] = {"}, this simplifies matters later). Since furthermore
w ∈ L implies [w] ⊆ L, we have∪

uav∈L,u∈Σ∗,a∈Σ,v∈Σ!

[u] ⋅ a ⋅ [v] ⊆ L .

The reverse inclusion holds vacuously since uav ∈ [u] ⋅ a ⋅ [v]. Hence we have the
desired decomposition since ∼� and ≈� are of finite index, Σ is a finite alphabet,
and each equivalence class is an aperiodic language.

Let us anticipate the next question and consider

P =
∪

uav∈L,u∈Σ∗,a∈Σ,v∈Σ!

[u] ⋅ a .

That Pref(L)∖{"} ⊆ P is again obvious. The converse inclusion holds because any
word in any [u] ⋅ a can be completed with any word in [v] into a word of L (again
[u] ⋅ a ⋅ [v] ⊆ [uav] ⊆ L).

3. The separation theorem and how to prove it were mostly well understood, but the
details were usually not quite right. The best was probably to define the separation
formula as

' =
⋁

j∈J,Pj ∕={"}

Y'j ∧ aj ∧ X'′j ∨
⋁

j∈J,Pj={"}

(¬Y⊤) ∧ aj ∧ X'′j

with 'j the LTL(Y,S) formula associated with Pj ∕= {"} (thanks to Question 4.1)
and '′j the LTL(X,U) formula associated with Fj .

Exercise 6 (Characteristic Liveness Formulæ).

1. The characteristic liveness formula for the starvation freedom property was seldom
correct. Here is one for process P0; we set '0 = G(w0 ⇒ Fc0)):

F
(⋁
a∈Σ

⊤ ∧ a ∧ XGc1

∨(((¬w0) S c0) ∨ ¬(⊤ S w0)) ∧ a ∧ '0

∨(¬c0 S w0) ∧ a ∧ Fc0 ∧ '0

)
.

One can easily check that the disjunction of past parts forms a valid formula—
although some conjuncts might not be satisfiable, e.g. (¬c0 S w0) ∧ a if c0 ∈ a.

3

MPRI 1-22 Introduction to Verification November 9, 2009

Exercise 7 (Model Checking Safety Formulæ).

4. We want to prove that the model checking problem for finite Kripke structures
and characteristic safety formulæ is PSpace-complete. By the previous question,
you should have an algorithm in polynomial space for this problem, and thus the
remaining issue is to prove PSpace-hardness.

The reduction from QBF given in the lecture notes is easy to adapt for this pur-
pose: given a QBF instance = Q1x1 ⋅ ⋅ ⋅Qnxn

⋀
1≤i≤m

⋁
1≤j≤ki aij with each Ql

a quantifier in {∀, ∃} and each aij a literal of form xl or ¬xl for some 1 ≤ l ≤ m,
construct the same Kripke structure and the formulæ

 =
⋀

1≤l≤m

⎛⎝sl ⇒
⎛⎝(¬el ∧

⋀
aij=xl

¬aij) S Yxfl

⎞⎠ ∨
⎛⎝(¬el ∧

⋀
aij=¬xl

¬aij) S Yxtl

⎞⎠ ∨ ¬(⊤ S el)

⎞⎠
' =

⋀
l∣Ql=∀

(
sl−1 ⇒ ((¬el−1 S xtl) ∧ (¬el−1 S xfl)) ∨ ¬(⊤ S el)

)
Then, is valid iff the system verifies existentially G(∧ '). The runs that verify
this formula are indeed the same as the ones in the lecture notes.

4

