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TD 2

1 Models

Exercise 1 (Alternating Bit Protocol). The alternating bit protocol allows to exchange
messages over a lossy channel, and to ensure that no messages are lost. The protocol
employs two processes, a sender and a receiver, that communicate through two lossy
channels c1 and c2 as depicted below:

i: input sender receiver o: output

c1: messages

c2: acknowledgments

The gist of the protocol is that both the sender and the receiver will retransmit data
over the lossy channels, until they receive proof that at least one of their messages has
gone through. For this, an alternating bit is attached to all their communications, and
is changed whenever the processes know that their previous message has been received.
Here is an example of message exchange between the processes:

sender receiver
i?m1

c1!m1, 0t
>

1

c1!m1, 0
o!m1

c2!0

c1!m1, 0

t
>
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t
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c2!0

c1!m1, 0

c2!0

i?m2
c1!m2, 1

o!m2c2!1i?m3

c1!m3, 0
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Lost messages are represented with dotted arrows, and we endow the sender with a timer
t that triggers resending the message if the acknowledgment with the appropriate bit
value has not been received.

1. Propose two models, one for the sender and one for the receiver.

2. Label some of your states with the atomic propositions sent1, sent2, rec1, and rec2.
How can you express the following fairness constraints on the two channels: “if
infinitely many messages are sent, then infinitely many are received”?

3. Let m1, . . . ,mn be the sequence of messages to send. How can one specify that
exactly the same sequence will be received, in the same order, and without duplic-
ates?

2 LTL with Past

Exercise 2 (Specifying with Past). Consider the following alarm system:

ok crash

alarm

reset

Provide LTL formulæ with and without past modalities for the following properties:

1. “Whenever the alarm rings, there has been a crash immediately before.”

2. “Whenever the alarm rings, there has been a crash some time before, and no reset
since.”

Exercise 3 (History Variables). One means of getting rid of past modalities is to tweak
both the model and the formula, by adding history variables to the model and by re-
placing the past subformulæ by atomic propositions on these variables. For instance, a
subformula Y' will be replaced by a variable ℎY' in the specification, and the model
will update this variable according to whether or not ' holds in the previous state.

1. Apply this technique to the specification and model of the previous exercise.
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2. What is the cost of the model transformation?

Exercise 4 (Succinctness of Past Formulæ). Let APn+1 = {p0, . . . , pn} = APn ∪ {pn}
be a set of atomic proositions, defining the alphabet Σn+1 = 2APn+1 . We want to show
the existence of an O(n)-sized LTL formula with past such that any equivalent pure
future LTL formula is of size Ω(2n).

First consider the following LTL formula of exponential size:

⋀
S⊆APn

⎛⎝ (
⋀
pi∈S

pi ∧
⋀
pj /∈S

¬pj ∧ pn)⇒ G((
⋀
pi∈S

pi ∧
⋀
pj /∈S

¬pj)⇒ pn)

∧(
⋀
pi∈S

pi ∧
⋀
pj /∈S

¬pj ∧ ¬pn)⇒ G((
⋀
pi∈S

pi ∧
⋀
pj /∈S

¬pj)⇒ ¬pn)

⎞⎠ ('n)

1. Describe which words of Σ!
n+1 are the models of 'n.

2. Can an LTL formula with past modalities check whether it is at the initial position
of a word?

3. Provide an LTL formula with past  n of size O(n) initially equivalent to 'n.

4. Consider the language Ln = {� ∈ Σ!
n+1 ∣ � ∣= G'n}. We want to prove that any

generalized Büchi automaton that recognizes Ln requires at least 22
n

states.

For this we fix a permutation a0 ⋅ ⋅ ⋅ a2n−1 of the symbols in Σn and we consider all
the different subsets K ⊆ {0, . . . , 2n − 1}. For each K we consider the word

wK = b0 ⋅ ⋅ ⋅ b2n−1

in Σ2n
n+1, defined for each i in {0, . . . , 2n − 1} by

bi = ai if i ∈ K
bi = ai ∪ {pn} otherwise.

Thus K is the set of positions of wK where pn holds.

Using the wK for different values of K, prove that any generalized Büchi automaton
for G'n requires at least 22

n
states.

5. Conclude using the fact that any pure future LTL formula ' can be given a gen-
eralized Büchi automaton with at most 2∣'∣ states.
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3 Büchi Complementation

Exercise 5 (Lower Bound on Büchi Complementation). The best known lower bound
on the size of a Büchi automaton for the complement L of a language, compared to
that of the Büchi automaton for L, is Ω

(
(0.76n)n

)
[Yan, LMCS 4(1:5), 2008], with a

matching upper bound modulo a quadratic factor [Schewe, STACS 2009]. We see in this
exercise an easier to obtain lower bound of Ω(n!).

Let Σn = {#, 1, 2, . . . , n} be our alphabet, and Ln the language of the following
Büchi automaton (note the two-ways transitions):

q1 q2 . . . qn

q0

q#

1
2

n

#

Σn Σn Σn

Σn

1. Let a1 ⋅ ⋅ ⋅ ak be a fixed, finite word in {1, . . . , n}∗. Prove that any infinite word in

(Σ∗na1a2Σ
∗
na2a3Σ

∗
n ⋅ ⋅ ⋅Σ∗nak−1akΣ∗naka1)

!

is also a word of Ln.

2. Let (i1, . . . , in) be a permutation of {1, . . . , n}. Show that the infinite word

(i1 ⋅ ⋅ ⋅ in#)!

is not in Ln.

3. Consider two different permutations (i1, . . . , in) and (j1, . . . , jn) of {1, . . . , n}. As
shown in the previous question, the two infinite words � = (i1 ⋅ ⋅ ⋅ in#)! and � =
(j1 ⋅ ⋅ ⋅ jn#)! are in Ln.

Suppose that ℬ is a Büchi automaton that recognizes Ln; show that if � eventually
loops forever in a subset R of the states of ℬ, and � does the same in a subset S,
then R and S are disjoint sets.

4. Conclude.
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Exercise 6 (Closure by Complementation). The purpose of this exercise is to prove
that Rec(Σ!) is closed under complement. We consider for this a Büchi automaton
A = (Q,Σ, T, I, F ), and want to prove that its complement language L(A) is in Rec(Σ!).

We note q
u−→ q′ for q, q′ in Q and u = a1 ⋅ ⋅ ⋅ an in Σ∗ if there exists a sequence of

states q0, . . . , qn such that q0 = q, qn = q′ and for all 0 ≤ i < n, (qi, ai+1, qi+1) is in T .
We note in the same way q

u−→F q′ if furthermore at least one of the states q0, . . . , qn
belongs to F .

We define a congruence ∼A over Σ∗ by

u ∼A v iff ∀q, q′ ∈ Q, (q
u−→ q′ ⇔ q

v−→ q′) and (q
u−→F q′ ⇔ q

v−→F q′) .

1. Show that ∼A has finitely many congruence classes [u], for u in Σ∗.

2. Show that each [u] for u in Σ∗ is in Rec(Σ∗), i.e. is a regular language of finite
words.

3. Consider the language K(L) for L ⊆ Σ!

K(L) = {[u][v]! ∣ u, v ∈ Σ∗, [u][v]! ∩ L ∕= ∅} .

Show that K(L) is in Rec(Σ!) for any L ⊆ Σ!.

4. Show that K(L(A)) ⊆ L(A) and K(L(A)) ⊆ L(A).

5. Prove that for any infinite word � in Σ! there exist u and v in Σ∗ such that �
belongs to [u][v]!. The following theorem might come in handy when applied to
couples of positions (i, j) inside �:

Theorem 1 (Ramsey, infinite version). Let X be some countably infinite set, n an
integer, and c : X(n) → {1, . . . , k} a k-coloring of the n-tuples of X. Then there
exists some infinite monochromatic subset M of X such that all the n-tuples of M
have the same image by c.

6. Conclude.
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