TD 9: Vector Addition Systems; Unfoldings

1 Vector Addition Systems

Exercise 1 (VASS). An n-dimensional vector addition system with states (VASS) is a tuple $\mathcal{V}=\left\langle Q, \delta, q_{0}\right\rangle$ where Q is a finite set of states, $q_{0} \in Q$ the initial state, and $\delta \subseteq Q \times \mathbb{Z}^{n} \times Q$ the transition relation. A configuration of \mathcal{V} is a pair (q, v) in $Q \times \mathbb{N}^{n}$. An execution of \mathcal{V} is a sequence of configurations $\left(q_{0}, v_{0}\right)\left(q_{1}, v_{1}\right) \cdots\left(q_{m}, v_{m}\right)$ such that $v_{0}=\overline{0}$, and for $0<i \leq m,\left(q_{i-1}, v_{i}-v_{i-1}, q_{i}\right)$ is in δ.

1. Show that any VASS can be simulated by a Petri net.
2. Show that, conversely, any Petri net can be simulated by a VASS.

Exercise 2 (VAS). An n-dimensional vector addition system (VAS) is a pair (v_{0}, W) where $v_{0} \in \mathbb{N}^{n}$ is the initial vector and $W \subseteq \mathbb{Z}^{n}$ is the set of transition vectors. An execution of $\left(v_{0}, W\right)$ is a sequence $v_{0} v_{1} \cdots v_{m}$ where $v_{i} \in \mathbb{N}$ for all $0 \leq i \leq m$ and $v_{i}-v_{i-1} \in W$ for all $0<i \leq m$.

We want to show that any n-dimensional VASS \mathcal{V} can be simulated by an $(n+3)$ dimensional VAS $\left(v_{0}, W\right)$.
Hint: Let $k=|Q|$, and define the two functions $a(i)=i+1$ and $b(i)=(k+1)(k-i)$. Encode a configuration $\left(q_{i}, v\right)$ of \mathcal{V} as the vector $(v(1), \ldots, v(n), a(i), b(i), 0)$. For every state $q_{i}, 0 \leq i<k$, we add two transition vectors to W :

$$
\begin{aligned}
t_{i} & =(0, \ldots, 0,-a(i), a(k-i)-b(i), b(k-i)) \\
t_{i}^{\prime} & =(0, \ldots, 0, b(i),-a(k-i), a(i)-b(k-i))
\end{aligned}
$$

For every transition $d=\left(q_{i}, w, q_{j}\right)$ of \mathcal{V}, we add one transition vector to W :

$$
t_{d}=(w(1), \ldots, w(n), a(j)-b(i), b(j),-a(i))
$$

1. Show that any execution of \mathcal{V} can be simulated by $\left(v_{0}, W\right)$ for a suitable v_{0}.
2. Conversely, show that this $\operatorname{VAS}\left(v_{0}, W\right)$ simulates \mathcal{V} faithfully.

2 Unfoldings

Exercise 3 (Adequate Partial Orders). A partial order \prec between events is adequate if the three following conditions are verified:
(a) \prec is well-founded,
(b) $C_{t} \subsetneq C_{t^{\prime}}$ implies $t \prec t^{\prime}$, and
(c) \prec is preserved by finite extensions: as in the lecture notes, if $t \prec t^{\prime}$ and $M_{t}=M_{t^{\prime}}$, and E and E^{\prime} are two isomorphic extensions of C_{t} and $C_{t^{\prime}}$ with $C_{u}=C_{t} \oplus E$ and $C_{u^{\prime}}=C_{t^{\prime}} \oplus E^{\prime}$, then $u \prec u^{\prime}$.

As you can guess, adequate partial orders result in complete unfoldings.

1. Show that \prec_{s} defined by $t \prec_{s} t^{\prime}$ iff $\left|C_{t}\right|<\left|C_{t^{\prime}}\right|$ is adequate.
2. Construct the finite unfolding of the following Petri net using \prec_{s}; how does the size of this unfolding relate to the number of reachable markings?

3. Suppose we define an arbitrary total order \ll on the transitions T of the Petri net, i.e. they are $t_{1} \ll \cdots \ll t_{n}$. Given a set S of events and conditions of $\mathcal{Q}, \varphi(S)$ is the sequence $t_{1}^{i_{1}} \cdots t_{n}^{i_{n}}$ in T^{*} where i_{j} is the number of events labeled by t_{j} in S. We also note \ll for the lexicographic order on T^{*}.
Show that \prec_{e} defined by $t \prec_{e} t^{\prime}$ iff $\left|C_{t}\right|<\left|C_{t^{\prime}}\right|$ or $\left|C_{t}\right|=\left|C_{t^{\prime}}\right|$ and $\varphi\left(C_{t}\right) \ll \varphi\left(C_{t^{\prime}}\right)$ is adequate. Construct the finite unfolding for the previous Petri net using \prec_{e}.
4. There might still be examples where \prec_{e} performs poorly. One solution would be to use a total adequate order. Give a 1 -safe Petri net that shows that \prec_{e} is not total.

Exercise 4 (LTL(U) Model Checking). We consider again the problem of model checking state-based LTL formulæ against the reachable markings of a 1 -safe Petri net $\mathcal{N}=$ $\left\langle P, T, F, W, m_{0}\right\rangle$. The LTL (U) formulæ we consider use a subset of the places as atomic propositions: AP $\subseteq P$. An atomic proposition p in AP holds in a marking m in \mathbb{N}^{P} (written $m \models p$) if $m(p)>0$.

Instead of constructing an exponential-sized Büchi automaton $\mathcal{B}_{\mathcal{N}}$ (based on the reachability graph of \mathcal{N}) and its intersection with $\mathcal{B}_{\neg \varphi}$, we want to construct a Petri net $\mathcal{N}_{\neg \varphi}$ for the product of \mathcal{N} and $\mathcal{B}_{\neg \varphi}$, and check its emptiness using unfolding techniques.

1. Describe how to construct this product Petri net $\mathcal{N}_{\neg \varphi}$ if $\mathrm{AP}=P$. Are unfolding techniques going to be efficient on this product?
2. Let us suppose $\mathrm{AP} \subsetneq P$. A transition t of T is visible if there exists p in AP such that $W(t, p)-W(p, t) \neq 0$.
We only have to synchronize visible actions with the transitions of $\mathcal{B}_{\neg \varphi}$, but we need to distinguish two forms of acceptance: let I and L be two sets of illegal and livelock transitions of $\mathcal{N}_{\neg \varphi}$, such that all the transitions of I are visible.
(a) An infinite execution $m_{0} \xrightarrow{t_{1}} m_{1} \xrightarrow{t_{2}} \cdots$ of $\mathcal{N}_{\neg \varphi}$ is illegal if t_{i} is infinitely often in I.
(b) An infinite execution $m_{0} \xrightarrow{t_{1}} m_{1} \xrightarrow{t_{2}} \cdots \xrightarrow{t_{i}} m_{i} \xrightarrow{t_{i+1}} \cdots$ of $\mathcal{N}_{\neg \varphi}$ is a livelock if t_{i} is in L and no subsequent transition t_{i+j} for $j>0$ is visible.

Propose a construction for $\mathcal{N}_{\neg \varphi}$ such that $\mathcal{N} \models \varphi$ a LTL(U) formula iff $\mathcal{N}_{\neg \varphi}$ has no illegal nor livelock infinite executions.
3. Let us treat illegal executions in $\mathcal{N}_{\neg \varphi}$. Given a set of events and conditions S, we denote by $|S|_{I}$ the number of events of S labeled by some transition in I. An event e is a repeat with respect to some adequate partial ordering \prec, if there exists another event e^{\prime} (its companion) with $M_{e}=M_{e^{\prime}}$ and either
(a) $e^{\prime}<e$, or
(b) $\neg\left(e^{\prime}<e\right), e^{\prime} \prec e$, and $\left|C_{e^{\prime}}\right|_{I} \geq\left|C_{e}\right|_{I}$.

A repeat e is terminal if there does not exist another repeat e^{\prime} with $e^{\prime}<e$. A repeat e with companion e^{\prime} is successful if $e^{\prime}<e$ and $\left.\| e\right\rfloor \backslash\left\lfloor e^{\prime} \|_{I}>0\right.$. A tableau is an unfolding where we cut off at terminal events. Construct the tableau for the following Petri net where $I=\left\{t_{1}\right\}$ and the order \prec_{e} of the previous exercise:

4. Show that the existence of a successful repeat in the unfolding of $\mathcal{N}_{\neg \varphi}$ implies the existence of an illegal execution.
5. Let us prove that we do not need to unfold $\mathcal{N}_{\neg \varphi}$ indefinitely.
(a) Let B be the maximal number of tokens that can appear simultaneously in a marking. Show that, for any $k \geq 0$, if a subset of events E of a configuration C contains strictly more than $k \cdot B$ events, then there exists a chain $e_{1}<$ $\cdots<e_{k+1}$ in E.
(b) Let K be the number of distinct reachable markings of $\mathcal{N}_{\neg \varphi}$. Show that a tableau cannot contain more than $K^{2} \cdot B$ non terminal events.
6. Let us prove that we can always witness an illegal execution thanks to a successful repeat in the tableau for $\mathcal{N}_{\neg \varphi}$.
(a) Denote a configuration as bad if it contains more than $(K \cdot B)+1 I$-events. Show that $\mathcal{N}_{\neg \varphi}$ exhibits an illegal execution iff its infinite unfolding contains a bad configuration.
(b) Show that a bad configuration contains at least one terminal.
(c) Prove that, given a bad configuration C_{t} of the unfolding of $\mathcal{N}_{\neg \varphi}$, either C_{t} contains a successful terminal of the tableau, or there exists another bad configuration $C_{t^{\prime}}$ with $t^{\prime} \prec t$.
(d) Conclude.

