Home Assignment 1: Safety and Liveness

To hand in before or on October 26, 2009. The penalty for delays is 2 points per day.

60				1	2	3	4
20	5	6	7	8	9	10	11
ber	(12)	13	14	15	16	17	18
cto	19	20	21	22	23	24	25
Õ	(26)	27	28	29	30	31	

Electronic versions (PDF only) can be sent by email to \langle schmitz@lsv.ens-cachan.fr \rangle , paper versions should be handed in on the 26th or put in my mailbox at LSV, ENS Cachan.

This homework investigates the distinction between *safety* and *liveness* properties on infinite words. Informally, the definition for safety is that nothing "bad" (like a crash or a deadlock) ever happens, and for liveness that something "good" (like entering a critical section) eventually occurs. Let us consider a more concrete example to illustrate these notions:

Exercise 1 (A Mutual Exclusion Protocol). The following program is a mutual exclusion protocol for two processes due to Pnueli. There is a shared boolean variable s, initialized to 1, and two shared boolean variables y_i , i in $\{0, 1\}$, initialized to 0. Each process P_i can read the values of s, y_0 , and y_1 , but only write a new value in s and y_i . Here is the code of process P_i in C-like syntax:

while (true)
{
 /* 1: Noncritical section. */
 atomic { y_i = 1; s = i; };
 /* 2: Wait for turn. */
 wait until ((y_{1-i} == 0) || (s != i));
 /* 3: Critical section. */
 y_i = 0;
}

1. Draw the transition system of each process, and construct their parallel composition. Label the states appropriately using the atomic propositions w_i and c_i , holding when process P_i is waiting or in the critical section, respectively.

- 2. Does the algorithm ensure *mutual exclusion*, i.e. that the two processes can never be simultaneously inside the critical section?
- 3. Give an LTL formula for mutual exclusion, i.e. such that all its models are traces where the two processes are never simultaneously inside the critical section.
- 4. Does the algorithm ensure *starvation freedom*, i.e. that every waiting process will eventually access the critical section, provided that the other process does not stay forever inside the critical section?
- 5. Give an LTL formula for starvation freedom.

The two mentioned properties, mutual exclusion and starvation freedom, are respectively a safety and a liveness property.

1 Topological Characterization

We consider as usual a finite alphabet Σ , the sets of finite words Σ^* and of infinite words Σ^{ω} , and $\Sigma^{\infty} = \Sigma^* \cup \Sigma^{\omega}$. This section provides a formal definition of safety and liveness properties, using some simple topological characterizations.

Exercise 2 (Cantor Topology). Let us define a subset O of Σ^{ω} as *open* if it is of form $W \cdot \Sigma^{\omega}$ with $W \subseteq \Sigma^*$. A *closed* subset is the complement of an open subset. A *dense* subset D is such that the only closed subset of Σ^{ω} containing D is Σ^{ω} itself. We further define the set of finite prefixes of a language L included in Σ^{ω} as

$$\begin{split} \operatorname{Pref}(L) &= \bigcup_{\sigma \in L} \operatorname{Pref}(\sigma) \\ \operatorname{Pref}(\sigma) &= \{ w \in \Sigma^* \mid \exists \sigma' \in \Sigma^\omega, \sigma = w \sigma' \} \end{split}$$

and the *closure* of a language L included in Σ^{ω} as the language

$$\operatorname{cl}(L) = \{ \sigma \in \Sigma^{\omega} \mid \operatorname{Pref}(\sigma) \subseteq \operatorname{Pref}(L) \} .$$

- 1. Show that Σ^{ω} , \emptyset , $\bigcup_i O_i$ for open sets O_i , and $\bigcap_i O_i$ for finitely many open sets O_i are all open sets.
- 2. Show that cl(L) is the smallest closed set containing L.
- 3. Show that $D \subseteq \Sigma^{\omega}$ is dense if and only if $\mathsf{Pref}(D) = \Sigma^*$.

Exercise 3 (Decomposition into Safety and Liveness). Recall that a *property* over a set of atomic propositions AP is a language over $\Sigma = 2^{AP}$, i.e. a subset of Σ^{ω} . A system verifies a property if its set of labeled traces is included in this language. Let us define a *safety* property as a closed subset of Σ^{ω} , and a *liveness* property as a dense subset of Σ^{ω} . The informal intuition behind these definitions is that

- if a safety property does not hold, then some "bad" behavior should occur at some point, thus after a finite time;
- no partial execution is irremediable for a liveness property: it always remains possible for the hoped for "good" behavior to occur at some future time.
- 1. Do the two properties studied in Exercise 1 comply with this formalization of safety and liveness: justify whether your LTL formulæ define closed or dense sets.
- 2. Prove the following theorem:

Theorem 1 (Decomposition). For any property $L \subseteq \Sigma^{\omega}$, there exist a safety property $L_s \subseteq \Sigma^{\omega}$ and a liveness property $L_l \subseteq \Sigma^{\omega}$ such that $L = L_s \cap L_l$.

2 Past and Future LTL Formulæ

Recall that an LTL(Y, S, X, U) formula φ defines an *aperiodic language* $L(\varphi)$:

$$L(\varphi) = \{ \sigma = a_0 a_1 a_2 \dots \in \Sigma^{\omega} \mid \sigma, 0 \models \varphi \}$$

and that conversely, any aperiodic language included in Σ^{∞} can be given a pure future formula. Note that these results include the case of aperiodic languages of finite words in Σ^+ , where one defines

$$L(\varphi) = \{ \sigma = a_0 a_1 \cdots a_n \in \Sigma^+ \mid \sigma, 0 \models \varphi \}$$

and for which the semantics of LTL(X, U) formulæ is adapted with the following, for any $w = a_0 a_1 \cdots a_n$ in Σ^+ and index *i* in \mathbb{N} :

$$\begin{array}{ll} w,i \models \mathsf{X}\varphi & \text{if } i < n \text{ and } w,i+1 \models \varphi \\ w,i \models \psi \; \mathsf{U} \; \varphi & \text{if } \exists k \text{ with } i \leq k \leq n, w, k \models \varphi \text{ and } \forall j \text{ with } i \leq j < k, w, j \models \psi \end{array}$$

Any aperiodic language $L \subseteq \Sigma^{\infty} \setminus \{\varepsilon\}$ can be be also recognized by a morphism $\mu : \Sigma^+ \to S$ into a finite aperiodic semigroup S. This morphism induces two equivalence relations \sim_{μ} on Σ^+ and \approx_{μ} on Σ^{ω} , both of finite index, that saturate L ($w \in L$ implies $[w] \subseteq L$) and satisfy $[u] \cdot [v] \subseteq [u \cdot v]$ for u in Σ^+ and v in $\Sigma^{\infty} \setminus \{\varepsilon\}$. Furthermore, each equivalence class is itself an aperiodic language.

Exercise 4 (Separation into Past and Future). Let us define an LTL(Y, S) formula as *pure past*—it does not employ the X or U modalities. Conversely, an LTL(X, U) formula is *pure future*. The purpose of this exercise is to prove that any aperiodic language can be given a *separation formula*

$$\varphi = \bigvee_{j \in J} \overleftarrow{\varphi_j} \wedge a_j \wedge \overrightarrow{\varphi_j}$$

where J is some finite index set, and for each j in J, a_j is a letter in Σ (or equivalently the formula $\bigwedge_{p \in a_j} p \land \bigwedge_{p \in AP \setminus a_j} \neg p$), $\overleftarrow{\varphi_j}$ a pure past formula, and $\overrightarrow{\varphi_j}$ a pure future formula.

1. Let $L \subseteq \Sigma^+$ be an aperiodic language of finite words. Show that L can be associated with a pure past formula φ such that

$$L = \{ w = a_0 a_1 \cdots a_n \in \Sigma^+ \mid w, n \models \varphi \}.$$

2. Let $L \subseteq \Sigma^{\omega}$ be an aperiodic language. Prove that there exists a finite index set J such that

$$L = \bigcup_{j \in J} P_j \cdot a_j \cdot F_j$$

with a_j a letter in Σ , P_j an aperiodic language included in Σ^+ or $\{\varepsilon\}$, and F_j an aperiodic language included in Σ^{ω} for each j of J.

3. Prove the following theorem (you can start by associating an LTL formula to each P_j and each F_j):

Theorem 2 (Separation). Let $L \subseteq \Sigma^{\omega}$ be an aperiodic language. Then there exists a separation formula $\varphi = \bigvee_{i \in J} \overleftarrow{\varphi_i} \wedge a_j \wedge \overrightarrow{\varphi_j}$ such that

- (i) $L = L(\mathsf{G}\varphi),$
- (*ii*) $L = L(F\varphi)$,
- (*iii*) $\operatorname{Pref}(L) \setminus \{\varepsilon\} = \{w = a_0 a_1 \cdots a_n \in \Sigma^+ \mid w, n \models \bigvee_{j \in J} \overleftarrow{\varphi_j} \land a_j\}, and$
- (iv) for each j in J, the formula $\overleftarrow{\varphi_j} \wedge a_j \wedge \overrightarrow{\varphi_j}$ is satisfiable.

3 Characteristic LTL Formulæ

This section characterizes LTL(Y, S, X, U) formulæ φ that describe safety or liveness properties.

Exercise 5 (Characteristic Safety Formulæ). A characteristic safety formula is a formula of form $G\varphi$ where φ is a pure past formula.

- 1. Provide a characteristic safety formula for the mutual exclusion property of Exercise 1.
- 2. Show that the language $L(G\varphi)$ of a characteristic safety formula is a safety property.
- 3. Let ψ be an LTL(Y, S, X, U) formula. Show that there exists a characteristic safety formula $G\varphi$ such that $cl(L(\psi)) = L(G\varphi)$.

Exercise 6 (Characteristic Liveness Formulæ). A characteristic liveness formula is a formula of form $\mathsf{F}\bigvee_{j\in J}(\overleftarrow{\varphi_j} \wedge a_j \wedge \overrightarrow{\varphi_j})$ for a finite index set J, where each a_j is a letter from Σ , each $\overleftarrow{\varphi_j}$ a pure past formula, and each $\overrightarrow{\varphi_j}$ a pure future formula, such that $\mathsf{G}(\bigvee_{j\in J}\overleftarrow{\varphi_j} \wedge a_j)$ is valid, and each $a_j \wedge \overrightarrow{\varphi_j}$ is a satisfiable formula.

- 1. Give a characteristic liveness formula for the starvation freedom property of Exercise 1.
- 2. Show that, if $\varphi = \mathsf{F} \bigvee_{j \in J} (\overleftarrow{\varphi_j} \wedge a_j \wedge \overrightarrow{\varphi_j})$ is a characteristic liveness formula, then $L(\varphi)$ is a liveness property.
- 3. Prove the converse, namely that if ψ is an LTL(Y, S, X, U) formula such that $L(\psi)$ is a liveness property, then there exists a characteristic liveness formula $\varphi = \mathsf{F} \bigvee_{i \in J} (\overleftarrow{\varphi_j} \land a_j \land \overrightarrow{\varphi_j})$ such that $L(\psi) = L(\varphi)$.

Exercise 7 (Model Checking Safety Formulæ). Given a pure past formula φ over a set of atomic propositions AP, we want to construct a *deterministic* finite automaton $A = (Q, \Sigma, T, q_0, F)$ over $\Sigma = 2^{\text{AP}}$ that recognizes the language

$$W_{\varphi} = \{ w = a_0 \cdots a_n \in \Sigma^+ \mid w, n \models \varphi \} .$$

Let us define $sub(\varphi)$ as the set of subformulæ of φ , and set $Q = 2^{sub(\varphi)}$.

1. Define a deterministic transition function $T: Q \times \Sigma \to Q$ such that, for all $w = a_0 a_1 \cdots a_n$ of Σ^+ ,

$$T(\emptyset,w) = \{\psi \in \mathsf{sub}(\varphi) \mid w,n \models \psi\} \;.$$

Use it to show how to construct the desired automaton.

- 2. Show how to construct a deterministic Büchi automaton for a characteristic safety formula $G\varphi$, such that all its states are accepting.
- 3. Show how to model check a system for a safety property expressed as a characteristic safety formula $G\varphi$.
- 4. Prove that the model checking problem for finite Kripke structures and characteristic safety formulæ is PSPACE-complete.

A Equivalence Relations Induced by μ

For those interested by such matters, here is how the equivalence relations \sim_{μ} and \approx_{μ} can be defined: for all u, v in Σ^+ ,

$$u \sim_{\mu} v$$
 iff $\mu(u) = \mu(v)$,

and for all u, v in Σ^{ω} ,

$$u \sim_{\mu} v$$
 iff $\exists (u_i)_{i \in \mathbb{N}}$ and $(v_i)_{i \in \mathbb{N}}, u = u_0 u_1 u_2 \cdots, v = v_0 v_1 v_2 \cdots$, and $\forall i \in \mathbb{N}, u_i \sim_{\mu} v_i$,

from which one defines \approx_{μ} over Σ^{ω} as the transitive closure of \sim_{μ} over Σ^{ω} . If needed, \sim_{μ} can be extended to Σ^* by having $[\varepsilon] = \{\varepsilon\}$.