
MPRI 1-22 Introduction to Verification December 14, 2009

Home Assignment 2: Stuttering and Bisimulation

To hand in before or on January 11, 2010.
The penalty for delays is 2 points per day.
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Electronic versions (PDF only) can be sent by email to ⟨schmitz@lsv.ens-cachan.fr⟩,
paper versions should be handed in on the 11th or put in my mailbox at LSV, ENS

Cachan. Any mistake spotted in the subject should be reported so that everyone

can benefit from its correction.

This homework investigates bisimulation relations that oversee stuttering steps in
finite Kripke structures. These bisimulations are also known as branching bisimulations
in the process calculi literature.

Definition 1 (Stutter Bisimulation). Consider two (not necessarily different) Kripke
structures M1 = ⟨S1, T1, I1,AP, ℓ1⟩ and M2 = ⟨S2, T2, I2,AP, ℓ2⟩. A stutter simulation
between M1 and M2 is a relation R ⊆ S1 × S2 satisfying:

1. for any initial state s1 in I1, there exists an initial state s2 in I2, such that (s1, s2)
is in R,

2. for all (s1, s2) in R,

(a) ℓ1(s1) = ℓ2(s2),

(b) if (s1, s
′
1) is a transition in T1 with (s′1, s2) ∕∈ R, then there exist an integer n

in ℕ and n+ 2 states u0, . . . , un+1 in S2 such that u0 = s2, (s′1, un+1) is in R,
and for each 0 ≤ i ≤ n, (s1, ui) is in R and (ui, ui+1) is a transition in T2.

A stutter bisimulation on S1×S2∪S2×S1 between M1 and M2 is a union R∪R−1 where
R is a stutter simulation between M1 and M2 and its inverse R−1 a stutter simulation
between M2 and M1. Two states s1 and s2 (resp. two systems M1 and M2) are stutter
bisimilar, noted s1 ≈ s2 (resp. M1 ≈ M2), if there exists such a stutter bisimulation
with (s1, s2) in R (resp. such a stutter bisimulation between M1 and M2). A stutter
bisimulation on a single system M is a stutter bisimulation between M and itself.
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Exercise 1 (Mutual Exclusion). The following system is an abstract mutual exclusion
protocol for two processes. We are interested in the mutual exclusion property, i.e.
whether G(¬c1 ∨ ¬c2) holds for all traces of the system; thus we can restrict ourselves
to the set of atomic propositions AP = {c1, c2} (state labels are displayed next to the
states and match the gray levels). Observe that with this new labeling our system starts
displaying quite a bit of stuttering.

n1,n2, f = 1
∅

w1,n2, f = 1
∅

c1,n2, f = 0
{c1}

c1,w2, f = 0
{c1}

w1,w2, f = 1

∅

n1,w2, f = 1
∅

n1, c2, f = 0
{c2}

w1, c2, f = 0
{c2}

A more abstract system for the same functionality could be:

n
∅

w
∅

q1
{c1}

q2
{c2}

1. Are the two systems stutter bisimilar?

2. Are they bisimilar?

Justify your answers.

Exercise 2 (Coarsest Stutter Bisimulation). Let M = ⟨S, T, I,AP, ℓ⟩ be a Kripke struc-
ture.

1. Show that ≈ is an equivalence relation on S.
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2. Show that ≈ is a stutter bisimulation for M .

3. Show that ≈ is the coarsest stutter bisimulation for M and coincides with the
union of all stutter bisimulations for M .

Exercise 3 (Quotients). Since ≈ is an equivalence relation, we note [s] for the equival-
ence class of s under ≈. The quotient of M = ⟨S, T, I,AP, ℓ⟩ by ≈ is defined as

M/≈ = ⟨S/≈, T/≈, I/≈,AP, ℓ≈⟩
where

S/≈ = {[s] ∣ s ∈ S},
T/≈ = {([s], [s′]) ∣ (s, s′) ∈ T and s ∕≈ s′},
I/≈ = {[s] ∣ s ∈ I}, and

ℓ≈([s]) = ℓ(s) .

1. Construct the quotient of the system of Exercise 1 by its coarsest stutter bisimu-
lation.

2. Prove that M is always stutter bisimilar to M/≈.

Exercise 4 (Stutter Bisimulation and Stutter Equivalence). Let as usual Σ = 2AP. A
stuttering function f : ℕ → ℕ+ maps positive integers to strictly positive integers. Let
� = a0a1 ⋅ ⋅ ⋅ be an infinite word of Σ! and f a stuttering function, we denote by �[f ]

the infinite word a
f(0)
0 a

f(1)
1 ⋅ ⋅ ⋅ , i.e. where the i-th symbol of � is repeated f(i) times. A

language L ⊆ Σ! is stutter invariant if, for all words � in Σ! and all stuttering functions
f ,

� ∈ L iff �[f ] ∈ L .

We saw in Exercises 3 and 4 of TD 3 that LTL(U), the fragment of LTL without the
“next” modality, allows to express all the aperiodic stutter invariant languages.

A word � = a0a1 ⋅ ⋅ ⋅ in Σ! is stutter-free if, for all i in ℕ, either ai ∕= ai+1, or ai = aj
for all j ≥ i. For a given infinite word �, there exists a unique stutter-free infinite word
sf(�) such that � = sf(�)[f ] for some stuttering function f . We note sf(L) for the set of
stutter-free words in a language L. Two Kripke structures are stutter trace equivalent if
their sets of infinite stutter-free traces are the same. (We consider in the following total
Kripke structures, i.e. where for any state s, there exists at least one state s′ such that
(s, s′) is a transition in T .)

1. Show that the two systems in Figure 1 are stutter bisimilar but not stutter trace
equivalent.
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s0

∅

s1

{p}

s′0

∅

s′1

{p}

Figure 1: The Kripke structures for Exercise 4.1.

r0

∅

r1

{p}

r2

{p}

r3
{q}

r4
∅

(a) Mr
4

s0

∅

s1
{p}

s2
{q}

s3
∅

(b) Ms
4

t0
∅

t1
∅

t3
{p}

t2
{p}

t4

{p}

t6
{q}

t7
∅

t5
∅

(c) M t
4

Figure 2: The Kripke structures for Exercise 4.2.

2. Which of the systems in Figure 2 are stutter trace equivalent? Which are stutter
bisimilar?

Exercise 5 (Divergence-sensitive Relations). The previous exercise demonstrates that
stutter bisimulations might not be the best concept for capturing stutter invariant sys-
tems.

Let M1 = ⟨S1, T1, I1,AP, ℓ1⟩ and M2 = ⟨S2, T2, I2,AP, ℓ2⟩ be two Kripke structures,
R a relation on S1 × S2, and (s, s′) in R. State s′ is R(s)-divergent if there exists an
infinite path � = s′s1s2 ⋅ ⋅ ⋅ starting in s′ in M such that (s, sj) is in R for all j ≥ 1. A
relation R ∪ R−1 is divergence-sensitive if for any (s, s′) of R, s is R−1(s′)-divergent iff
s′ is R(s)-divergent.

1. Consider the union M4 of the two systems of Figure 1 in the previous exercise.
Show that the coarsest stutter bisimulation of M4 is not divergence-sensitive.

2. Two states s1 and s2 are stutter divergent bisimilar, noted s1
d
≈ s2, if there exists

a divergent-sensitive stutter bisimulation R ∪ R−1 with (s1, s2) ∈ R. Show that
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d
≈ is an equivalence on S, and is actually the coarsest divergence-sensitive stutter
bisimulation of M .

3. Which of the systems of Figure 2 are stutter divergent bisimilar?

4. Let M be a Kripke structure. Let �1 = s0,1s1,1s2,1 ⋅ ⋅ ⋅ and �2 = s0,2s1,2s2,2 ⋅ ⋅ ⋅ be
two infinite paths in M . We say that �1 and �2 are stutter divergent bisimular if
there exists two infinite sequences of indices 0 = i0 < i1 < i2 < ⋅ ⋅ ⋅ and 0 = j0 <

j1 < j2 < ⋅ ⋅ ⋅ such that si,1
d
≈ sj,2 for all ik−1 ≤ i < ik and jk−1 ≤ j < jk with

k = 1, 2, . . . .

(a) Show that �
d
≈ �′ implies sf(ℓ(�)) = sf(ℓ(�′)).

(b) Prove that, for any two states s and s′, if s
d
≈ s′, then for all infinite runs

� = ss1s2 ⋅ ⋅ ⋅ starting in s, there exists an infinite run �′ = s′s′1s
′
2 ⋅ ⋅ ⋅ starting

in s′ such that �
d
≈ �′.

Exercise 6 (Logical Characterization). We note CTL∗(U) for the class of CTL∗ formulæ
that do not use any “next” modalities, i.e. that follow the following abstract syntax:

' ::= ⊥ ∣ p ∣ ¬' ∣ ' ∧ ' ∣ E (state formulæ)

 ::= ' ∣ ¬ ∣  ∧  ∣  U  (path formulæ)

where p ranges over the set AP of atomic propositions. The CTL(U) fragment is defined
similarly by

' ::= ⊥ ∣ p ∣ ¬' ∣ ' ∧ ' ∣ E(' U ') ∣ A(' U ') . (state formulæ)

Consider the Kripke structures M r
6 , M s

6 and M t
6 in Figure 3.

1. Provide a CTL∗(U) formula '1 such that r0 ∣= '1 but s0 ∕∣= '1.

2. Consider the union of the two systems M s
6 and M t

6. Show that s0
d
≈ t0. Give a

CTL(U) formula 'C for each of the equivalence classes C of (M s
6 ∪M t

6) by
d
≈, such

that J'CK = C.

3. Let M be a total Kripke structure, s and s′ be two states and � and �′ two infinite
paths in M . Prove the following statements (by simultaneous induction on the
structure of CTL∗(U) formulæ):

(a) if s
d
≈ s′, then for any CTL∗(U) state formula ', s ∣= ' iff s′ ∣= ',

(b) if �
d
≈ �′, then for any CTL∗(U) path formula  , � ∣=  iff �′ ∣=  .
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∅

r1
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r2
{p}

r3
{q}

(a) Mr
6

s0
∅

s1
{p}

s2
{p}

s3
{q}

(b) Ms
6

t0
∅

t1
{p}

t2

{p}

t3
{q}

t4
{p}

(c) M t
6

Figure 3: The Kripke structures for Exercise 6.

4. Let M be a total Kripke structure, and s and s′ be two states of M . Define the
following equivalence relation ℱ on S:

ℱ = {(s, s′) ∣ ∀' ∈ CTL(U), s ∣= ' iff s′ ∣= '} .

We want to prove that ℱ is a divergence-sensitive stutter bisimulation for M .

(a) Prove that if (s, s′) is in ℱ , then ℓ(s) = ℓ(s′).

(b) We want to prove that ℱ is a stutter bisimulation. Since ℱ is an equivalence
relation, we can consider its equivalence classes [s]ℱ for some state s.

∙ Show that, for each equivalence class C = [s]ℱ , there exists a CTL(U)
master formula 'C such that J'CK = C.

∙ Show that ℱ fulfills condition 2b of Definition 1.

(c) Prove that ℱ is divergence-sensitive.

5. Conclude by proving the following theorem:

Theorem 1 (Logical Characterization of Stutter Divergent Bisimulation). Let M be a
total Kripke structure, and s and s′ two states of M . The following three statements are
equivalent:

1. s
d
≈ s′,

2. s and s′ verify the same CTL∗(U) state formulæ,

3. s and s′ verify the same CTL(U) formulæ.
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Exercise 7 (Observational Bisimulation). Consider two (not necessarily different) Kripke
structures M1 = ⟨S1, T1, I1,AP, ℓ1⟩ and M2 = ⟨S2, T2, I2,AP, ℓ2⟩. An observational sim-
ulation between M1 and M2 is a relation R ⊆ S1 × S2 satisfying:

1. for any initial state s1 in I1, there exists an initial state s2 in I2, such that (s1, s2)
is in R,

2. for all (s1, s2) in R,

(a) ℓ1(s1) = ℓ2(s2),

(b) if (s1, s
′
1) is a transition in T1, then there exist two integers n and m ≤ n in

ℕ and n+ 1 states u0, . . . , un in S2 such that

∙ u0 = s2,

∙ (s′1, un) is in R,

∙ for each 0 ≤ i < n, (ui, ui+1) is a transition in T2,

∙ ℓ2(u0) = ℓ2(u1) = ⋅ ⋅ ⋅ = ℓ2(um), and

∙ ℓ2(um+1) = ℓ2(um+2) = ⋅ ⋅ ⋅ = ℓ2(un).

As usual, an observational bisimulation on S1 × S2 ∪ S2 × S1 between M1 and M2 is a
union R∪R−1 where R is a observational simulation between M1 and M2 and its inverse
R−1 a observational simulation between M2 and M1. Two states s1 and s2 (resp. two

systems M1 and M2) are observational bisimilar, noted s1
o
≈ s2 (resp. M1

o
≈M2), if there

exists such an observational bisimulation with (s1, s2) in R (resp. such an observational
bisimulation between M1 and M2).

We want to prove that observational bisimulation is coarser than stutter bisimulation.

1. Show that M1 ≈M2 implies M1
o
≈M2.

2. Exhibit two Kripke structures M1 and M2 such that M1
o
≈M2 but M1 ∕≈M2.
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