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TD 8: Petri Nets

1 Modeling Using Petri Nets

Exercise 1 (Traffic Lights). Consider again the traffic lights example from the lecture
notes:

r

y

g

r → ry y → r

ry → g g → y

1. How can you modify this Petri net so that it becomes 1-safe?

2. Extend your Petri net to model two traffic lights handling a street intersection.

Exercise 2 (Producer/Consumer). A producer/consumer system gathers two types of
processes:

producers who can make the actions produce (p) or deliver (d), and

consumers with the actions receive (r) and consume (c).

All the producers and consumers communicate through a single unordered channel.

1. Model a producer/consumer system with two producers and three consumers. How
can you modify this system to enforce a maximal capacity of ten simultaneous items
in the channel?

2. An inhibitor arc between a place p and a transition t makes t firable only if the
current marking at p is zero. In the following example, there is such an inhibitor
arc between p1 and t. A marking (0, 2, 1) allows to fire t to reach (0, 1, 2), but
(1, 1, 1) does not allow to fire t.
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p1

p2

p3

t

Using inhibitor arcs, enforce a priority for the first producer and the first consumer
on the channel: the other processes can use the channel only if it is empty it is not
currently used by the first producer and the first consumer.

2 Model Checking Petri Nets

Exercise 3 (Upper Bounds). Let us fix a Petri net N = ⟨P, T, F,W,m0⟩. We consider
as usual propositional LTL, with a set of atomic propositions AP equal to P the set
of places of the Petri net. We define proposition p to hold in a marking m in ℕP if
m(p) > 0.

The models of our LTL formulæ are computations m0m1 ⋅ ⋅ ⋅ in (ℕP )! such that, for
all i ∈ ℕ, mi →N mi+1 is a transition step of the Petri net N .

1. We want to prove that state-based LTL model checking can be performed in poly-
nomial space for 1-safe Petri nets. For this, prove that one can construct an
exponential-sized Büchi automaton ℬN from a 1-safe Petri net that recognizes all
the infinite computations of N starting in m0.

2. In the general case, state-based LTL model checking is undecidable. Prove it for
Petri nets with at least two unbounded places, by a reduction from the halting
problem for 2-counter Minsky machines.

3. We consider now a different set of atomic propositions, such that Σ = 2AP, and a
labeled Petri net, with a labeling homomorphism � : T → Σ. The models of our

LTL formulæ are infinite words a0a1 ⋅ ⋅ ⋅ in Σ! such that m0
t0−→N m1

t1−→N m2 ⋅ ⋅ ⋅
is an execution of N and �(ti) = ai for all i.

Prove that action-based LTL model checking can be performed in polynomial space
for labeled 1-safe Petri nets.

Exercise 4 (Lower Bounds for 1-Safe Petri Nets). A linear bounded automaton (LBA)
ℳ = ⟨Q,Σ ⊎ {⊣,⊢},Γ, �, q0,#, F ⟩ is a Turing machine with a left endmarker ⊣ and a
right endmarker ⊢,

∙ that cannot move left from ⊣ nor right from ⊢,

∙ that cannot print over ⊣ or ⊢, and
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∙ that starts with input ⊣ x ⊢ for some x in Σ∗.

A LBA is thus restricted to its initial tape contents. The membership problem for a
LBA with input ⊣ x ⊢ is PSpace-hard.

1. Show how to simulate a LBA with input ⊣ x ⊢ by a 1-safe Petri net of quadratic
size.

2. Show that state-based LTL model checking is PSpace-hard in the size of the Petri
net for 1-safe Petri nets.

3. Show that action-based LTL model checking is PSpace-hard in the size of the
Petri net for labeled 1-safe Petri nets.

3 Coverability

The coverability problem for Petri nets is the following decision problem:

Instance: A Petri net N = ⟨P, T, F,W,m0⟩ and a marking m1 in ℕP .

Question: Does there exist m2 in ReachN (m0) such that m1 ≤ m2?

For 1-safe Petri nets, coverability coincides with reachability, and is thus PSpace-
complete according to the previous exercises.

Exercise 5 (Inhibitor Arcs). Prove that the coverability problem is undecidable for
Petri nets having two inhibitor arcs.
(Hint: start by proving its undecidability for Petri nets with two places that are the
sources of inhibitor arcs.)

Exercise 6 (Coverability Graph). One way to decide the coverability problem is to
use Karp and Miller’s coverability graph (see the lecture notes). Indeed, we have the
equivalence between the two statements:

i. there exists m2 in ReachN (m0) such that m1 ≤ m2, and

ii. there exists m3 in CoverabilityGraphN (m0) such that m1 ≤ m3.

1. Prove that (i) implies (ii).
(Hint: prove that if m

u−→N m2 in the Petri net N for some m in ℕP and u in
T ∗, then there exists m3 in (ℕ ∪ {!})P such that m2 ≤ m3 and m

u−→G m3 in the
coverability graph.)
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2. Let us prove that (ii) implies (i). The idea is that we can find reachable markings
that agree with m3 on its finite places, and that can be made arbitrarily high on
its !-places. For this, we need to identify the graph nodes where new ! values
were introduced, which we call !-nodes. Moreover, for a marking m in (ℕ∪{!})P ,
we define Ω(m) as the set of places p such that m(p) = !.

(a) Recall that an ! value is introduced in the coverability graph thanks to Al-
gorithm 1.

1 repeat
2 saved ← m′

3 foreach m′′ ∈ V s.t. ∃v ∈ T+,m′′
v−→G m do

4 if m′′ < m′ then
5 m′ ← m′ + ((m′ −m′′) ⋅ !)
6 end

7 end

8 until saved = m′

9 return m′

Algorithm 1: AddOmegas(m, t,m′, V, E)

Let {v1, . . . , vl} be the set of v sequences found on line 3 of the algorithm that
resulted in an ! value form′ on line 5 during a call to AddOmegas(m, t,m′, V, E).
For each i, let ni in ℕ be a value such that the sequence vi can be fired from
the marking (ni, ni, . . . , ni).

Show that, for any j in ℕ, there exists a marking �j such that

�j(p) =

{
m(p)−W (p, t) +W (t, p) if p ∈ P∖Ω(m)

j ⋅
∑l

i=1 ni if p ∈ Ω(m)

that allows to fire the sequence vj1 ⋅ ⋅ ⋅ v
j
l . How does the marking � ′j with

�j
vj1⋅⋅⋅v

j
l−−−−→N � ′j compare to �j?

(b) Prove that, if m
u−→G m3 for some u in T ∗ in the coverability graph and m′ in

ℕΩ(m3) is a partial marking on the places of Ω(m3), then there are

∙ a decomposition u = u1u2 ⋅ ⋅ ⋅un+1 with each ui in T ∗ (where the markings

�i reached by m
u1⋅⋅⋅ui−−−−→G �i are !-nodes),

∙ sequences w1, . . . , wn in T+,

∙ numbers k1, . . . , kn in ℕ,

such that m
u1w

k1
1 u2⋅⋅⋅unw

kn
n un+1−−−−−−−−−−−−−−→N m2 with m2(p) = m3(p) for all p in

P∖Ω(m3) and m2(p) ≥ m′(p) for all p in Ω(m3).
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Exercise 7 (Rackoff’s Algorithm). A rather severe issue with the coverability graph
construction (see Exercise 6) is that it can generate a graph of non primitive recursive
size compared to that of the original Petri net. We show here a much more decent
ExpSpace upper bound, which is matched by an ExpSpace hardness proof by Lipton.

Let us fix a Petri net N = ⟨P, T, F,W,m0⟩. We consider generalized markings in ℤP .
A generalized computation is a sequence �1 ⋅ ⋅ ⋅�n in (ℤP )∗ such that, for all 1 ≤ i < n,
there is a transition t in T with �i+1(p) = �i(p) −W (p, t) + W (t, p) for all p ∈ P (i.e.
we do not enforce enabling conditions). For a subset I of P , a generalized sequence is
I-admissible if furthermore �i(p) ≥ W (p, t) for all p in I at each step 1 ≤ i < n. For
a value B in ℕ, it is I–B-bounded if furthermore �i(p) < B for all p in I at each step
1 ≤ i ≤ n. A generalized sequence is an I-covering for m1 if �1 = m0 and �n(p) ≥ m1(p)
for all p in I.

Thus a computation is a P -admissible generalized computation, and a P -admissible
P -covering for m1 answers the coverability problem.

For a Petri net N = ⟨P, T, F,W,m0⟩ and a marking m1 in ℕP , let ℓ(N ,m1) be the
length of the shortest P -admissible P -covering for m1 in N if one exists, and otherwise
ℓ(N ,m1) = 0. For L, k in ℕ, define

ML(k) = sup{ℓ(N ,m1) ∣ ∣P ∣ = k,

max{W (p, t) ∣ p ∈ P, t ∈ T}+ max{m1(p) ∣ p ∈ P} ≤ L} .

1. Show that ML(0) ≤ 1.

2. We want to show that

ML(k) ≤ (L ⋅ML(k − 1))k +ML(k − 1)

for all k ≥ 1. To this end, we prove that, for every marking m1 in ℕP for a Petri
net N with ∣P ∣ = k,

ℓ(N ,m1) ≤ (L ⋅ML(k − 1))k +ML(k − 1) . (∗)

Let

B = ML(k − 1) ⋅max{W (p, t) ∣ p ∈ P, t ∈ T}+ max{m1(p) ∣ p ∈ P} .

and suppose that there exists a P -admissible P -covering w = �1 ⋅ ⋅ ⋅�n for m1 in
N .

(a) Show that, if w is P–B-bounded, then (∗) holds.

(b) Assume the contrary: we can split w as w1w2 such that w1 is P–B-bounded
and w2 starts with a marking �j with a place p such that �j(p) ≥ B. Show
that (∗) also holds.

3. Show that ML(∣P ∣) ≤ L(3⋅∣P ∣)! for L = 2 + max{W (p, t) ∣ p ∈ P, t ∈ T} +
max{m1(p) ∣ p ∈ P}.
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4. Assuming that the size n of the instance (N ,m1) of the coverability problem is
more than

max{logL, ∣P ∣,max{logW (t, p) ∣ t ∈ T, p ∈ P}} ,

deduce that we can guess a P -admissible P -covering for m1 of length at most
22c⋅n logn

for some constant c. Conclude.
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