
MPRI course 2-27-1, year 2010–2011

A Short Introduction
to Formal Syntax and Morphology

Sylvain Schmitz
LSV, ENS Cachan & CNRS
March 9, 2011 (r1315M)

These notes cover the first part of an introductory course on computational lin-
guistics, also known as MPRI 2-27-1: Logical and computational structures for
linguistic modeling. Among their prerequisites are

∙ classical notions of formal language theory, in particular regular and context-
free languages, and more generally the Chomsky hierarchy,

∙ a basic command of English and French morphology and syntax, in order to
understand the examples;

∙ some acquaintance with logic and proof theory also is advisable, and is at
any rate an actual prerequisite for the second part of this course, which covers
semantics and discourse.

Several courses at MPRI provide an in-depth treatment of subjects we can only
hint at. The interested student might consider attending

MPRI 1-18: Tree automata and applications,

MPRI 2-16: Finite automata modelization, and

MPRI 2-1: Linear logic.

Contents

1 Morphology 5
1.1 Background: Linguistic Aspects . 6

1.1.1 A Bit of English Morphology 6
1.1.2 Part-of-Speech Tags . 7

1.2 Finite-State Morphology . 8
1.2.1 Background: Rational Transductions 8
1.2.2 Morphological Analysis . 11
1.2.3 Phonological Rules . 13

1.3 Part-of-Speech Tagging . 16
1.3.1 Rule-Based Tagging . 16

Learning Contextual Rules 17
Contextual Rules as Sequential Functions 18

1.3.2 HMM Tagging . 21
Constructing HMMs from N -Grams 23
HMM Decoding . 24

http://mpri.master.univ-paris7.fr/C-2-27-1.html
http://mpri.master.univ-paris7.fr/C-2-27-1.html
http://mpri.master.univ-paris7.fr/C-1-18.html
http://mpri.master.univ-paris7.fr/C-2-16.html
http://mpri.master.univ-paris7.fr/C-2-1.html

A Short Introduction to Formal Syntax and Morphology 2

2 Generative Syntax 29
2.1 Context-Free Parsing . 30

2.1.1 Tabular Parsing . 32
Parsing as Intersection . 32
Parsing as Deduction . 33

2.1.2 Probabilistic Parsing . 35
Weighted and Probabilistic CFGs 36
Learning PCFGs . 38
Probabilistic Parsing as Intersection 40

2.2 Mildly Context-Sensitive Languages 42
2.2.1 Tree Adjoining Grammars 43

Linguistic Analyses Using TAGs 45
2.2.2 Well-Nested MCSLs . 46

3 Categorial Grammars 49
3.1 AB Categorial Grammars . 50

3.1.1 Alternative Views . 50
3.1.2 Equivalence with Context-Free Grammars 51
3.1.3 Structural Limitations . 52

3.2 Lambek Grammars . 52
3.2.1 Background: Substructural Proof Systems 52
3.2.2 Lambek Calculus . 53
3.2.3 Equivalence with Context-Free Grammars 55

4 References 57

Further Reading

Interested students will find a good general textbook on natural language pro-
cessing in Jurafsky and Martin (2009). The present notes have a strong bias to-
wards formal language theory—reference textbooks in this domain include (Har-
rison, 1978; Berstel, 1979; Sakarovitch, 2009; Comon et al., 2007)—, but this is
hardly representative of the general field of natural language processing and com-
putational linguistics. In particular, the overwhelming importance of statistical
approaches in the current body of research makes the textbook of Manning and
Schütze (1999) another recommended reference.

The main journal of natural language processing is Computational Linguistics.
As often in computer science, the main conferences of the field have equiva-
lent if not greater importance than journal outlets, and one will find among the
major conferences ACL (“Annual Meeting of the Association for Computational
Linguistics”), EACL (“European Chapter of the ACL”), NAACL (“North American
Chapter of the ACL”), and CoLing (“International Conference on Computational
Linguistics”). A very good point in favor of the ACL community is their early
adoption of open access; one will find all the ACL publications online at http:

//www.aclweb.org/anthology/.

Notations

We use the following notations in this document. First, as is customary in lin-
guistic texts, we prefix agrammatical or incorrect examples with an asterisk, like

http://www.aclweb.org/anthology/
http://www.aclweb.org/anthology/

A Short Introduction to Formal Syntax and Morphology 3

∗ationhospitalmis or ∗sleep man to is the.
These notes also contain some exercises, and a difficulty appreciation is indi-

cated as a number of asterisks in the margin next to each exercise—a single aster-
isk denotes a straightforward application of the definitions.

Relations. We only consider binary relations, i.e. subsets of A × B for some
sets A and B (although the treatment of e.g. rational relations in Section 1.2.1
can be generalized to n-ary relations). The inverse of a relation R is R−1 =
{(b, a) ∣ (a, b) ∈ R}, its domain is R−1(B) and its range is R(A). Beyond the
usual union, intersection and complement operations, we denote the composition
of two relations R1 ⊆ A × B and R2 ⊆ B × C as R1 # R2 = {(a, c) ∣ ∃b ∈
B, (a, b) ∈ R1 ∧ (b, c) ∈ R2}. The reflexive transitive closure of a relation is
noted R⊛ =

∪
iR

i, where R0 = IdA = {(a, a) ∣ a ∈ A} is the identity over A, and
Ri+1 = R #Ri.

Monoids. A monoid ⟨M, ⋅, 1M⟩ is a set of elements M along with an associative
operation ⋅ and a neutral element 1M ∈ M. We are often dealing with the free
monoid ⟨Σ∗, ⋅, "⟩ generated by concatenation ⋅ of elements from a finite set Σ. A
monoid is commutative if a ⋅ b = b ⋅ a for all a, b in M.

We lift ⋅ to subsets of M by L1 ⋅ L2 = {m1 ⋅m2 ∣ m1 ∈ L1,m2 ∈ L2}. Then for
L ⊆ M, L0 = {1M} and Li+1 = L ⋅ Li, and we define the Kleene star operator by
L∗ =

∪
i L

i.

Semirings. A semiring ⟨K,⊕,⊙, 0K, 1K⟩ is endowed with two binary operations,
an addition ⊕ and a multiplication ⊙ such that

∙ ⟨K,⊕, 0K⟩ is a commutative monoid for addition with 0K for neutral element,

∙ ⟨K,⊙, 1K⟩ is a monoid for multiplication with 1K for neutral element,

∙ multiplication distributes over addition, i.e. a ⊙ (b ⊕ c) = (a ⊙ b) ⊕ (a ⊙ c)
and (a⊕ b)⊙ c = (a⊙ c)⊕ (b⊙ c) for all a, b, c in K,

∙ 0K is a zero for multiplication, i.e. a⊙ 0K = 0K ⊙ a = 0K for all a in K.

Among the semirings of interest are the

∙ boolean semiring ⟨B,∨,∧, 0, 1⟩ where B = {0, 1},

∙ probabilistic semiring ⟨ℝ+,+, ⋅, 0, 1⟩ where ℝ+ = [0,+∞) is the set of pos-
itive reals (sometimes restricted to [0, 1] when in presence of a probability
distribution),

∙ tropical semiring ⟨ℝ+ ⊎ {+∞},min,+,+∞, 0⟩,

∙ rational semiring ⟨Rat(Δ∗),∪, ⋅, ∅, {"}⟩ where Rat(Δ∗) is the set of rational
sets over some alphabet Δ.

String Rewrite Systems. A string rewrite system or semi-Thue systems over See also the monograph by Book
and Otto (1993).an alphabet Σ is a relation R ⊆ Σ∗×Σ∗. The elements (u, v) of R are called string

rewrite rules and noted u → v. The one step derivation relation generated by
R, noted R

=⇒, is the relation over Σ∗ defined for all w,w′ in Σ∗ by w R
=⇒ w′ iff there

exist x, y in Σ∗ such that w = xuy, w′ = xvy, and u → v is in R. The derivation
relation is the reflexive transitive closure R

=⇒⊛.

A Short Introduction to Formal Syntax and Morphology 4

Prefixes. The prefix ordering ≤pref over Σ∗ is defined by u ≤pref v iff there
exists v′ in Σ∗ such that v = uv′. We note Pref(v) = {u ∣ u ≤pref v} the set of
prefixes of v, and u ∧ v the longest common prefix of u and v.

Term Rewrite Systems. For ranked alphabets, trees, terms, contexts, substitu-
tions, term rewrite systems, etc., see Comon et al. (2007).

Chapter 1

Morphology

We consider in this chapter how to represent sets of words of a natural language
in linguistically meaningful and computationally efficient ways.

The purpose of morphology is to describe the mechanisms that underlie the for-
mation of words. Intuitively, one can recognize the existence of a relation between
the words sings and singing, and further find that the same relation holds between
dances and dancing. A morphological analysis of these words

∙ splits them into basic components, called morphemes: here the stems sing
and dance, and the affixes -s and -ing, standing for singular third person and
present participle, and thus

∙ recognizes them as inflected forms of the lemmas to sing and to dance.

Already observe some difficulties in the word formation rules: the realization of
the present participle of dance is not ∗danceing; and some words may be outright
irregular, e.g. sang and sung for the preterit and past participle forms of to sing.
We will consider formal systems describing the derivation of words.

Beyond the simple enumeration of words, we usually want to retrieve some
linguistic information that will be helpful for further processing: are we dealing
with a noun or a verb (its category)? is it plural or singular (its number)? what
is its part-of-speech (POS) tag? etc. Table 1.1 illustrates the kind of information
one can expect to find in a morphological lexicon. If our rules are well-designed,
we should be able to extract this information from the various derivations that
account for the word.

Table 1.1: Example of entries in English along with their POS tags (from the Penn
Treebank tagset) and some morphological features.

Input Lemma POS tag Features
race race NN [cat=n; num=sg; case=nom|acc]
races race NNS [cat=n; num=pl; case=nom|acc]
race to race VB [cat=v; mode=inf]
race to race VBP [cat=v; pers=1|2; num=sg|pl; tense=pres; mode=ind]
race to race VBP [cat=v; pers=3; num=pl; tense=pres; mode=ind]
races to race VBZ [cat=v; pers=3; num=sg; tense=pres; mode=ind]
race to race VB [cat=v; pers=2; num=sg; tense=pres; mode=imp]
raced to race VBD [cat=v; tense=past; mode=ind]
raced to race VBN [cat=v; mode=ppart]
racing to race VBG [cat=v; mode=ger]

5

A Short Introduction to Formal Syntax and Morphology 6

1.1 Background: Linguistic Aspects

1.1.1 A Bit of English Morphology

Morphology is the study of the rules of word composition from their basic meaning-Most of the discussion is based on
(Jurafsky and Martin, 2009,
Section 3.1).

bearing elements, known as morphemes.
One usually distinguishes between the main morphemes, called stems (like sing,

dance, etc.), that carry the main meaning, from affixes (like -s, -ing, etc.). Four
main types of composition rules are commonly considered, and we will briefly
review them in the following.

Inflection. Inflectional morphology composes a word stem along with a gram-
matical morpheme. Inflection can mark various syntactic features like case, tense,
mood, genre, or number.

The various inflected forms of race and to race in Table 1.1 show the regular
inflections of nouns and verbs in English: the -s plural marking for nouns, and the
-s present third person, -ed preterit or past participle, and -ing present participle
for verbs. Short gradable adjectives can take a comparative suffix -er (as in cuter)
and a superlative suffix -est (as in cutest).

The regular rules are productive in the sense that new-formed words fall prey to
them, for instance to twit/twits/twitted/twitting. In contrast, there are few irregu-
lar nouns and verbs, but they tend to be very frequent words. For nouns, ox/oxen,
mouse/mice, sheep/sheep are a few examples, and for verbs to sing/sang/sung, to
eat/ate/eaten, or to cut/cut/cut.

Derivation. A combination of a stem with an affix that results in a different
lemma is called a derivation. The obtained word is often of a different category—
e.g. from noun to verb with hospital and hospitalize, and back to noun with hospi-
talization—, but this is not mandatory—e.g. pseudohopitalization. Beyond prefixes
and suffixes, English can employ expletives such as bloody, motherfuckin(g), sod-See McCarthy (1982) on the

composition rules for infixed
expletives.

ding etc. as infixes: absobloominglutely, Massafriggingchussets.

Compounding. Like derivation, compounding results in a different lemma, but
links several stems: doghouse, bed-time, rock ’n’ roll, bull’s eye, etc. We will not
treat compounding, which in practical processing is mostly a tokenization issue.
Note that there are also finite-state approaches to tokenization (see e.g. Karttunen
et al., 1996, Section 4.1).

Cliticization. A clitic is a morpheme that acts syntactically like a word, but isCheck Zwicky (1985) to get a
better idea of what a clitic is. bound to another word like an affix. English has auxiliary verbs that may become

simple clitics: has/’s, have/’ve, had/’d, am/’m, is/’s, are/’re, will/’ll, and would/’d.
Such simple clitics are usually replaced by their expanded forms prior any further
processing by the tokenizer.

The possessive marker ’s can also be seen as a special clitic, only applicable to
nouns.

Orthographic Rules. In addition to morpheme composition rules, a morphologi-
cal description has to take some orthographic rules into account. These are often
caused by phonological issues.

An -s suffix is turned into -es in ibises, waltzes, thrushes, finches, boxes for nouns,
and similarly tosses, waltzes, washes, catches, boxes for verbs. An ending y is turned
into ies in butterflies and tries. Regarding -ed and -ing suffixes, ending consonant

A Short Introduction to Formal Syntax and Morphology 7

letters are doubled as in begging, while silent ending e’s are deleted as in dancing.
Other examples of orthographic rules include in- prefixes before some conso-

nants (b, p, m) turning into im-, e.g. impractical, but this does not apply to un-
prefixes (unperturbable).

A Formal Approach Let us define the morphological analysis problem as the
problem, given a single word in isolation, of recovering all its possible structures
and morphological features. The exact formulation of course depends on how
word structures and morphological features are formalized; we will consider a
particular case where a word is decomposed into a sequence of stems, affixes,
and feature structures. For instance, from hospitalized, we want to recover the
sequence hopital+ize+ed[cat=v; mode=ppart]. Note that we also want to recover
the sequence hopital+ize+ed[cat=v; tense=past; mode=ind], i.e. we need to ac-
count for ambiguity.

To solve the morphological analysis problem, if the set of words is finite, we can
store all the forms in a plain dictionary and simply lookup the various entries. A
much more efficient structure is a trie or a directed acyclic graph with the word
structure and morphological information attached to the nodes.

Of course, a finite set approach is linguistically unsatisfying: limits to affix stack-
ing are more of a performance issue, and are easily violated by extreme or playful
uses, like antidisestablishmentarianism or ∗mystery-y-ish-y. In order to represent See Zwicky and Pullum (1987)

for a discussion of “playful”
morphology.

infinite sets of words, we switch naturally to automata with outputs, i.e. trans-
ducers. We first review some basic results on transducers in Section 1.2.1, before
returning to morphological analysis in Section 1.2.2.

1.1.2 Part-of-Speech Tags

Part-of-speech tags are refinements of the usual, basic categories like noun or The best source on the Penn
Treebank tagset are the tagging
guidelines used by the annotators
of the Penn Treebank project
(Santorini, 1990). Beware that
in those early guidelines NNP,
NNPS and PRP were noted NP,
NPS and PP.

verb. Different sets of tags (or tagsets) will provide different amounts of mor-
phological or syntactic information about a word; for instance, one can see in
Table 1.1 that, in the Penn Treebank tagset (Marcus et al., 1993), VBP tags verbs
in present tense, indicative mode, except for the third person singular case, which
uses the VBZ tag. Table 1.2 presents the 36 POS tags of the Penn Treebank tagset,
12 further tags for punctuation and currency symbols being omitted.

By POS tagging we refer to the process of associating a POS tag to each word of
a sentence. There are two important differences with the morphological analysis
problem:

1. we only care about the POS tag, not about other morphological information,

2. the tagging of a word depends on its surrounding context: we should take it
into account in order to accurately disambiguate between different possible
tags.

For instance, we have several possible tags for hospitalized, but the tagging is
unambiguous in the context of

He/PRP hospitalized/VBD his/PP$ mother/NN ./.
His/PP$ mother/NN was/VBD hospitalized/VBN on/IN Saturday/NNP ./.
He/PRP ’s/VBZ visiting/VBG his/PP$ hospitalized/JJ mother/NN ./.

Note that syntactic context is not always enough:

A Short Introduction to Formal Syntax and Morphology 8

Table 1.2: The Penn Treebank POS tagset, punctuation excepted (Marcus et al.,
1993).

Tag POS Tag POS
CC Coordinating conjunction PP$ Possessive pronoun
CD Cardinal number RB Adverb
DT Determiner RBR Adverb, comparative
EX Existential there RBS Adverb, superlative
FW Foreign word RP Particle
IN Preposition or subordinating conjunction SYM Symbol
JJ Adjective TO to
JJR Adjective, comparative UH Interjection
JJS Adjective, superlative VB Verb, base form
LS List item marker VBD Verb, past tense
MD Modal VBG Verb, gerund or present participle
NN Noun, singular or mass VBN Verb, past participle
NNP Proper noun, singular VBP Verb, present, non-3rd person singular
NNPS Proper noun, plural VBZ Verb, 3rd person present
NNS Noun, plural WDT Wh-determiner
PDT Predeterminer WP Wh-pronoun
POS Possessive ending WP$ Possessive wh-pronoun
PRP Personal pronoun WRB Wh-adverb

∗Gator/NN attacks/VBZ puzzle/NN experts/NNS
Gator/NN attacks/NNS puzzle/VBP experts/NNS

In fact, newspaper headlines—like the previous example, from AOL News, spotted
in a New York Times “On Language” column—can be quite puzzling. Another
example, from The Guardian, spotted on Language Log:

May/NNP axes/VBZ Labour/NNP police/NN beat/NN pledge/NN

where May—Theresa May, British Home Secretary—could also be a MD, axes a
NNS, and each of Labour, police, beat, and pledge VBPs. A last example, from the
BBC news, also spotted on Language Log:

Council/NN hires/VBZ ban/NN bid/NN taxi/NN firm/NN

where hires could also be a NNS, each of ban, bid, and taxi could VBPs, and firm a
JJ. This illustrates the amount of ambiguity that POS taggers have to cope with.

The POS tagging task can in fact be decomposed into two subtasks:

1. training a POS tagger from already-tagged data, for instance the annotated
texts from the Wall Street Journal present in the Penn Treebank corpus, which
represent approximately 50,000 sentences and 1,2 million tokens, and

2. using the tagger on tokenized text.

We describe two finite-state approaches for tackling the POS tagging tasks in Sec-
tion 1.3.

1.2 Finite-State Morphology

1.2.1 Background: Rational Transductions

Whereas the theory of regular languages is typically presented on rational and rec-
ognizable subsets of Σ∗ for Σ a finite alphabet, with Kleene’s Theorem stating their

http://www.nytimes.com/2010/01/31/magazine/31FOB-onlanguage-t.html
http://www.guardian.co.uk/uk/2010/jun/29/theresa-may-labour-police-beat
http://languagelog.ldc.upenn.edu/nll/?p=2416
http://en.wikipedia.org/wiki/Theresa_May
http://www.bbc.co.uk/news/uk-scotland-glasgow-west-11032459
http://languagelog.ldc.upenn.edu/nll/?p=2572

A Short Introduction to Formal Syntax and Morphology 9

equality, the landscape of results changes on products of monoids, for instance on
Σ∗×Δ∗ for Σ and Δ two finite alphabets: rational and recognizable sets do not co-
incide. Nevertheless, rational subsets of Σ∗ ×Δ∗, aka rational relations, have an
operational presentation through finite-state devices, namely finite transducers.

We only review basic results on rational relations, and briefly mention two sub- To learn more, go attend
MPRI 2-16 or check the
textbooks of Berstel (1979),
Sakarovitch (2009), and Berstel
and Reutenauer (2010).

classes with applications in computational morphology, namely the length pre-
serving relations and sequential functions. We will also draw parallels in Sec-
tion 1.3.2 between hidden Markov models, which are probabilistic models com-
monly employed in statistical language processing, and recognizable series.

Rational Relations Observe that ⟨Σ∗×Δ∗, ⋅, (", ")⟩with (u, v)⋅(u′, v′) = (uu′, vv′)
is a monoid, generated by ({"} ×Δ∗) ∪ (Σ∗ × {"}), but not freely generated (e.g.
(a, b) = (a, ") ⋅(", b) = (", b) ⋅(a, ")). We use u:v as a shorthand for (u, v) ∈ Σ∗×Δ∗.

The rational subsets of Σ∗ ×Δ∗ are defined as per usual: the finite subsets are
rational, and we take their closure by union, concatenation and Kleene star. Note
that subsets of Σ∗ ×Δ∗ are relations, hence the name rational relations between
Σ∗ and Δ∗. We can also define rational expressions over Σ∗ × Δ∗ using the
abstract syntax

E ::= ∅ ∣ ":" ∣ a:" ∣ ":b ∣ E∗ ∣ E1 + E2 ∣ E1 ⋅ E2

with a in Σ and b in Δ.
A finite-state transducer is a finite automaton over Σ∗ × Δ∗: T = ⟨Q,Σ∗ ×

Δ∗, �, I, F ⟩ with Q a finite set of states, � ⊆ Q × Σ∗ × Δ∗ × Q a finite transition
relation, and I and F the initial and final subsets of Q. The behavior of T is a
relation in Σ∗ ×Δ∗ defined by

JT K = {u:v ∣ �(I, u:v) ∩ F ∕= ∅}

and is called a rational transduction. Without loss of generality, we can always
assume our finite transducers to be normalized, i.e. to be over ({"}×Δ∗)∪ (Σ∗×
{"}).

Exercise 1.1. Show that the range R(Σ∗) of a rational transduction R is a rational (∗)
language.

Exercise 1.2. Show that if L is a rational language over Σ, then IdL is a rational (∗)
transduction over Σ∗ × Σ∗.

Exercise 1.3. Show that rational transductions are closed under inverse and com- (∗∗)
position.

Exercise 1.4. Let R be a relation over Σ∗ ×Δ∗. Show that R is a rational relation (∗∗)
iff it is a rational transduction.

Remark 1.1 (Non-closure). Rational relations are not closed under intersection:

{cn:anbm ∣ m,n ≥ 0} ∩ {cn:ambn ∣ m,n ≥ 0} = {cn:anbn ∣ n ≥ 0}

has a non-rational language {anbn ∣ n ≥ 0} for range. Thus rational relations are
not closed under complement either.

Similarly, R = Id{a,b}∗ ⋅ ba:ab ⋅ Id{a,b}∗ is a rational relation, but its reflexive
transitive closure R⊛ is not: let L = {(ab)n ∣ n ≥ 0}, then

IdL #R⊛({a, b}∗) ∩ {anbm ∣ m,n ≥ 0} = {anbn ∣ n ≥ 0}

is not a rational language.

A Short Introduction to Formal Syntax and Morphology 10

Sequential Functions The equivalence of deterministic and nondeterministic fi-
nite state automata breaks when entering the realm of rational relations. The
closest substitute for a deterministic transducer is called a sequential transducer.Historically, what we call here

“sequential” was named
“subsequential” by
Schützenberger (1977), but we
follow the more recent practice
initiated by Sakarovitch (2009).

Formally, a sequential transducer from Σ to Δ is a tuple T = ⟨Q,Σ,Δ, q0, �, �, �, �⟩
where � : Q × Σ → Q is a partial transition function, � : Q × Σ → Δ∗ a partial
transition output function with the same domain as �, � ∈ Δ∗ is an initial output,
and � : Q → Δ∗ is a partial final output function. T defines a partial sequential
function JT K : Σ∗ → Δ∗ with

JT K(w) = � ⋅ �(q0, w) ⋅ �(�(q0, w))

for all w in Σ∗ for which �(q0, w) and �(�(q0, w)) are defined, where �(q, ") = "
and �(q, wa) = �(q, w) ⋅ �(�(q, w), a) for all w in Σ∗ and a in Σ.

Exercise 1.5. Show that sequential transducers are closed under composition.(∗∗)

Normalization. Let us note T(q) for the sequential transducer with q for initial
state. The longest common prefix of all the outputs from state q can be written
formally as

⋀
v∈Σ∗JT(q)K(v). A sequential transducer is normalized if this value is

" for all q ∈ Q such that dom(JT(q)K) ∕= ∅.

Exercise 1.6. Show that any sequential transducer can be normalized.(∗∗)

Minimization. The translation of a sequential function f by a word w in Σ∗ is
defined by

dom(w−1f) = w−1dom(f) w−1f(u) =

(⋀
v∈Σ∗

f(wv)

)−1

⋅ f(wu)

for all u in dom(w−1f).

Theorem 1.2 (Raney, 1958). A function f : Σ∗ → Δ∗ is sequential iff the set of
translations {w−1f ∣ w ∈ Σ∗} is finite.

As in the finite automata case where minimal automata are isomorphic with
residual automata, the minimal sequential transducer for a sequential function f
is defined as the translation transducer ⟨Q,Σ,Δ, q0, �, �, �, �⟩ where

∙ Q = {w−1f ∣ w ∈ Σ∗} (which is finite according to Theorem 1.2),

∙ q0 = "−1f ,

∙ � =
⋀
v∈Σ∗ f(v) if dom(f) ∕= ∅ and � = " otherwise,

∙ �(w−1, a) = (wa)−1f ,

∙ �(w−1f, a) =
⋀
v∈Σ∗(w

−1f)(av) if dom((wa)−1f) ∕= ∅ and �(w−1f, a) = "
otherwise, and

∙ �(w−1f) = (w−1f)(") if " ∈ dom(w−1f), and is otherwise undefined.

A Short Introduction to Formal Syntax and Morphology 11

Recognizable Series The idea of relations in Σ∗ × Δ∗ can be extended to map
words of Σ∗ with values in a semiring K.

A finite weighted automaton (or automaton with multiplicity, or K-automaton)
in a semiring K is a generalization of a finite automaton: A = ⟨Q,Σ,K, �, I, F ⟩
where � ⊆ Q×Σ×K×Q is a weighted transition relation, and I and F are maps
from Q to K instead of subsets of Q. A run

� = q0
a1,k1−−−→ q1

a2,k2−−−→ q2 ⋅ ⋅ ⋅ qn−1
an,kn−−−→ qn

defines a monomial J�K = kw where w = a1 ⋅ ⋅ ⋅ an is the word label of � and
k = I(q0)k1 ⋅ ⋅ ⋅ knF (qn) its multiplicity. The behavior JAK of A is the sum of the
monomials for all runs in A: it is a formal power series on Σ∗ with coefficients in
K, i.e. a map Σ∗ → K. The coefficient of a word w in JAK is denoted ⟨JAK, w⟩ and
is the sum of the multiplicities of all the runs with w for word label:

⟨JAK, a1 ⋅ ⋅ ⋅ an⟩ =
∑

q0
a1,k1−−−→q1⋅⋅⋅ qn−1

an,kn−−−→qn

I(q0)k1 ⋅ ⋅ ⋅ knF (qn) .

A matrix K-representation for A is ⟨I, �, F ⟩, where I is seen as a row matrix in
K1×Q, the morphism � : Σ∗ → KQ×Q is defined by �(a)(q, q′) = k iff (q, a, k, q′) ∈
�, and F is seen as a column matrix in KQ×1. Then There is a notion of K-rational

series, which coincide with the
K-recognizable ones
(Schützenberger, 1961).

⟨JAK, w⟩ = I�(w)F .

A series is K-recognizable if there exists a K-representation for it.
The support of a series JAK is supp(JAK) = {w ∈ Σ∗ ∣ ⟨JAK, w⟩ ∕= 0K}. This

corresponds to the language of the underlying automaton of A.

Exercise 1.7 (Product of series). Let K be a commutative semiring. Show that (∗∗)
K-recognizable series are closed under product: given two K-recognizable series
s and s′, show that s ⊙ s′ with ⟨s ⊙ s′, w⟩ = ⟨s, w⟩ ⊙ ⟨s′, w⟩ for all w in Σ∗ is
K-recognizable. What can you tell about the support of s⊙ s′?

Exercise 1.8 (Rational relations as series). Given a relation R in Σ∗ ×Δ∗, define (∗∗)
See Berstel (1979, Corollary
III.7.2) or Sakarovitch (2009,
Theorem IV.1.7).

the series JRK by ⟨JRK, w⟩ = R(w) for all w in Σ∗. Show that R is rational iff JRK
is a Rat(Δ∗)-recognizable series over Σ.

1.2.2 Morphological Analysis

Let us return to the problem of morphological analysis. We assume that we have
at our disposal a lexicon of all the possible stems, affixes, and feature structures,
and want to model how these morphemes can be combined.

Actually, we use in our examples POS tags as shorthand notations for both mor-
phological features and inflectional affixes. For instance, the morphological anal-
ysis of hospitalized will rather be hospital−ize[−vbd], where the POS tag VBG,
noted [−vbd], is a shorthand notation for both the inflectional affix -ed and the
features [cat=v; tense=past; mode=ind]. Accordingly, our lexicon gathers stems,
derivational affixes, and POS tags.

As we will see, using finite-state methods solely, we can

1. model the various possible morpheme associations, and their various possi-
ble orderings; this is called morphotactics (e.g. [−vbd] can follow any verb
stem, but the suffix -ation should be applied to verbs ending with -ize as in
hospitalization),

A Short Introduction to Formal Syntax and Morphology 12

n

v−ize

−ation−er

"

"

"

[−nn]

[−nns]

[−vb]

[−vbz]
[−vbd][−vbn]

[−vbg]

Figure 1.1: A finite state automaton for some morphotactics applicable to nouns
ending with -al.

2. implement the morphological rules (e.g. [−vbd] translates into -ed for regu-
lar verbs, but behaves differently for irregular ones) and orthographic rules
(e.g. hospitalized and not ∗hospitalizeed).

Affix Selection and Morphotactics The issue of finite-state morphotactics is
rather straightforward from a formal language viewpoint: the various orderings
can be stored in a simple finite state automaton over the lexicon as alphabet. This
automaton can then be turned into one over the Latin alphabet plus POS tags and
a morpheme boundary marker “−”—which we will denote by Σ from now on—,
and further minimized.

The automaton of Figure 1.1 presents morphotactics that derive for instance
hospitalizations (hospital−ize−ation[−nns]) or hospitalized (hospital−ize[−vbd]).

What is the linguistic value of such a finite automaton representation?

∙ For one thing, it merely stores information about the possible combinations
without providing any rationale. Consider for instance the rules of adjec-
tive suffixing with the comparative -er: the general rule is that adjectives
of two syllables or less can use it, like sadder (produced by sad[−jjr]) or
nicer (nice[−jjr]), but not the adjectives with more than two syllables, like
∗curiouser or ∗eleganter (see Pesetsky, 1985, for a related discussion). Con-
trast these affixation constraints with those of un- on adjectives: we can have
unwell, unhappy, or uncheerful, but not ∗unill, ∗unsad or ∗unsorrowful. The
explanation is that un- can only apply to an adjective with a positive connota-
tion (usually attributed to Zimmer, 1964). Such phonological and semantic
explanations are absent from the automaton model.

∙ Another issue comes from duplication of some parts of the automaton (Kart-
tunen, 1983; Sproat, 1992). For example, contrast enjoyable (en−joy−able)
and enrichable (en−rich−able) with the incorrect ∗joyable and ∗richable: in
these examples, the -able suffix is only acceptable if the en- prefix is present,
resulting in duplication in the automaton in order to record whether en-
was added or not. This seems to indicate that the finite state model is not
perfectly adequate; for instance a more compact representation would be
obtained through pushdown automata.

A Short Introduction to Formal Syntax and Morphology 13

?:? ?:?

g:g −:g e:e

Figure 1.2: A transducer for rewrite rule (1.2). Question marks ?:? stand for a:a
for all a ∈ Σ.

Morphological and Orthographic Rules A natural way to represent morpho-
logical and orthographic rules is to use string rewrite systems. The formation of
begged out of the stem beg and the affix -ed can be explained as an application of
the morphological rule

[−vbn]→ −ed (1.1)

followed by the orthographic rule

g−e→ gge (1.2)

to beg[−vbn]. The one-step derivation relation R
=⇒ defined by a finite string rewrite

system R is a rational relation, which can also be expressed as IdΣ∗ ⋅(
∑

u→v∈R u:v)⋅
IdΣ∗ . For instance this corresponds to

IdΣ∗ ⋅ g−e:gge ⋅ IdΣ∗ (1.3)

for the one-rule system consisting of rule (1.2), which can be implemented by a
finite transducer, as the one of Figure 1.2 for (1.2).

The remainder of this section is dedicated to the translation from string rewrit-
ing formalisms into finite state transducers: Section 1.2.3 presents a formalism of
cascaded phonological rules to this end. See Koskenniemi and Church

(1988) for another formalism of
parallel rewrites.1.2.3 Phonological Rules

Chomsky and Halle (1968) introduced a particular notation for the rewrite rules
used in phonology: the general form of a phonological rule is

�→ � / � � (1.4)

where �, �, �, and � are rational languages over Σ (for instance represented by
rational expressions). Such a rule stands roughly for “rewrite � into � in the
context of �, �”, i.e. for the (generally infinite) string rewrite system

{x u y → x v y ∣ (x, u, v, y) ∈ �× �× � × �} (1.5)

—but not quite, as we will see later when considering the implicit restrictions on
derivations assumed by phonologists. The same formalism can also be employed
for the treatment of morphological and orthographic rules.

Example 1.3. Let us focus for instance on past participle inflection: (1.2) can be
restated with this notation as

− → g / g e . (1.6)

A Short Introduction to Formal Syntax and Morphology 14

Keeping with past participle composition, we would also need

− → " / (1.7)

in order to obtain faxed from fax−ed (contexts are left blank for the rational ex-
pression "), and

e− → " / e (1.8)

in order to obtain danced from dance−ed. On the other hand, the formation of
sung for to sing requires the addition of

sing[−vbn]→ sung / . (1.9)

Observe that we should be able to order our rules if we want to avoid spurious
rewrites, like ∗beged or ∗singged. In our case, we should apply (1.9), then (1.1),
then (1.6) and (1.8), and (1.7) last. Furthermore, we should make the rewrites
obligatory: if (1.9) or (1.6) can be applied, then they should be. But not all rules
should be obligatory: for instance, with

prove[−vbn]→ proven / (1.10)

both proven and proved are accepted as past participles of to prove, thus (1.10)
should be optional. Adding some derivational morphology to the mix allows to
witness another issue with rule application:

[−vbg]→ −ing / (1.11)

e− → " / i (1.12)

could model gerund inflection in dancing. In order to obtain passivizing, we need
to apply (1.11) once to passive−ize[−vbg], and (1.12) on all the applicable factors
of passive−ize−ing: we are actually applying the transitive closure of the one-step
derivation relation defined by rule (1.12).

To sum up, a phonological rule system consists of a finite sequence P =
r1 ⋅ ⋅ ⋅ rn of phonological rules ri, each rule ri defining a rewrite relation JriK over
Σ∗ × Σ∗, such that the behavior of P is the composition JPK = Jr1K # ⋅ ⋅ ⋅ # JrnK.

Restrictions on Rewrites In the optional case, the rewrite relation defined by
a phonological rule of form (1.4) seems to be exactly the derivation relation of
the system (1.5). General string rewrite systems are already Turing-complete in
the finite case (in fact, three rules are enough to yield undecidable accessibility
(Matiyasevicha and Sénizergues, 2005)), thus there is no hope to be able to com-A related open problem is to

decide termination of one-rule
string rewrite systems, see
McNaughton (1995); Sénizergues
(1996) for partial solutions.

pute the effect of a phonological rule without further restricting derivations.
Fortunately, linguists give a particular semantics to rewrites: after the applica-

tion of a rule like (1.4), the newly written word from � cannot be later rewritten.
Moreover, rewrites are constrained to occur left-to-right (or right-to-left or simul-
taneously, but we will only consider the first case).

Formally, given a phonological rule r = � → � / � �, a derivation w0
r
=⇒

w1
r
=⇒ ⋅ ⋅ ⋅ r=⇒ wn is such that for each 0 ≤ i < n, wi = xiuiyi and wi+1 = xiviyi for

some (xi, ui, vi, yi) ∈ (Σ∗ ⋅ �)× �× � × (� ⋅ Σ∗). A derivation is left-to-right if for
each 0 ≤ i < n− 1, ∣xivi∣ ≤ ∣xi+1∣; we only consider left-to-right derivations in the
following. It is furthermore

A Short Introduction to Formal Syntax and Morphology 15

leftmost if for each 0 ≤ i < n and for all (z, z′) in Σ∗ × Σ+ such that zz′ = xiui
and either i = 0, or i > 0 and ∣z∣ ≥ ∣xi−1vi−1∣, (z, z′yi) ∕∈ (Σ∗��)× (�Σ∗),

irreducible if either n = 0 and w0 ∕∈ Σ∗���Σ∗, or n > 0 and for all z, z′ in Σ∗

with yn−1 = zz′, (xn−1vn−1z, z
′) ∕∈ (Σ∗��)× (�Σ∗).

Given a phonological rule r, its behavior JrK is a relation over Σ∗ defined by
w JrK w′ iff

∙ there exists a left-to-right derivation w = w0
r
=⇒ w1

r
=⇒ ⋅ ⋅ ⋅ r=⇒ wn = w′ if r is

optional, or iff

∙ there exists a left-to-right, leftmost, and irreducible derivation w = w0
r
=⇒

w1
r
=⇒ ⋅ ⋅ ⋅ r=⇒ wn = w′ if r is obligatory.

Note that the definition of left-to-right derivations justifies the context notation
in phonological rules: using directly rules of form ���→ ��� in left-to-right mode
would not allow to later rewrite the factor matched by �.

Phonological Rules as Rational Relations We show in this section that the be-
havior of a phonological rule r is a rational relation. We only consider the simpler
case of optional rules; see Kaplan and Kay (1994) and Mohri and Sproat (1996)
for the obligatory case.

First observe that, in a left-to-right derivation w0
r
=⇒ w1

r
=⇒ ⋅ ⋅ ⋅ r=⇒ wn, since each

of the n rewrites has to occur to the right of the previous one, we can decompose
each wi as

w0 = z0u0z1u1z2 ⋅ ⋅ ⋅ zn−2un−1zn−1

w1 = z0v0z1u1z2 ⋅ ⋅ ⋅ zn−2un−1zn−1

...

wn = z0v0z1v1z2 ⋅ ⋅ ⋅ zn−2vn−1zn−1

verifying

(z0v0z1 ⋅ ⋅ ⋅ zi−1, ui, vi, zi ⋅ ⋅ ⋅ zn−2un−1zn−1) ∈ (Σ∗ ⋅ �)× �× � × (� ⋅ Σ∗) (1.13)

for each 0 ≤ i < n.
The second observation is that right contexts can be checked againstw0, whereas

left contexts should be checked against wn. Hence a decomposition of JrK as the
composition of three relations

JrK = right� # replace�,� # left� (1.14)

that respectively check the right contexts, perform the rewrites, and check the left
contexts.

It remains to implements these relations as rational transductions. Let us intro-
duce a fresh delimiter symbol # and the projection �# : (Σ ⊎ {#})∗ → Σ∗. The
relation right� nondeterministically introduces #s before factors in �. The relation
replace�,� replaces a factor u# in �# by a factor #v in #�. The relation left�
erases #s after factors in �−1

(�).

Exercise 1.9. Propose transducer constructions for each of right�, replace�,�, and (∗∗∗)
left�.

A Short Introduction to Formal Syntax and Morphology 16

Exercise 1.10. Given a rational relation R in Σ∗ ×Δ∗, build a phonological rule(∗∗∗)
system P of optional rules such that, for all (w,w′) in Σ∗ × Δ∗, w JPK $w′$ iff
w R w′, where $ is an end-of-string marker neither in Σ nor in Δ.

Deduce that the morphological analysis problem for phonological rule sys-
tems, i.e. given a phonological rule system P of optional rules and a word w′, to
decide whether there exists w such that w JPK w′, is PSPACE-hard.

1.3 Part-of-Speech Tagging

Recall that the POS tagging task consists in assigning the appropriate part-of-
speech tag to a word in the context of its sentence. The program that performs
this task, the POS tagger, can be learned from an annotated corpus like the Penn
Treebank—called supervised learning.

Formally, we are given a finite tagset Θ and an annotated corpus. For bench-
marking purposes, the corpus is typically partitioned into

∙ a training corpus, on which the tagger is trained,

∙ optionally a development corpus, used to tune the tagger training algo-
rithm, and

∙ a test corpus, on which the performance of the tagger is measured.

Thus the training corpus is made of sequences of (word, POS tag) pairs in Σ ×
Θ, where Σ is the set of words in the training corpus. A consequence of this
subdivision is that Σ is likely to be a strict subset of the set of words in the entire
corpus; in particular, there are bound to be unknown words in the test corpus.
For instance, Brants (2000) reports that 2.9% of the words in his 10%-sized test set
from the Penn Treebank corpus were unknown; unsurprisingly, tagging accuracies
tend to be significantly lower for unknown words.

The accuracy of taggers trained on a corpus similar enough to the test set, for
instance using a partitioned corpus, is quite high: Brill (1992) reports tagging ac-
curacy scores around 95% using his rule-based tagger on the Brown corpus, while
Brants (2000) reports an overall 96.7% accuracy on the WSJ parts of the Penn
Treebank with his trigram-HMM tagger (these values are not directly comparable
due to differing tagsets and corpora). One has to contrast such numbers with the
mean inter-annotator agreement rate: Marcus et al. (1993) report that on average
two linguists agree over 96.6% of the tags. Hence the accuracy scores of taggers
trained on a corpus similar to the test set is pretty much optimal!

1.3.1 Rule-Based Tagging

The most famous rule-based POS tagging technique is due to Brill (1992). HeThis section is partly based on
Roche and Schabes (1995). introduced a three-parts technique comprising:

1. a lexical tagger, which associates a unique POS tag to each word from an an-
notated training corpus. This lexical tagger simply associates to each known
word its most probable tag according to the training corpus annotation, i.e.
a unigram maximum likelihood estimation;

2. an unknown word tagger, which attempts to tag unknown words based on
suffix or capitalization features. It works like the contextual tagger, using

A Short Introduction to Formal Syntax and Morphology 17

the presence of a capital letter and bounded sized suffixes in its rules: for
instance, a -able suffix usually denotes an adjective;

3. a contextual tagger, on which we focus here. It consists of a cascade of
contextual rules of form uav → ubv for a, b in Θ and uv in Θ≤k for some As in Section 1.2.3, the rewrite

semantics of these rules are not
quite the usual ones.

predefined k, which correct tag assignments based on the u, v contexts. We
present in this section how such rules are learned from the training or the
development corpus, and how they can be compiled into sequential trans-
ducers.

Learning Contextual Rules

We start with an example by Roche and Schabes (1995): Let us suppose the fol-
lowing sentences were tagged by the lexical tagger

∗Chapman/NNP killed/VBN John/NNP Lennon/NNP
∗John/NNP Lennon/NNP was/VBD shot/VBD by/IN Chapman/NNP
He/PRP witnessed/VBD Lennon/NNP killed/VBN by/IN Chapman/NNP

with mistakes in the first two sentences: killed should be tagged as a past tense
form, and shot as a past participle form.

The contextual tagger learns contextual rules of form uav → ubv for a, b in Θ
and uv in Θ≤k for some predefined k; in practice, k = 2 or k = 3. The learning Brill (1992) and Roche and

Schabes (1995) use slightly
different templates than the one
parametrized by k we present
here.

algorithm simply consists in comparing the effect of all possible contextual rules
on the tagging accuracy, and keeping the one with the best results. The learning
phase always terminate since a rule is kept only if it actually improves tagging
accuracy, and there is only a finite number of possible pairs in Σ × Θ for each
token of the training corpus. In fact, Brill (1992) reports that 71 rules are enough
when learning on 5% of the Brown corpus; Roche and Schabes (1995) obtain 280
rules on 90% of the Brown corpus.

For instance, a first contextual rule could be

nnp vbn→ nnp vbd (1.15)

resulting in a new tagging

Chapman/NNP killed/VBD John/NNP Lennon/NNP
∗John/NNP Lennon/NNP was/VBD shot/VBD by/IN Chapman/NNP
∗He/PRP witnessed/VBD Lennon/NNP killed/VBD by/IN Chapman/NNP

A second contextual rule could be

vbd in→ vbn in (1.16)

resulting in the correct tagging

Chapman/NNP killed/VBD John/NNP Lennon/NNP
John/NNP Lennon/NNP was/VBD shot/VBN by/IN Chapman/NNP
He/PRP witnessed/VBD Lennon/NNP killed/VBN by/IN Chapman/NNP

A Short Introduction to Formal Syntax and Morphology 18

Contextual Rules as Sequential Functions

As stated before, our goal is to compile the entire sequence of contextual rules
learned from a corpus into a single sequential function.

Let us first formalize the semantics of Brill’s contextual rules. Let C = r1r2 . . . rn
be a finite sequence of rewrite rules in Θ∗×Θ∗. In practice the rules constructed in
Brill’s contextual tagger are length-preserving and modify a single letter, but this
is not a useful consideration from a theoretical viewpoint. Each rule ri = ui → vi
defines a leftmost rewrite relation ri=⇒

lm
defined by

w
ri=⇒
lm

w′ iff ∃x, y ∈ Σ∗, w = xuiy ∧ w′ = xviy ∧ (∀z, z′ ∈ Σ∗, w ∕= zuiz
′ ∨ x ≤pref z)

(1.17)
Note that the domain of ri=⇒

lm
is Θ∗ ⋅ ui ⋅Θ∗. The behavior of a single rule is then

JriK =
ri=⇒
lm
∪ IdΘ∗⋅ui⋅Θ∗ , (1.18)

i.e. it applies ri=⇒
lm

on Θ∗ ⋅ui ⋅Θ∗ and the identity on its complement Θ∗ ⋅ ui ⋅Θ∗. The

behavior of C is then the composition

JCK = Jr1K # Jr2K # ⋅ ⋅ ⋅ # JrnK . (1.19)

A naive implementation of C would try to match each ui at every position of the
input string w in Σ∗, resulting in an overall complexity of O(∣w∣ ⋅

∑
i ∣ui∣). How-

ever, one often faces the problem of tagging a set of sentences {w1, . . . , wm}, which
yields O((

∑
i ∣ui∣) ⋅ (

∑
j ∣wj ∣)). As shown in Roche and Schabes’ experiments, com-

piling C into a single sequential transducer T results in practice in huge savings,
with overall complexities in O(∣w∣+ ∣T ∣) and O(∣T ∣+

∑
j ∣wj ∣) respectively.

By (1.19) and the closure of sequential functions under composition, it suffices
to prove that JriK is a sequential function for each i in order to prove that JCK is
a sequential function. Since each JriK is a rational function, being the union of
two rational functions over disjoint domains, our efforts are not doomed from the
start.

Sequential Transducer of a Rule Intuitively, the sequential transducer for JriK
is related to the string matching automaton for ui, i.e. the automaton for theSee (Simon, 1994; Crochemore

and Hancart, 1997). language Θ∗ui. This insight yields a direct construction of the minimal sequential
transducer of a contextual rule, with ∣ui∣ + 1 states in most cases. Let us recall a
few definitions:

Definition 1.4 (Overlap, Border). The overlap ov(u, v) of two words u and v is
the longest suffix of u which is simultaneously a prefix of v:

u

v

ov(u, v)

A word u is a border of a word v if it is both a prefix and a suffix of v, i.e. if
there exist v1, v2 in Θ∗ such that v = uv1 = v2u. For v ∕= ", the longest border of v
different from v itself is denoted bord(v).

A Short Introduction to Formal Syntax and Morphology 19

""

"

a

"

ab

"

aba

a

abab

ab

ababb

"

b:b

a:a

a:a

b:b

b:b

a:"

a:aa

b:" b:bbb

a:ab

Θ:Θ

Figure 1.3: The sequential transducer constructed for ababb→ abbbb.

v
v2

v1
v

bord(v)

Exercise 1.11. Show that for all u, v in Θ∗ and a in Θ, (∗)

ov(ua, v) =

{
ov(u, v) ⋅ a if ov(u, v) ⋅ a ≤pref v

bord(ov(u, v) ⋅ a) otherwise.
(1.20)

Definition 1.5 (Transducer of a Contextual Rule). The sequential transducer Tr
associated with a contextual rule r = u→ v with u ∕= " is defined as

Tr = ⟨Pref(u),Θ,Θ, ", �, �, ", �⟩

with the set of prefixes of u as state set, " as initial state and initial output, and for
all a in Θ and w in Pref(u),

�(w, a) =

⎧⎨⎩
wa if wa ≤pref u

w if w = u

bord(wa) otherwise

�(w) =

⎧⎨⎩
" if w ≤pref (u ∧ v)

(u ∧ v)−1 ⋅ w if (u ∧ v) <pref w <pref u

" otherwise, i.e. if w = u

�(w, a) =

⎧⎨⎩

a if wa ≤pref (u ∧ v)

" if (u ∧ v) <pref wa <pref u

(u ∧ v)−1 ⋅ v if wa = u

a if w = u

�(w)a ⋅ �(bord(wa))−1 otherwise.

For instance, the sequential transducer for the rule ababb → abbbb is shown in
Figure 1.3 (one can check that ababb ∧ abbbb = ab, bord(b) = ", bord(aa) = a,
bord(abb) = ", bord(abaa) = a, and bord(ababa) = aba).

Proposition 1.6. Let r = u→ v with u ∕= ". Then JTrK = JrK.

Proof. Let us first consider the case of input words in Θ∗ ⋅ u ⋅Θ∗:
Claim 1.6.1. For all w in Θ∗ ⋅ u ⋅Θ∗,

�(", w) = ov(w, u) �(", w) = w ⋅ �(ov(w, u))−1 .

A Short Introduction to Formal Syntax and Morphology 20

Proof of Claim 1.6.1. By induction on w: since u ∕= ", the base case is w = " with

�(", ") = " = ov(", u) �(", ") = " = " ⋅ "−1 = " ⋅ �(")−1 .

For the induction step, we consider wa in Θ∗ ⋅ u ⋅Θ∗ for some w in Θ∗ and a in Θ,
and we get

�(", wa) = �(�(", w), a) (by def.)

= �(ov(w, u), a) (by ind. hyp.)

= ov(wa, u) (by (1.20))

�(", wa) = �(", w) ⋅ �(�(", w), a) (by def.)

= w ⋅ �(�(", w))−1 ⋅ �(�(", w), a) (by ind. hyp.)

= w ⋅ �(w′)−1 ⋅ �(w′, a) ; (by setting w′ = �(", w))

we need to do a case analysis for this last equation:

Case w′a ∕≤pref u Then �(w′, a) = �(w′) ⋅ a ⋅ �(border(w′a))−1, which yields

�(", wa) = w ⋅ �(w′)−1 ⋅ �(w′) ⋅ a ⋅ �(�(", wa))−1

= wa ⋅ �(�(", wa))−1 .

Case w′a <pref u Then �(", wa) = w′a, and we need to further distinguish be-
tween several cases:

w′a ≤pref (u ∧ v) then �(w′) = ", �(w′, a) = a, and �(w′a) = ", thus

�(", wa) = wa = wa ⋅ "−1 = wa ⋅ �(w′a)−1 ,

w′ = (u ∧ v) then �(w′) = ", �(w′, a) = ", and �(w′a) = (u∧v)−1 ⋅w′a = a,
thus

�(", wa) = w = wa ⋅ a−1 = wa ⋅ �(w′a)−1 ,

(u ∧ v) <pref w′ then �(w′) = (u ∧ v)−1 ⋅ w′, �(w′, a) = ", and �(w′a) =
(u ∧ v)−1 ⋅ w′a, thus

�(", wa) = w ⋅ ((u ∧ v)−1 ⋅ w′)−1 = wa ⋅ a−1 ⋅ ((u ∧ v)−1 ⋅ w′)−1

= wa ⋅ �(w′a)−1 . [1.6.1]

Claim 1.6.1 yields that JTrK coincides with JrK on words in with Θ∗ ⋅ u ⋅Θ∗, i.e.
is the identity over Θ∗ ⋅ u ⋅Θ∗. Then, since u ∕= ", a word in Θ∗ ⋅ u ⋅ Θ∗ can be
written as waw′ with w in Θ∗ ⋅ u ⋅Θ∗, a in Θ with wa in Θ∗ ⋅ u, and w′ in Θ∗. Let
u = u′a; Claim 1.6.1 implies that

�(", w) = u′ �(", w) = w ⋅ �(u′)−1 .

Thus, by definition of Tr, �(", wa) = u′a = u and

�(", wa) = �(", w) ⋅ �(u′, a) = w ⋅ �(u′)−1 ⋅ (u ∧ v)−1 ⋅ v ;

if (u ∧ v) <pref u′

�(", wa) = w ⋅ ((u ∧ v)−1 ⋅ u′)−1 ⋅ (u ∧ v)−1 ⋅ v = w ⋅ u′−1 ⋅ v = wa ⋅ u−1 ⋅ v ;

A Short Introduction to Formal Syntax and Morphology 21

otherwise i.e. if u′ = (u ∧ v):

�(", wa) = w ⋅ u′−1 ⋅ v = wa ⋅ u−1 ⋅ v .

Thus in all cases JTrK(wa) = JrK(wa), and since Tr starting in state u (i.e. Tr(u))
implements the identity over Θ∗, we have more generally JTrK = JrK.

Lemma 1.7. Let r = u→ v. Then Tr is normalized.

Proof. Let w ∈ Prefix(u) be a state of Tr; we need to show that
⋀

JTr(w)K(Θ∗) = ".

If (u ∧ v) <pref w <pref u let u′ = w−1u ∈ Θ+, and consider the two outputs

JTr(w)K(u′) = �(w, u′)�(u) = (u ∧ v)−1v JTr(w)K(") = �(w) = (u ∧ v)−1w .

Since (u∧v) <pref u we can write u as (u∧v)au′′u′, and either v = (u∧v)bv′

or v = u∧ v, for some a ∕= b in Θ and u′′, v′ in Θ∗; this yields w = (u∧ v)au′′

and thus JTr(w)K(u′) ∧ JTr(w)K(") = ".

otherwise �(w) = ", which yields the lemma.

Proposition 1.8. Let r = u → v with u ∕= " and u ∕= v. Then Tr is the minimal
sequential transducer for JrK.

Proof. Let w <pref w
′ be two different states in Prefix(u); we proceed to prove that

Jw−1TrK ∕= Jw′−1TrK, hence that no two states of Tr can be merged. By Lemma 1.7
it suffices to prove that JTr(w)K ∕= JTr(w′)K, thus to exhibit some x ∈ Θ∗ such that
JTr(w)K(x) ∕= JTr(w′)K(x). We perform a case analysis:

if w′ ≤pref (u ∧ v) then w <pref (u∧ v) thus JTr(w)K(x) = x for all x ∕∈ w−1 ⋅Θ∗ ⋅
u ⋅Θ∗; consider

JTr(w)K(w′−1u) = w′−1u ∕= w′−1v = JTr(w′)K(w′−1u) ;

if w ≤pref (u ∧ v) and w′ = u then JTr(w′)K(x) = x for all x and we consider

JTr(w)K(w−1u) = w−1v ∕= w−1v = JTr(w′)K(w−1u) ;

otherwise that is if w ≤pref (u ∧ v) and (u ∧ v) <pref w
′ <pref u, or (u ∧ v) <pref

w <pref w
′ ≤pref u, we have �(w) ∕= �(w′) thus

JTr(w)K(") ∕= JTr(w′)K(") .

Exercise 1.12. Define the minimal sequential transducers for r = u → v in the (∗)
cases u = " and u = v.

1.3.2 HMM Tagging

Other approaches to the POS tagging problem rely on probabilistic models to find
an appropriate tag sequence given a word sequence. A simple formalism to this
end is that of hidden Markov models (HMM), where the observed sequences of
symbols (here the words) depend on hidden sequences of states (here the tags)
that spanned them.

We need to define a notion of probabilities for sequences. Consider n variables
Y1, . . . , Yn with values in Σ, and a sequence w of n words in Σ. Variable Yi is the

A Short Introduction to Formal Syntax and Morphology 22

act of observing the ith word in the sequence of n words. The probability of a
particular sequence w = a1 ⋅ ⋅ ⋅ an is then

p(a1 ⋅ ⋅ ⋅ an)

= Pr(Y1 = a1, Y2 = a2, . . . , Yn = an)

= Pr(Y1 = a1) ⋅ Pr(Y2 = a2∣Y1 = a1) ⋅ ⋅ ⋅Pr(Yn = an∣Y1 = a1, . . . , Yn−1 = an−1)

=
n∏
i=1

Pr(Yi = ai∣Y1 = a1, . . . , Yi−1 = ai−1) .

Add an extra variable Y0 and a “beginning-of-sequence” marker $ with Pr(Y0 =
$) = 1; we obtain a simpler expression

p(a1 ⋅ ⋅ ⋅ an) =
n∏
i=1

p(ai∣$a1 ⋅ ⋅ ⋅ ai−1) . (1.21)

Hidden Markov model provide a means to define the probability of an observed
sequence as the result of another, hidden, sequence of states.

Given a set S, Disc(S) denotes the set of discrete probability distributions over
S, i.e. {p : S → [0, 1] ∣

∑
e∈S p(e) = 1}.

Definition 1.9 (HMM). A hidden Markov model is a tuple ℋ = ⟨Q,Σ, S, T,E⟩
where Q is a finite set of states, Σ a finite output alphabet, S ∈ Disc(Q) the
starting state probabilities, T : Q → Disc(Q) the transition probabilities, and
E : Q→ Disc(Σ) the emission probabilities.

The entries of S represent the conditional probability S(q) = p(q∣$) of starting
a sequence of states in state q, T the conditional probability T (q)(q′) = p(q′∣q)
of moving to q′ when in q, and E the conditional probability E(q)(a) = p(a∣q) of
emitting a when in q. The probability for a run � = q1 ⋅ ⋅ ⋅ qn to occur is defined to
be

p(�) =

n∏
i=1

p(qi∣$q1 ⋅ ⋅ ⋅ qi−1) =

n∏
i=1

p(qi∣qi−1) = S(q1) ⋅
n∏
i=2

T (qi−1)(qi)

(with q0 = $), i.e. the conditional probability distribution of the next state depends
only upon the current state—the Markov property—, while the probability for this
run to emit w = a1 ⋅ ⋅ ⋅ an is defined to depend solely on the currently visited states,

p(w∣�) =
n∏
i=1

p(ai∣qi) =
n∏
i=1

E(qi)(ai) ;

and the probability of w is thus

p(w) =
∑
�∈Qn

p(w∣�) ⋅ p(�) .

Observe that a HMM defines a discrete probability distribution over Σn for all
n:

∀n,
∑
w∈Σn

p(w) = 1 . (1.22)

A Short Introduction to Formal Syntax and Morphology 23

Example 1.10. Consider the HMM defined by Q = {q1, q2, q3}, Σ = {a, b}, and

S =
(

0.5 0.5 0
)

T =

⎛⎝ 1 0 0
0 0.5 0.5
0 0 1

⎞⎠ E =

⎛⎝ 1 0
1 0

0.5 0.5

⎞⎠ .

It starts with probability 0.5 in either q1 or q2. Supposing it starts in q2, it remains
there with probability 0.5 and emits a, or moves to q3 and emits a or b. The run q2q2

has probability p(q2q2) = 0.25 and emits aa with probability p(aa∣q2q2) = 1. There
are other runs that emit aa, for instance q3q3 is such that p(aa∣q3q3) = 0.25, but
p(q3q3) = 0, and in fact there are only two other runs with non-null probability that
emit aa: p(q1q1) = 0.5 with p(aa∣q1q1) = 1 and p(q2q3) = 0.25 with p(aa∣q2q3) =
0.5, thus we have p(aa) = 0.875.

Constructing HMMs from N -Grams

As we have seen in (1.21), the probability of a given sequence is a complex ex-
pression that involves the full history of the sequence at each step. The idea of
N -grams is to approximate this full history by considering only the last N − 1
events as conditioning the current one, i.e. by replacing (1.21) with

p(a1 ⋅ ⋅ ⋅ an) ≈
n∏
i−1

p(ai∣ai−N+1 ⋅ ⋅ ⋅ ai−1) , (1.23)

(with the convention that aj = $ is a dummy observation for each j ≤ 0). In the
particular cases of N = 1, N = 2, and N = 3, N -grams are called unigrams,
bigrams, and trigrams repectively.

Maximum Likelihood Estimation Suppose now that we have an annotated cor-
pus made of sequences of (word, POS tag) pairs in Σ × Θ. Then we can estimate
the probability of a given tag t appearing after N − 1 other tags t1 ⋅ ⋅ ⋅ tN−1 by
counting the number of occurrences C(t1 ⋅ ⋅ ⋅ tN−1t) of the sequence t1 ⋅ ⋅ ⋅ tN−1t
and dividing by the number of occurrences of C(t1 ⋅ ⋅ ⋅ tN−1) of t1 ⋅ ⋅ ⋅ tN−1:

p(t∣t1 ⋅ ⋅ ⋅ tN−1) =
C(t1 ⋅ ⋅ ⋅ tN−1t)

C(t1 ⋅ ⋅ ⋅ tN−1)
(1.24)

(assuming we pad our corpus sequences with dummy $s both on the left and on
the right); this is called a maximum likelihood estimation.

We can build a HMM from such estimations by setting Q = (Θ⊎{$})N , i.e. using
states of form q = t1 ⋅ ⋅ ⋅ tN , and computing the next state probabilities as

p(t′1 ⋅ ⋅ ⋅ t′N ∣t1 ⋅ ⋅ ⋅ tN) =

{
p(t′N ∣t2 ⋅ ⋅ ⋅ tN) if ∀1 ≤ i ≤ N − 1, t′i = ti+1

0 otherwise
(1.25)

the initial state probabilities being the particular case p(t′1 ⋅ ⋅ ⋅ t′N ∣$N), and the emis-
sion probabilities as

p(a∣t1 ⋅ ⋅ ⋅ tN) =
1

∣Σ∣N−1

∑
a1⋅⋅⋅aN−1∈ΣN−1

C((a1, t1) ⋅ ⋅ ⋅ (a, tN))∑
aN∈ΣC((a1, t1) ⋅ ⋅ ⋅ (aN , tN))

(1.26)

estimated from occurrences of sequences of pairs. One can then reconstruct a
sequence of tags from a sequence of states by projection on the N th component.

A Short Introduction to Formal Syntax and Morphology 24

Smoothing Maximum likelihood estimations are accurate if there are enough
occurrences in the training corpus. Nevertheless, some valid sequences of tags
or of pairs of tags and words will invariably be missing, and be assigned a zeroThe statistical distribution of

words in corpora can be
approximated by Zipf’s law (see
Manning and Schütze, 1999,
Section 1.4.3).

probability. Furthermore, the estimations are also unreliable for observations with
low occurrence counts.

The idea of smoothing is to compensate data sparseness by moving some of the

See Jurafsky and Martin (2009,
Section 4.5) and Manning and
Schütze (1999, Chapter 6).

probability mass from the higher counts towards the lower and null ones. This
can be performed in rather crude ways (for instance add 1 to the counts on the
numerators of (1.24) and (1.26) and normalize, called Laplace smoothing), or
more involved ones that take into account the probability of observations with a
single occurrence (Good-Turing discounting) or the probabilities of (N−1)-grams
(interpolation and backoff). A common side-effect of all these techniques is that
there are no zero-probability values left in the constructed HMMs.

HMM Decoding

Recall the POS tagging problem: find the best possible sequence of tags t1 ⋅ ⋅ ⋅ tn,
given a sequence of words w = a1 ⋅ ⋅ ⋅ an. Let us assume we are given a HMM
model where we can reconstruct the sequence t1 ⋅ ⋅ ⋅ tn from the most probable
execution � = q1 ⋅ ⋅ ⋅ qn that emits w, i.e. we want to compute

� = argmax
�′∈Qn

p(�′∣w) , (1.27)

which is also known as HMM decoding. By Bayes’ inversion rule, this is the same
as

� = argmax
�′∈Qn

p(w∣�′) p(�′)
p(w)

= argmax
�′∈Qn

p(w∣�′) p(�′) . (1.28)

The usual procedure to compute the result of (1.28) is to use the Viterbi al-
gorithm, a dynamic programming algorithm. We also present another approach
based on weighted automata products and shortest path algorithms, like Dijkstra’s
algorithm.

The Viterbi Algorithm Let w = a1 ⋅ ⋅ ⋅ an, 0 ≤ i < n, and consider the maximal
joint probability V (i + 1, q) among all sequences of i + 1 states ending in a given
state q and of a sequence of emissions a1 ⋅ ⋅ ⋅ ai+1:

V (i+ 1, q) = max
�′∈Qi

p(a1 ⋅ ⋅ ⋅ ai+1∣�′q) p(�′q) . (1.29)

For i = 0, this probability is clearly

V (1, q) = p(a1∣q) p(q∣$) = E(q)(a1)S(q) . (1.30)

http://en.wikipedia.org/wiki/Viterbi_algorithm
http://en.wikipedia.org/wiki/Viterbi_algorithm
http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

A Short Introduction to Formal Syntax and Morphology 25

Then, for 1 ≤ i < n,

V (i+ 1, q) = max
�′∈Qi−1,q′∈Q

p(a1 ⋅ ⋅ ⋅ aiai+1∣�′q′q) p(�′q′q)

= max
�′∈Qi−1,q′∈Q

p(a1 ⋅ ⋅ ⋅ ai∣�′q′) p(ai+1∣q) p(�′q′) p(q∣q′)

= max
q′∈Q

V (i, q′) p(ai+1∣q) p(q∣q′)

= E(q)(ai+1) max
q′∈Q

V (i, q′)T (q′)(q) . (1.31)

Let us introduce backpointers for the best choice at each step 1 ≤ i < n and for
each state q:

B(i, q) = argmax
q′∈Q

V (i, q′)T (q′)(q) . (1.32)

Let � = q1 ⋅ ⋅ ⋅ qn, then the last state qn of the most likely explanation is

qn = argmax
q∈Q

V (n, q) , (1.33)

and we can work our way back from there using

qi = B(i, qi+1) , (1.34)

for each 1 ≤ i < n to reconstruct �.

Example 1.11. For the HMM of Example 1.10 and the input aa, we obtain

V =

(
0.5 0.5 0
0.5 0.25 0.125

)
B = (q1 q2 q2)

from which we reconstruct the most likely state sequence q1q1.

Complexity of the Viterbi Algorithm. The algorithm proceeds by computing V (i+
1, q) for each 0 ≤ i < n and q inQ; the computation given by (1.31) of one of these
probabilities is in O(∣Q∣). The complexity of the computation of V dominates the
other operations, and the overall complexity is thus in O(∣w∣ ∣Q∣2).

Shortest Path Approach A HMM defines a rational series JℋK on the probabilis-
tic semiring. Indeed, set Q′ = Q ⊎ {q0}, I(q0) = 1 and I(q ∕= q0) = 0 and define
the representation ⟨I, �, 1̄⟩ where, for all a in Σ and q, q′ in Q,

�(a)(q0, q0) = 0 �(a)(q0, q
′) = S(q′) ⋅ E(q′)(a) �(a)(q, q′) = T (q)(q′) ⋅ E(q′)(a)

(1.35)

combines the transition and emission probabilities. Observe that the support of
this series is prefix-closed: if ⟨JℋK, uv⟩ ∕= 0, then ⟨JℋK, u⟩ ∕= 0—this is reflected
by the 1̄ final matrix in the representation. Figure 1.4 shows the probabilistic
automaton that corresponds to the HMM of Example 1.10.

A Short Introduction to Formal Syntax and Morphology 26

q0

1

1

q1

1

q2

1

q3

1

a:1 a:0.5 a:0.5

b:0.5

a:0.25

b:0.25

a:0.5 a:0.5

Figure 1.4: The probabilistic automaton for the HMM of Example 1.10.

q0

0

0

q1

0

q2

0

q3

0

a:0 a:1 a:1

b:1

a:2

b:2

a:1 a:1

Figure 1.5: The tropical automaton − logℋ for the HMM ℋ of Example 1.10.

Our HMM decoding problem then reduces to choosing the path of maximal
weight labeled by w = a1 ⋅ ⋅ ⋅ an in the probabilistic automaton associated to ℋ by
(1.35):

� = argmax
�′∈Qn

p(w∣�′) p(�′) (1.28)

= argmax
q1⋅⋅⋅qn

n∏
i=1

p(ai∣qi) p(qi∣qi−1)

= argmax
q1⋅⋅⋅qn

S(q1)E(q1)(a1)

n∏
i=2

E(qi)(ai)T (qi−1)(qi) . (1.36)

For performance reasons, we rather look for the path of minimal weight in the
tropical automaton− logℋ of representation ⟨− log I,− log�, 0̄⟩. (See Figure 1.5.)
From a practical standpoint, this allows to use addition instead of multiplication,
and avoids issues with the floating-point representation of real numbers close to
zero. From a theoretical standpoint, a solution to (1.36) becomes

� = argmin
q1⋅⋅⋅qn

(
− logS(q1)− E(q1)(a1)−

n∑
i=2

logE(qi)(ai) + log T (qi−1)(qi)

)
,

(1.37)
i.e. a path with weight ⟨J− logℋK, w⟩ assigned by the tropical automaton to w.

We can effectively build the product of our weighted automaton − logℋ with
an automaton W for the singleton language {w} (Figure 1.6a). The transition
labels in the resulting weighted automaton − logℋ +W (Figure 1.6b) are then
useless, and we can see it more simply as a weighted graph with weights in ℝ+.
Adding a single sink node s with edges ((p, q), 0, s) for each final state (p, q) of
the product automaton (Figure 1.6c) then allows to use a single-pair shortest path
algorithm between (p0, q0) and s to find a solution for (1.37) (q1q1 in the example
of Figure 1.6).

Complexity of the Shortest Path Approach. Recall that Dijkstra’s algorithm with
Fibonacci heaps runs in O(m + n log n) in a graph with m edges and n vertices.

A Short Introduction to Formal Syntax and Morphology 27

p00 p1 p2 0
a:0 a:0

(a) Tropical automatonW for aa. Only +∞ and
0 weights are used.

p0, q00

p1, q1

p1, q2

p2, q1 0

p2, q2 0

p2, q3 0

a:1

a:1

a:0

a:1

a:2

(b) Product automaton − logℋ+W.

p0, q0

p1, q1

p1, q2

p2, q1

p2, q2

p2, q3

s

1

1

0

1

2

0

0

0

(c) Weighted graph with sink state.

Figure 1.6: Construction steps for the tagging algorithm on aa.

The product automaton − logℋ +W has at most n = ∣w∣ ⋅ ∣Q∣+ 1 states (there is
a single initial state (p0, q0) by construction).

In practice, due to smoothing, the transition relation of − logℋ is complete
except that q0 does not have any incoming transition: the number of transitions
with weight different from +∞ is ∣Q∣2 + ∣Q∣. Luckily, the situation is not as bad
with − logℋ+W: its number of transitions is not n2 but m = (∣w∣−1) ⋅ ∣Q∣2 + ∣Q∣.
Indeed, there are in total ∣Q∣ outgoing transitions from (p0, q0) to each (p1, q) with
q in Q, and after that for each 1 ≤ i < ∣w∣ there are in total ∣Q∣2 transitions
between some state (pi, q) and some state (pi+1, q

′) with q, q′ in Q.
Overall, we obtain a complexity of

O
(
(∣w∣ − 1) ∣Q∣2 + ∣Q∣+ (∣w∣ ∣Q∣+ 1) log(∣w∣ ∣Q∣+ 1)

)
= O

(
∣w∣ ∣Q∣2 + ∣w∣ ∣Q∣ log(∣w∣ ∣Q∣)

)
,

which is close enough to that of the Viterbi algorithm.

Sequential Series Approach One might rightly think that, even if we end up
with similar complexities, the weighted automata approach induces quite a bit
of extra machinery, and is of limited practical interest compared to the Viterbi
algorithm.

There is however one case where the weighted automata approach yields prac-
tical advantages: when the automaton − logℋ can be determinized. Recall that
a solution � of (1.37) is a path with weight ⟨J− logℋK, w⟩. One could thus issue
the state information along with this weight and hope to perform HMM tagging
deterministically, with a O(∣w∣+ ∣A∣) complexity where A is the determinized and
minimized automaton for − logℋ.

A Short Introduction to Formal Syntax and Morphology 28

However, unlike the rule-based tagging technique of Section 1.3.1, there is
no general determinization procedure for (weighted automata translations of)
HMMs. Consider for instance the automaton of Figure 1.5 for the HMM of Ex-
ample 1.10: it implements the series over the tropical semiring defined by

⟨s, w⟩ =

{
1 if w = an,
n+ 2 + ∣w′∣ if w = anbw′, w′ ∈ {a, b}∗.

(1.38)

The set of translations w−1s for all w ∈ Σ∗ is not finite: for each m and n, oneA related open problem is the
decidability of sequentiality for
rational series over the tropical
semiring; see Lombardy and
Sakarovitch (2006).

gets a different ⟨(an)−1s, amb⟩ = n + m + 1; thus by the pendant of Theorem 1.2
for sequential series, s is not sequential (see Lombardy and Sakarovitch, 2006,
Theorem 8, where w−1s is noted [w−1s]♯).

Still, an incomplete determinization algorithm that might work in practice is
described by Mohri (1997), and can be followed by a minimization step.

Chapter 2

Generative Syntax

Syntax deals with how words are arranged into sentences. An important body of
linguistics proposes constituent analyses for sentences, where for instance

Those torn books are completely worthless.

can be decomposed into a noun phrase those torn books and a verb phrase are
completely worthless. These two constituants can be recursively decomposed until
we reach the individual words, effectively describing a tree:

S

NP

DT

Those

NP

AP

JJ

torn

NP

NNS

books

VP

VBP

are

AP

RB

completely

AP

JJ

worthless

Figure 2.1: A context-free derivation tree.

You have probably recognized in this example a derivation tree for a context-free
grammar (CFG). Context-free grammars, proposed by Chomsky (1956), consti-
tute the primary example of a generative formalism for syntax, which we take to See Pullum and Scholz (2001)

for an account of the differences
between generative and
model-theoretic approaches to
syntax.

include all string- or term-rewrite systems.

Definition 2.1 (Phrase-Structured Grammars). A phrase-structured grammar is
a tuple G = ⟨N,Σ, P, S⟩ where N is a finite nonterminal alphabet, Σ a finite termi-
nal alphabet disjoint from N , V = N ⊎ Σ the vocabulary, P ⊆ V ∗ × V ∗ a finite set
of rewrite rules or productions, and S a start symbol or axiom in N .

A phrase-structure grammar defines a string rewrite system over V . Strings � in
V ∗ s.t. S =⇒∗ � are called sentential forms, whereas strings w in Σ∗ s.t. S =⇒∗ w
are called sentences. The language of G is its set of sentences, i.e.

L(G) = LG(S) LG(A) = {w ∈ Σ∗ ∣ A =⇒∗ w} .

Different restrictions on the shape of productions lead to different classes of gram-
mars; we will not recall the entire Chomsky hierarchy (Chomsky, 1959) here, but
only define context-free grammars (aka type 2 grammars) as phrase-structured
grammars with P ⊆ N × V ∗.

29

A Short Introduction to Formal Syntax and Morphology 30

Example 2.2. The derivation tree of Figure 2.1 corresponds to the context-free
grammar with

N = {S,NP,AP,VP,DT, JJ,NNS,VBP,RB} ,
Σ = {those, torn, books, are, completely ,worthless} ,

P = { S→ NP VP, NP→ DT NP ∣ AP NP ∣ NNS,

VP→ VBP AP, AP→ RB AP ∣ JJ,

DT→ Those, JJ→ torn ∣ worthless,
NNS→ books, VBP→ are,

RB→ completely} ,
S = S .

Note that it also generates sentences such as Those books are torn. or Those com-
pletely worthless books are completely completely torn. Also note that this gram-
mar describes POS tagging information; a different formalization could set Σ =
{DT, JJ,NNS,VBP,RB} and delegate the POS tagging issues to an external device,
such as the sequential transducers and HMMs of Section 1.3.

The Parsing Problem Context-free grammars have a number of appreciable
computational properties:

∙ both their uniform membership problem—i.e. given ⟨G, w⟩ doesw ∈ L(G)—
and their emptiness problem—i.e. given ⟨G⟩ does L(G) = ∅—are PTIME-
complete (Jones and Laaser, 1976),

∙ their fixed grammar membership problem—i.e. for a fixed G, given ⟨w⟩
doesw ∈ L(G)—is by very definition LOGCFL-complete (Sudborough, 1978),

∙ they have a natural notion of derivation trees, which constitute a local reg-
ular tree language (Thatcher, 1967).

Recall that our motivation in context-free grammars lies in their ability to model
constituency through their derivation trees. Thus much of the linguistic interest
in context-free grammars revolves around a variant of the membership problem:
given ⟨G, w⟩, compute the set of derivation trees of G that yield w—the parsing
problem.The monograph of Grune and

Jacobs (2007) is a rather
exhaustive resource on
context-free parsing. 2.1 Context-Free Parsing

Outside the realm of deterministic parsing algorithms for restricted classes ofThe asymptotically best parsing
algorithm is that of Valiant
(1975), with complexity
Θ(B(∣w∣)) where B(n) is the
complexity of n-dimensional
boolean matrix multiplication,
currently in O(n2.376)

(Coppersmith and Winograd,
1990). A converse reduction from
boolean matrix multiplication to
context-free parsing by Lee
(2002) shows that any
improvement for one problem
would also yield one for the other.

CFGs, for instance for LL(k) or LR(k) grammars (Knuth, 1965; Kurki-Suonio,
1969; Rosenkrantz and Stearns, 1970)—which are often studied in computer sci-
ence curricula—, there exists quite a variety of methods for general context-free
parsing. Possibly the best known of these is the CKY algorithm (Cocke and Schwartz,
1970; Kasami, 1965; Younger, 1967), which in its most basic form works with
complexity O(∣G∣ ∣w∣3) on grammars in Chomsky normal form. Both the CKY al-
gorithm(s) and the advanced methods (Earley, 1970; Lang, 1974; Graham et al.,
1980; Tomita, 1986; Billot and Lang, 1989) can be seen as refinement of the con-
struction first described by Bar-Hillel et al. (1961) to prove the closure of context-
free languages under intersection with recognizable sets, which will be central in
this section, including the part on probabilistic parsing in Section 2.1.2.

A Short Introduction to Formal Syntax and Morphology 31

Ambiguity and Parse Forests The key issue in general parsing and parsing for
natural language applications is grammatical ambiguity: the existence of several
derivation trees sharing the same string yield.

The following sentence is a classical example of a PP attachment ambiguity,
illustrated by the two derivation trees of Figure 2.2:

She watches a man with a telescope.

S

NP

PRP

She

VP

VBZ

watches

NP

NP

DT

a

NN

man

PP

IN

with

NP

DT

a

NN

telescope

S

NP

PRP

She

VP

VP

VBZ

watches

NP

DT

a

NN

man

PP

IN

with

NP

DT

a

NN

telescope

Figure 2.2: An ambiguous sentence.

In the case of a cyclic CFG, with a nonterminal A verifying A =⇒+ A, the number
of different derivation trees for a single sentence can be infinite. For acyclic CFGs,
it is finite but might be exponential in the length of the grammar and sentence:

Example 2.3 (Wich, 2005). The grammar with rules

S → a S ∣ a A ∣ ", A→ a S ∣ a A ∣ "

has exactly 2n different derivation trees for the sentence an.

Such an explosive behavior is not unrealistic for CFGs in natural languages:
Moore (2004) reports an average number of 7.2 × 1027 different derivations for
sentences of 5.7 words on average, using a CFG extracted from the Penn Treebank.

The solution in order to retain polynomial complexities is to represent all these
derivation trees as the language of a finite tree automaton (or using a CFG). This
is sometimes called a shared forest representation.

Definition 2.4 (Finite Tree Automata). A finite tree automaton (NTA) is a tuple See Comon et al. (2007).
A = {Q,Σ, �, F} where Q is a finite set of states, Σ a ranked alphabet, � a finite
transition relation in

∪
nQ× Σn ×Qn, and I ⊆ Q a set of initial states.

The semantics of a NTA can be defined by term rewrite systems over ℱ = Q⊎Σ
where the states in Q have arity 0: either bottom-up:

RB = {a(n)(q
(0)
1 , . . . , q(0)

n)→ q(0) ∣ (q, a(n), q1, . . . , qn) ∈ �}

L(A) = {t ∈ T (Σ) ∣ ∃q ∈ I, t RB==⇒∗ q} ,

or top-down:

RT = {q(0) → a(n)(q
(0)
1 , . . . , q(0)

n) ∣ (q, a(n), q1, . . . , qn) ∈ �}

L(A) = {t ∈ T (Σ) ∣ ∃q ∈ I, q RT==⇒∗ t} .

A Short Introduction to Formal Syntax and Morphology 32

Example 2.5. The 2n derivation trees for an in the grammar of Example 2.3 are
generated by theO(n)-sized automaton ⟨{qS , qa, q", q1, . . . , qn}, {S,A, a, "}, �, {qS}⟩
with rules

� = {(qS , S(2), qa, q1), (qa, a
(0)), (q", "

(0))}
∪ {(qi, X, qa, qi+1) ∣ 1 ≤ i < n,X ∈ {S(2), A(2)}}
∪ {(qn, X, q") ∣ X ∈ {S(1), A(1)}} .

2.1.1 Tabular Parsing

We briefly survey the principles of general context-free parsing using dynamic or
tabular algorithms. For more details, see Nederhof and Satta (2004).

Parsing as Intersection

The basic construction underlying all the tabular parsing algorithms is the inter-
section grammar of Bar-Hillel et al. (1961). It consists in an intersection between
an (∣w∣+1)-sized automaton with language {w} and the CFG under consideration.
The intersection approach is moreover quite convenient if several input strings are
possible, for instance if the input of the parser is provided by a speech recognition
system.A landmark paper on the

importance of the Bar-Hillel et al.

(1961) construction for parsing
is Lang (1994). We provide here
a tree automaton variant; we will
see a more general, weighted CFG
variant in Section 2.1.2.

Theorem 2.6 (Bar-Hillel et al., 1961). Let G = ⟨N,Σ, P, S⟩ be a CFG and A =
⟨Q,Σ, �, I, F ⟩ be a NFA. The set of derivation trees of G with a word of L(A) as yield
is generated by the NTA T = ⟨(V ⊎ {"})×Q×Q,Σ⊎N ⊎ {"}, �′, {S}× I ×F ⟩ with

�′ = {((A, q0, qm), A(m), (X1, q0, q1), . . . , (Xm, qm−1, qm))

∣ m ≥ 1, A→ X1 ⋅ ⋅ ⋅Xm ∈ P, q0, q1, . . . , qm ∈ Q}
∪ {((A, q, q), A(1), (", q, q)) ∣ A→ " ∈ P, q ∈ Q}
∪ {((", q, q), "(0)) ∣ q ∈ Q}
∪ {((a, q, q′), a(0)) ∣ (q, a, q′) ∈ �} .

The size of the resulting NTA is in O(∣G∣ ⋅ ∣Q∣m+1) where m is the maximal arity
of a nonterminal in N . We can further reduce this NTA to only keep useful states,
in linear time on a RAM machine. It is also possible to determinize and minimize
the resulting tree automaton.

In order to reduce the complexity of this construction to O(∣G∣ ⋅ ∣Q∣3), one can
put the CFG in quadratic form, so that P ⊆ N × V ≤2. This changes the shape of
trees, and thus the linguistic analyses, but the transformation is reversible:

Lemma 2.7. Given a CFG G = ⟨Σ, N, P, S⟩, one can construct in time O(∣G∣) an
equivalent CFG G′ = ⟨Σ, N ′, P ′, S⟩ in quadratic form s.t. V ⊆ V ′, LG(X) = LG′(X)
for all X in V , and ∣G′∣ ≤ 5 ⋅ ∣G∣.

Proof. For every production A→ X1 ⋅ ⋅ ⋅Xm of P with m ≥ 2, add productions

A→ [X1][X2 ⋅ ⋅ ⋅Xm]

[X2 ⋅ ⋅ ⋅Xm]→ [X2][X3 ⋅ ⋅ ⋅Xm]
...

[Xm−1Xm]→ [Xm−1][Xm]

A Short Introduction to Formal Syntax and Morphology 33

and for all 1 ≤ i ≤ m

[Xi]→ Xi .

Thus an (m + 1)-sized production is replaced by m − 1 productions of size 3 and
m productions of size 2, for a total less than 5m. Formally,

N ′ = N ∪ {[�] ∣ � ∈ V + and ∃A ∈ N,� ∈ V +, A→ �� ∈ P}
∪ {[X] ∣ X ∈ V and ∃A ∈ N,�, � ∈ V ∗, A→ �X� ∈ P}

P ′ = {A→ � ∈ P ∣ ∣�∣ ≤ 1}
∪ {A→ [X][�] ∣ A→ X� ∈ P,X ∈ V and � ∈ V +}
∪ {[X�]→ [X][�] ∣ [X�] ∈ N ′, X ∈ V and � ∈ V +}
∪ {[X]→ X ∣ [X] ∈ N ′ and X ∈ V } .

Grammar G′ est clearly in quadratic form with N ⊆ N ′ and ∣G′∣ ≤ 5 ⋅ ∣G∣. It remains
to show equivalence, which stems from LG(X) = LG′(X) for allX in V . Obviously,
LG(X) ⊆ LG′(X). Conversely, by induction on the length n of derivations in G′,
we prove that

X =⇒n
G′ w implies X =⇒∗G w (2.1)

[�] =⇒n
G′ w implies � =⇒∗G w (2.2)

for all X in V , w in Σ∗, and [�] in N ′∖N . The base case n = 0 implies X in Σ and
the lemma holds. Suppose it holds for all i < n.

From the shape of the productions in G′, three cases can be distinguished for a
derivation

X =⇒G′ � =⇒n−1
G′w :

1. � = " implies immediately X =⇒∗Gw = ", or

2. � = Y in V implies X =⇒∗Gw by induction hypothesis (2.1), or

3. � = [Y][
] with [Y] and [
] in N ′ implies again X =⇒∗Gw by induction hypoth-
esis (2.2) and context-freeness, since in that case X → Y
 is in P .

Similarly, a derivation
[�] =⇒G′ � =⇒n−1

G′ w

implies � =⇒∗ w by induction hypothesis (2.1) if ∣�∣ = 1 and thus � = �, or by
induction hypothesis (2.2) and context-freeness if � = Y
 with Y in V and
 in
V +, and thus � = [Y][
].

Parsing as Deduction

In practice, we want to perform at least some of the reduction of the tree automa-
ton constructed by Theorem 2.6 on the fly, in order to avoid constructing states
and transitions that will be later discarded as useless.

Bottom-Up Tabular Parsing One way is to restrict ourselves to co-accessible
states, by which we mean states q of the NTA such that there exists at least one

tree t with t
RB==⇒∗ q. This is the principle underlying the classical CKY parsing

algorithm (but here we do not require the grammar to be in Chomsky normal
form).

A Short Introduction to Formal Syntax and Morphology 34

We describe the algorithm using deduction rules (Pereira and Warren, 1983;
Sikkel, 1997), which conveniently represent how new tabulated items can be con-
structed from previously computed ones: in this case, items are states (A, q, q′) in
V ×Q×Q of the constructed NTA. Side conditions constrain how a deduction rule
can be applied.

(X1, q0, q1), . . . , (Xm, qm−1, qm)

(A, q0, qm)

{
A→ X1 ⋅ ⋅ ⋅Xm ∈ P
q0, q1, . . . , qm ∈ Q

(Internal)

(a, q, q′)

{
(q, a, q′) ∈ � (Leaf)

The construction of the NTA proceeds by creating new states following the rules,
and transitions of �′ as output to the deduction rules, i.e. an application of (Internal)
outputs if m ≥ 1 ((A, q0, qm), A(m), (X1, q0, q1), . . . , (Xm, qm−1, qm)), or if m = 0
((A, q0, q0), A(1), (", q0, q0)), and one of (Leaf) outputs ((a, q, q′), a(0)). We only
need to add states (", q, q) and transitions ((", q, q), "(0)) for each q in Q in order to
obtain the co-accessible part of the NTA of Theorem 2.6.

The algorithm performs the deduction closure of the system; the intersection
itself is non-empty if an item in {S} × I × F appears at some point. The complex-
ity depends on the “free variables” in the premices of the rules and on the side
constraints; here it is dominated by the (Internal) rule, with at most ∣G∣ ⋅ ∣Q∣m+1

applications.
We could similarly construct a system of top-down deduction rules that only

construct accessible states of the NTA, starting from (S, qi, qf) with qi in I and qf
in F , and working its way towards the leaves.

Exercise 2.1. Give the deduction rules for top-down tabular parsing.(∗)

Earley Parsing The algorithm of Earley (1970) uses a mix of accessibility and
co-accessibility. An Earley item is a triple (A → � ⋅ �, q, q′), q, q′ in Q and A → ��
in P , constructed iffThis invariant proves the

correctness of the algorithm. For
a more original proof using
abtract interpretation, see Cousot
and Cousot (2003).

1. there exists both (i) a run of A starting in q and ending in q′ with label v and
(ii) a derivation � =⇒∗ v, and furthermore

2. there exists (i) a run in A from some qi in I to q with label u and (ii) a
derivation S =⇒

lm

∗ uA
 for some
 in V ∗.

(S → ⋅�, qi, qi)

{
S → � ∈ P
qi ∈ I

(Init)

(A→ � ⋅B�′, q, q′)
(B → ⋅�, q′, q′)

{
B → � ∈ P (Predict)

(A→ � ⋅ a�′, q, q′)
(A→ �a ⋅ �′, q, q′′)

{
(q′, a, q′′) ∈ � (Scan)

(A→ � ⋅B�′, q, q′)
(B → �⋅, q′, q′′)

(A→ �B ⋅ �′, q, q′′)
(Complete)

A Short Introduction to Formal Syntax and Morphology 35

The intersection is non empty if an item (S → �⋅, qi, qf) is obtained for some qi in
I and qf in F .

The algorithm run as a recognizer works in O(∣G∣2 ⋅ ∣Q∣3) regardless of the ar-
ity of symbols in G ((Complete) dominates this complexity), and can be further
optimized to run in O(∣G∣ ⋅ ∣Q∣3), which is the object of Exercise 2.2. This cubic
complexity in the size of the automaton can be understood as the effect of an
on-the-fly quadratic form transformation into G′ = ⟨N ′,Σ, P ′, S′⟩ with

N ′ = {S′} ⊎ {[A→ � ⋅ �] ∣ A→ �� ∈ P}
P ′ = {S′ → [S → �⋅] ∣ S → � ∈ P}
∪ {[A→ �B ⋅ �′]→ [A→ � ⋅B�′] [B → �⋅] ∣ B → � ∈ P}
∪ {[A→ �a ⋅ �′]→ [A→ � ⋅ a�′] a ∣ a ∈ Σ}
∪ {[A→ ⋅�′]→ "} .

Note that the transformation yields a grammar of quadratic size, but can be modi-
fied to yield one of linear size—this is the same simple trick as that of Exercise 2.2.
It is easier to output a NTA for this transformed grammar G′:

∙ create state ([S → ⋅�], qi, qi) and transition (([S → ⋅�], qi, qi), "
(0)) when

applying (Init),

∙ create state ([B → ⋅�], q′, q′) and transition (([B → ⋅�], q′, q′), "(0)) when
applying (Predict),

∙ create states ([A → �a ⋅ �′], q, q′′) and (a, q′, q′′), and transitions (([A → �a ⋅
�′], q, q′′), [A→ �a ⋅�′](2), ([A→ � ⋅a�′], q, q′), (a, q′, q′′)) and ((a, q′, q′′), a(0))
when applying (Scan),

∙ create state ([A→ �B ⋅ �′], q, q′′) and transition (([A→ �B ⋅ �′], q, q′′), [A→
�B ⋅�′](2), ([A→ � ⋅B�′], q, q′), ([B → �⋅], q′, q′′) when applying (Complete).

We finally need to add states (S′, qi, qf) for qi in I and qf in F , and transitions
((S′, qi, qf), S′(1), ([S → �⋅], qi, qf) for each S → � in P .

Exercise 2.2. How should the algorithm be modified in order to run in time O(∣G∣⋅ (∗)
∣Q∣3) instead of O(∣G∣2 ⋅ ∣Q∣3)?

Exercise 2.3. Show that the Earley recognizer works in time O(∣G∣ ⋅ ∣Q∣2) if the (∗)
grammar is unambiguous and the automaton deterministic. A related open problem is

whether fixed grammar
membership can be solved in time
O(∣w∣) if G is unambiguous. See
Leo (1991) for a partial answer
in the case where G is LR-Regular.

2.1.2 Probabilistic Parsing

Probabilistic approaches to parsing are helpful on (at least) two different grounds:

The presentation of this section
follows closely Nederhof and
Satta (2008).

1. the first is ambiguity issues; in order to choose between the various possible
parses of a sentence, like the PP attachment ambiguity of Figure 2.2, we
can resort to several techniques: heuristics, semantic processing, and what
interests us in this section, probabilities learned from a corpus.

2. the second is robustness of the parser: rather than discarding a sentence
as agrammatical or returning a partial parse, a probabilistic parser with
smoothed probabilities will still propose several parses with low probabil-
ities.

A Short Introduction to Formal Syntax and Morphology 36

Weighted and Probabilistic CFGs

Definition 2.8 (Weighted Context-Free Grammars). A weighted context-free gram-
mar G = ⟨N,Σ, P, S, �⟩ over a semiring K (K-CFG) is a context-free grammar
⟨N,Σ, P, S⟩ along with a mapping � : P → K, which is extended in a natural way
into a morphism from ⟨P ∗, ⋅, "⟩ to ⟨K,⊙, 1K⟩. The weight of a leftmost derivation
�

�
=⇒
lm

∗ � is then defined as �(�). It would be natural to define the weight of aConsidering leftmost derivations
is only important if ⟨K,⊙, 1K⟩ is
non-commutative.

sentential form
 as the sum of the weights �(�) with S �
=⇒
lm

∗
, i.e.

�(
) =
∑

�∈P ∗,S
�

=⇒
lm

∗

�(�) .

However this sum might be infinite in general, and lead to weights outside K. We
therefore restrict ourselves to acyclic K-CFGs, such that A =⇒+ A is impossible for
all A in N , ensuring that there exist only finitely many derivations for each sen-
tential form. An acyclic K-CFG G then defines a formal series JGK with coefficients
⟨JGK, w⟩ = �(w).

A K-CFG G is reduced if each nonterminal A in N∖{S} is useful, which means
that there exist �1, �2 in P ∗, u, v in Σ∗, and
 in V ∗ such that S �1=⇒

lm

∗ uA

�2=⇒
lm

∗ uv

and �(�1�2) ∕= 0K.
A ℝ+-CFG G = ⟨N,Σ, P, S, �⟩ is a probabilistic context-free grammar (PCFG)

if � is a mapping P → [0, 1].

The following exercise shows that the treatment of probabilistic context-free
parsing generalizes that of HMM decoding in Section 1.3.2:

Exercise 2.4. A right linear K-CFG G has its productions in N × (Σ∗ ∪ Σ∗ ⋅ N).(∗∗)
Show that a series s over Σ is K-recognizable iff there exists an acyclic right linear
K-CFG for it.

Proper and Consistent PCFGs Definition 2.8 makes no provision on the kind of
probability distributions defined by a PCFG. We define here two such conditions,
properness and consistency (Booth and Thompson, 1973).

A PCFG is proper if for all A in N ,∑
p=A→�∈P

�(p) = 1 , (2.3)

i.e. � can be seen as a mapping from N to Disc({p ∈ P ∣ p = A→ �}).
The partition function Z maps each nonterminal A to

Z(A) =
∑

w∈Σ∗,A
�

=⇒
lm

∗w

�(�) . (2.4)

A PCFG is convergent if

Z(S) <∞ ; (2.5)

in particular, it is consistent if

Z(S) = 1 , (2.6)

A Short Introduction to Formal Syntax and Morphology 37

i.e. � defines a discrete probability distribution over the derivations of terminal
strings. The intuition behind proper inconsistent grammars is that some of the
probability mass is lost into infinite, non-terminating derivations.

Equation (2.4) can be decomposed using commutativity of multiplication into

Z(A) =
∑

p=A→�∈P
�(p) ⋅ Z(�) for all A in N (2.7)

Z(a) = 1 for all a in Σ ⊎ {"} (2.8)

Z(X�) = Z(X) ⋅ Z(�) for all (X,�) in V × V ∗. (2.9)

This describes a monotone system of equations with the Z(A) for A in N as vari-
ables.

Example 2.9. Properness and consistency are two distinct notions. For instance,
the PCFG

S
p1−→ S S �(p1) = q

S
p2−→ a �(p2) = (1− q)

is proper for all 0 ≤ q ≤ 1, but Z(S) is the least solution of x = qx2 + 1− q, thus if
q ≤ 1

2 the grammar is consistent, but otherwise Z(S) = 1−q
q < 1.

Conversely,

S
p1−→ A �(p1) =

q

1− q
A

p2−→ AA �(p2) = q

A
p3−→ a �(p3) = 1− q

is improper but consistent for 1
2 < q < 1.

See Booth and Thompson (1973); Gecse and Kovács (2010) for ways to check
for consistency, and Etessami and Yannakakis (2009) for ways to compute Z(A).
In general, Z(A) has to be approximated:

Remark 2.10 (Etessami and Yannakakis, 2009, Theorem 3.2). The partition func-
tion of S can be irrational even when � maps productions to rationals in [0, 1]:

S
p1−→ S S S S S �(p1) =

1

6

S
p2−→ a �(p2) =

1

2
.

The associated equation is x = 1
6x

5 + 1
2 , which has no rational root.

Normalization Given Z(A) for all A in N , one can furthermore normalize any
reduced convergent PCFG G = ⟨N,Σ, P, S, �⟩ with Z(S) > 0 into a proper and
consistent PCFG G′ = ⟨N,Σ, P, S, �′⟩. Define for this

�′(p = A→ �) =
�(p)Z(�)

Z(A)
. (2.10)

Exercise 2.5. Show that in a reduced convergent PCFG with Z(S) > 0, for each � (∗)
in V ∗, one has 0 < Z(�) <∞. (This justifies that (2.10) is well-defined.)

A Short Introduction to Formal Syntax and Morphology 38

Exercise 2.6. Show that G′ is a proper PCFG.(∗)

Exercise 2.7. Show that for all
 in V ∗, � in P ∗, and w in Σ∗ with
 �
=⇒
lm

∗ w,(∗∗)

�′(�) =
�(�)

Z(
)
. (2.11)

Equation (2.11) shows that G′ is consistent, since

Z ′(S) =
∑

w∈Σ∗,S
�

=⇒
lm

∗w

�′(�) =
∑

w∈Σ∗,S
�

=⇒
lm

∗w

�(�)

Z(S)
=
Z(S)

Z(S)
= 1 . (2.12)

It also yields for all w in Σ∗

�′(w) =
�(w)

Z(S)
, (2.13)

thus the ratios between derivation weights are preserved (see Nederhof and Satta,
2003, for details).

Example 2.11. Considering again the first grammar of Example 2.9, if q > 1
2 , then

�′ with �′(p1) = q Z(S)2

Z(S) = 1− q and �′(p2) = q fits.

Learning PCFGs

As in Section 1.3.2 we rely on an annotated corpus for supervised learning. Again
we consider the Penn Treebank (Marcus et al., 1993) as an example of such an
annotated corpus, made of n trees.

Maximum Likelihood Estimation Assuming the treebank to be well-formed, i.e.
that the labels of internal nodes and those of leaves are disjoint, we can collect
all the labels of internal tree nodes as nonterminals, all the labels of tree leaves
as terminals, and all elementary subtrees (i.e. all the subtrees of height one) as
productions. Introducing a new start symbol S′ with productions S′ → S for each
label S of a root node ensures a unique start symbol. The treebank itself can then
be seen as a multiset of leftmost derivations D = {�1, . . . , �n}.

Let C(p, �) be the count of occurrences of production p inside derivation �,
and C(A, �) =

∑
p=A→�∈P C(p, �). Summing over the entire treebank, we get

C(p,D) =
∑

�∈D C(p, �) and C(A,D) =
∑

�∈D C(A, �). The estimated probabil-
ity of a production is then (see e.g. Chi and Geman, 1998)

�(p = A→ �) =
C(p,D)

C(A,D)
. (2.14)

Exercise 2.8. Show that the obtained PCFG is proper and consistent.(∗∗)

Preprocessing the Treebank The PCFG estimated from a treebank is typically
not very good: the linguistic annotations are too coarse-grained, and nonterminals
do not capture enough context to allow for a precise parsing.

Refining Nonterminals. For instance, PP attachment ambiguities are typically
resolved as high attachments (i.e. to the VP) when the verb expects a PP comple-
ment, as with the following hurled. . . into construction, and a low attachment (i.e.
to the NP) otherwise, as in the following sip of . . . construction:

A Short Introduction to Formal Syntax and Morphology 39

[NP He] [VP[VP hurled [NP the ball]] [PP into the basket]].
[NP She] [VP took [NP[NP a sip] [PP of water]]].

A PCFG cannot assign different probabilities to the attachment choices if the ex-
tracted rules are the same.

In practice, the tree annotations are refined in two directions: from the lexi-
cal leaves by tracking the head information, and from the root by remembering
the parent or grandparent label. This greatly increases the sets of nonterminals
and rules, thus some smoothing techniques are required to compensate for data
sparseness. Figure 2.3 illustrates this idea by associating lexical head and parent
information to each internal node. Observe that the PP attachment probability is
now specific to a production

VP[S, hurled ,VBD]→ VP[VP, hurled ,VBD] PP[VP, into, IN] ,

allowing to give it a higher probability than that of

VP[S, took ,VBD]→ VP[VP, took ,VBD] PP[VP, of , IN] .

S
[⊤,hurled ,VBD]

NP
[S,he,PRP]

PRP
[NP,he,PRP]

He

VP
[S,hurled ,VBD]

VP
[VP,hurled ,VBD]

VBD
[VP,hurled ,VBD]

hurled

NP
[VP,ball ,NN]

DT
[NP,the,DT]

the

NN
[NP,ball ,NN]

ball

PP
[VP,into,IN]

IN
[VP,into,IN]

into

NP
[PP,basket ,NN]

DT
[NP,the,DT]

the

NN
[NP,basket ,NN]

basket

Figure 2.3: A derivation tree refined with lexical and parent information.

Binary Rules. Another issue, which is more specific to the kind of linguistic
analyses found in the Penn Treebank, is that trees are mostly flat, resulting in a
very large number of long, different rules, like

VP→ VBP PP PP PP PP PP ADVP PP

for sentence

This mostly happens because we [VP go [PP from football] [PP in the fall] [PP to
lifting] [PP in the winter] [PP to football] [ADVP again] [PP in the spring]].

The WSJ part of the Penn Treebank yields about 17,500 distinct rules, causing
important data sparseness issues in probability estimations. A solution is to trans-
form the resulting grammar into quadratic form prior to probability estimation,
for instance by having rules

VP→ VBP VP’ VP’→ PP ∣ PP VP’ ∣ ADVP VP’ .

A Short Introduction to Formal Syntax and Morphology 40

Parser Evaluation The usual measure of constituent parser performance is called
PARSEVAL (Black et al., 1991). It supposes that some gold standard derivation
trees are available for sentences, as in a test subcorpus of the Wall Street Jour-
nal part of the Penn Treebank, and compares the candidate parses with the gold
ones. The comparison is constituent-based: correctly identified constituents start
and end at the expected point and are labeled with the appropriate nonterminal
symbol. The evaluation measures the

labeled recall which is the number of correct constituents in the candidate parse
of a sentence, divided by the number of constituents in the gold standard
analysis of the sentence,

labeled precision which is the number of correct constituents in the candidate
parse of a sentence divided by the number of constituents in the same can-
didate parse.

Current probabilistic parsers on the WSJ treebank obtain a bit more than 90% pre-
cision and recall. Beware however that long sentences are often parsed incorrectly,
i.e. have at least one misparsed constituent.

Probabilistic Parsing as Intersection

We generalize in this section the intersective approaches of Theorem 2.6 and Sec-
tion 1.3.2. More precisely, we show how to construct a product grammar from a
weighted grammar and a weighted automaton over a commutative semiring, and
then use a generalized version of Dijkstra’s algorithm due to Knuth (1977) to find
the most probable parse in this grammar.

Weighted Product We generalize here Theorem 2.6 to the weighted case. Ob-
serve that it also answers Exercise 1.7 since K-automata are equivalent to right-
linear K-CFGs according to Exercise 2.4.

Theorem 2.12. Let K be a commutative semiring, G = ⟨N,Σ, P, S, �⟩ an acyclic K-
CFG, and A = ⟨Q,Σ,K, �, I, F ⟩ a K-automaton. Then the K-CFG G′ = ⟨{S′}⊎ (N ×
Q×Q),Σ, P ′, S′, �′⟩ withWe abuse notation and write

A
k−→ � for a production

p = A→ � with �(p) = k. P ′ = {S′
I(qi)⊙F (qf)
−−−−−−−→ (S, qi, qf) ∣ qi, qf ∈ Q}

∪ {(A, q0, qm)
k−→ (X1, q0, q1) ⋅ ⋅ ⋅ (Xm, qm−1, qm)

∣ m ≥ 1, A
k−→ X1 ⋅ ⋅ ⋅Xm ∈ P, q0, . . . , qm ∈ Q}

∪ {(a, q, q′) k−→ a ∣ (q, a, k, q′) ∈ �}

is acyclic and such that, for all w in Σ∗, ⟨JG′K, w⟩ = ⟨JGK, w⟩ ⊙ ⟨JAK, w⟩.

As with Theorem 2.6, the construction of Theorem 2.12 works in time O(∣G∣ ⋅
∣Q∣m+1) with m the maximal length of a rule rightpart in G. Again, this complexity
can be reduced by first transforming G into quadratic form, thus yielding a O(∣G∣ ⋅
∣Q∣3) construction.

Exercise 2.9. Modify the quadratic form construction of Lemma 2.7 for the weighted(∗)
case.

A Short Introduction to Formal Syntax and Morphology 41

Finding the Most Probable Parse The weighted CFG G′ constructed by Theo-
rem 2.12 can be reduced by a generalization of the usual CFG reduction algorithm
to the weighted case. Here we rather consider the issue of finding the best parse
in this intersection grammar G′, assuming we are working on the probabilistic
semiring—we could also work on the tropical semiring.

Non Recursive Case. The easiest case is that of a non recursive K-CFG G′, i.e.
where there does not exist a derivation A =⇒+ �A
 for any A in N and �,
 in
V ∗ in the underlying grammar. This is necessarily the case with Theorem 2.12 if
G is acyclic and A has a finite support language. Then a topological sort of the
nonterminals of G′ for the partial ordering B ≺ A iff there exists a production
A → �B� in P ′ with �, � in V ′∗ can be performed in linear time, yielding a total
order (N ′, <): A1 < A2 < ⋅ ⋅ ⋅ < A∣N ′∣. We can then compute the probability M(S′)
of the most probable parse by computing for j = 1, . . . , ∣N ′∣

M(Aj) = max
A
k−→X1⋅⋅⋅Xm

k ⋅M(X1) ⋅ ⋅ ⋅M(Xm) (2.15)

in the probabilistic semiring, with M(a) = 1 for each a in Σ. The topological sort
ensures that the maximal values M(Xi) in the right-hand side have already been
computed.

Knuth’s Algorithm. In the case of a recursive PCFG, the topological sort ap-
proach fails. We can nevertheless use an extension of Dijkstra’s algorithm to
weighted CFGs proposed by Knuth (1977):

Algorithm 1: Most probable derivation.
Data: G = ⟨N,Σ, P, S, �⟩
foreach a ∈ Σ do1

M(a) = 12

end3

D ←− Σ4

while D ∕= V do5

foreach A ∈ V ∖D do6

�(A)←− max
A
k−→X1⋅⋅⋅Xm s.t. X1,...,Xm∈D

k ⋅M(X1) ⋅ ⋅ ⋅M(Xm)7

end8

A←− argmaxV ∖D �(A)9

M(A)←− �(A)10

D ←− D ⊎ {A}11

end12

return M(S)13

The set D ⊆ V is the set of symbols X for which M(X), the probability of the
most probable tree rooted in X, has been computed. Using a priority queue for
extracting elements of V ∖D in time log ∣N ∣ at line 9, and tracking which produc-
tions to consider for the computation of �(A) at line 7, the time complexity of the
algorithm is in O(∣P ∣ log ∣N ∣+ ∣G∣).

The correctness of the algorithm relies on the fact that M(A) = �(A) at line 10;
assuming the opposite, there must exist a shortest derivationB �

=⇒
lm

∗ w with �(�) >

�(A) for some B ∕∈ D. We can split this derivation into B
p

=⇒
lm

∗ X1 ⋅ ⋅ ⋅Xm and

A Short Introduction to Formal Syntax and Morphology 42

Xi
�i=⇒
lm

∗ wi with w = w1 ⋅ ⋅ ⋅wm and � = p�1 ⋅ ⋅ ⋅�m, thus with �(�) = �(p) ⋅
�(�1) ⋅ ⋅ ⋅ �(�m). If each Xi is already in D, then M(Xi) ≥ �(�i) for all i, thus
�(�) ≤ �(B) computed at line 7, and finally �(�) ≤ �(B) ≤ �(A) by line 10—a
contradiction. Therefore there must be one Xi not in D for some i, but in that case
�(�i) ≥ �(�) > �(A) and �i is strictly shorter than �, a contradiction.

2.2 Mildly Context-Sensitive Languages

Recall that context-sensitive languages (aka type-1 languages) are defined by
phrase structure grammars with rules of form �A� → ��� with A in N , �, � in
V ∗, and � in V +. Their expressive power is equivalent to that of linear bounded
automata (LBA), i.e. Turing machines working in linear space. Such grammars are
not very useful from a computational viewpoint: membership is PSPACE-complete,
and emptiness is undecidable.

Still, one would like to use string- and tree-generating formalisms with greater
expressive power than context-free grammars. The rationale is twofold:

∙ some natural language constructs are not context-free, the Swiss-German
account by Shieber (1985) being the best known example. Such fragments
typically involve so-called limited cross-serial dependencies, as in the lan-
guages {anbmcndm ∣ n,m ≥ 0} or {ww ∣ w ∈ {a, b}∗}.

∙ the class of regular tree languages is not rich enough to account for the
desired linguistic analyses (e.g. Kroch and Santorini, 1991, for Dutch).

This second argument is actually the strongest: the class of tree structures and
how they are combined—which ideally should relate to how semantics compose—
in context-free grammars are not satisfactory from a linguistic modeling point of
view.

Based on his experience with tree-adjoining grammars (TAGs) and weakly
equivalent formalisms (head grammars, a version of combinatory categorial gram-
mars, and linear indexed grammars; see Joshi et al., 1991), Joshi (1985) proposed
an informal definition of which properties a class of formal languages should have
for linguistic applications: mildly context-sensitive languages (MCSLs) were
“roughly” defined as the extensions of context-free languages that accommodate

1. limited cross-serial dependencies, while preserving

2. constant growth—a requisite nowadays replaced by semilinearity, which
demands the Parikh image of the language to be a semilinear subset of ℕ∣Σ∣
(Parikh, 1966), and

3. polynomial time recognition.

A possible formal definition for MCSLs is the class of languages generated by mul-
tiple context-free grammars (MCFGs, Seki et al., 1991), or equivalently linear
context-free rewrite systems (LCFRSs, Weir, 1992), multi-component tree ad-
joining grammars (MCTAGs), and quite a few more.

We will however concentrate on two strict subclasses: tree adjoining languages
(TALs, Section 2.2.1) and well-nested MCSLs (wnMCSLs, Section 2.2.2); Fig-
ure 2.4 illustrates the relationship between these classes. As in Section 2.1 our
main focus will be on the corresponding tree languages, representing linguistic
constituency analyses and sentence composition.

A Short Introduction to Formal Syntax and Morphology 43

Context-free languages

Tree-adjoining languages
(TAG, HG, CCG, LIG, . . .)

Well-nested mildly context-sensitive languages
(MCFGwn, Macroℓ, CCFG, ACG(2,3), . . .)

Mildly context-sensitive languages
(MCFG, LCFRS, MCTAG, ACG(2,4),. . .)

Indexed languages (IG, Macro, . . .)

Context-sensitive languages

Figure 2.4: Hierarchies between context-free and full context-sensitive languages.

2.2.1 Tree Adjoining Grammars

Tree-adjoining grammars are a restricted class of term rewrite systems (we will
see later that they are more precisely a subclass of the linear monadic context-
free tree grammars). They have first been defined by Joshi et al. (1975) and
subsequentely extended in various ways; see Joshi and Schabes (1997) for the
“standard” definitions.

Definition 2.13 (Tree Adjoining Grammars). A tree adjoining grammar (TAG) is
a tuple G = ⟨N,Σ, T�, T�, S⟩ where N is a finite nonterminal ranked alphabet with
arities > 0, Σ a finite terminal ranked alphabet with arities 0 and N ∩ Σ = ∅, T�
and T� two finite sets of finite initial and auxiliary trees, where T� ∪ T� is called
the set of elementary trees, and S in N a start symbol.

Given the nonterminal alphabet N , define

∙ N↓= {A↓∣ A ∈ N} the set of substitution labels, all with arity 0,

∙ N★ = {A★ ∣ A ∈ N} the set of foot variables, all with arity 0, and

∙ Nna = {Ana ∣ A ∈ N} the set of null adjunction labels, with the same arities
for Ana as for A.

Then

∙ T� ⊆ T (N ∪ N ↓ ∪Nna ∪ Σ ∪ {"(0)}) is a finite set of finite trees � with
nonterminal or null adjunction symbols as internal node labels, and terminal
symbols or " or substitution symbols as leaf labels;

∙ T� ⊆ T (N ∪ N ↓ ∪Nna ∪ Σ ∪ {"(0)}, N★) is a finite set of finite trees �[A★]
defined similarly, except for the additional condition that they should have
exactly one leaf, called the foot node, labeled by a variable A★ of N★ iff the
root is labeled A.

The semantics of a TAG is that of a finite term rewrite system with rules

RG = {A↓(0)→ � ∣ � ∈ T� has A for root label} (substitution)

∪ {A(m)(x1, . . . , xm)→ �[Ana(m)(x1, . . . , xm)] ∣ A(m) ∈ Nm, �[A★] ∈ T�} .
(adjunction)

A Short Introduction to Formal Syntax and Morphology 44

S

NP↓ VP

VBZ

likes

NP↓

NP

NNP

Bill

NP

NNS

mushrooms

VP

RB

really

VP★

(�1) (�2) (�3) (�1)

Figure 2.5: A tree adjoining grammar.

S

NP

NNP

Bill

VP

RB

really

VPna

VBZ

likes

NP

NNS

mushrooms

�1[likes]

�2[Bill] �1[really] �3[mushrooms]

Figure 2.6: A derived tree and the corresponding derivation tree for the TAG of
Example 2.14.

A derivation starts with an initial tree in T� and applies rules from RG until no
substitution node is left:

LT (G) = {t ∈ T (N ∪Nna ∪ Σ ∪ {"(0)}) ∣ ∃� ∈ T� rooted by S, �
RG
==⇒∗ t}

is the tree language of G, while its string language is

L(G) = yield(LT (G))

the set of yields of all its trees.

Example 2.14. Figure 2.5 presents a tree adjoining grammar with

N = {S,NP,VP,VBZ,NNP,NNS,RB} ,
Σ = {likes,Bill ,mushrooms, really} ,
T� = {�1, �2, �3} ,
T� = {�1} ,
S = S .

Its sole S-rooted initial tree is �1, on which one can substitute �2 or �3 in order to
get Bill likes mushrooms or mushrooms likes mushrooms; the adjunction of �1 on the
VP node of �1 also yields Bill really likes mushrooms (see Figure 2.6) or mushrooms
really really really likes Bill. In the TAG literature, a tree in T (N ∪Nna∪Σ∪{"(0)})
obtained through the substitution and adjunction operations is called a derived
tree, while a derivation tree records how the rewrites took place (see Figure 2.6
for an example; children of an elementary tree are shown in addressing order, with
plain lines for substitutions and dashed lines for adjunctions).

A Short Introduction to Formal Syntax and Morphology 45

S

"

Sna

a S

S★ a

Sna

b S

S★ b

(�") (�a) (�b)

Figure 2.7: A TAG for Lcopy.

Example 2.15 (Copy Language). The copy language Lcopy = {ww ∣ w ∈ {a, b}∗}
is generated by the TAG of Figure 2.7 with N = {S}, Σ = {a, b}, T� = {�"}, and
T� = {�a, �b}.

Exercise 2.10. Give a TAG for the language {anbmcndm ∣ n,m ≥ 0}. (∗)

Linguistic Analyses Using TAGs

Starting in particular with Kroch and Joshi (1985)’s work, the body of literature on
linguistic analyses using TAGs and their variants is quite large. As significant evi-
dence of the practical interest of TAGs, the XTAG project (XTAG Research Group,
2001) has published a large TAG for English, with a few more than 1,000 ele-
mentary unanchored trees. This particular variant of TAGs, a lexicalized, feature-
based TAG, uses finite feature structures and lexical anchors. We will briefly
survey the architecture of this grammar, and give a short account of it how treats
some long-distance dependencies in English.

Lexicalized Grammar A TAG is lexicalized if all its elementary trees have at
least one terminal symbol as a leaf. In linguistic modeling, it will actually have
one distinguished terminal symbol, called the anchor, plus possibly some other
terminal symbols, called coanchors. An anchor serves as head word for at least
a part of the elementary tree, as likes for �1 in Figure 2.5. Coanchors serve for
particles, prepositions, etc., whose use is mandatory in the syntactic phenomenon
modeled by the elementary tree, as by for �5 in Figure 2.8.

Subcategorization Frames. Each elementary tree then instantiates a subcatego-
rization frame for its anchor, i.e. specifications of the number and categories of
the arguments of a word. For instance, to like is a transitive verb taking a NP sub-
ject and a NP complement, as instantiated by �1 in Figure 2.5; similarly, to think
takes a clausal S complement, as instantiated by �2 in Figure 2.8. These first two
examples are canonical instantiations of the subcategorization frames of to like
and to think, but there are other possible instantiations, for instance interrogative
with �4 or passive with �5 for to like. A more principled organization of

the trees for subcategorization
frames and their various
instantiations can be obtained
thanks to a meta grammar

describing the set of elementary
trees (see e.g. Crabbé, 2005).

Example 2.16. Extend the TAG of Figure 2.5 with the trees of Figure 2.8. This
new grammar is now able to generate

mushrooms are liked by Bill
mushrooms think Bill likes Bill
who does Bill really think Bill really likes

In a feature-based grammar, both the obligatory adjunction of a single �3 on the
S node of �4, and that of a single �4 on the VP node of �5 are controlled through
the feature structures, and there is no overgeneration from this simple grammar.

A Short Introduction to Formal Syntax and Morphology 46

S

NP↓ VP

VB

think

S★

Sna

WhNP↓ S

NP↓ VP

VBZ

likes

NP

"

S

NP↓ VP

VBD

liked

PP

IN

by

NP↓

WhNP

WP

who

Sna

VBZ

does

S★

VP

VBP

are

VP★

(�2) (�4) (�5)

(�6) (�3) (�4)

Figure 2.8: More elementary trees for the tree adjoining grammar of Exam-
ple 2.14.

Syntactic Lexicon. In practice, elementary trees as the ones of Figure 2.5 are
not present as such in the XTAG grammar. It rather contains unanchored versions
of these trees, with a specific marker ⋄ for the anchor position. For instance, �2 in
Figure 2.5 would be stored as a context NP(NNP(⋄)) and enough information to
know that Bill anchors this tree.

The anchoring information is stored in a syntactic lexicon associating with each
lexical entry classes of trees that it anchors. The XTAG project has developed a
naming ontology for these classes based on subcategorization frame and type of
construction (e.g. canonical, passive, . . .).

Long-Distance Dependencies Let us focus on �4 in Figure 2.8. The “move” of
the object NP argument of likes into sentence-first position as a WhNP is called
a long-distance dependency. Observe that a CFG analysis would be difficult
to come with, as this “move” crosses through the VP subtree of think—see the
dotted dependency in the derived tree of Figure 2.9. We leave the question of
syntax/semantics interfaces using derivation trees to the second half of the course.See Schabes and Shieber (1994)

for an alternative definition of
adjunction, which yields more
natural derivation trees. Among
the possible interfaces to
semantics, let us mention the use
of feature structures (Gardent
and Kallmeyer, 2003; Kallmeyer
and Romero, 2004), or better a
mapping from the derivation
structures to logical ones
(de Groote, 2001).

2.2.2 Well-Nested MCSLs

The class of well-nested MCSLs is at the junction of different extensions of context-
free languages that still lie below full context-sensitive ones Figure 2.4. This pro-
vides characterizations both in terms of

∙ well-nested multiple context-free grammars (or equivalently well-nested
linear context-free rewrite systems) (Kanazawa, 2009), and in terms of

∙ linear macro grammars (Seki and Kato, 2008), a subclass of the macro
grammars of Fischer (1968), also characterized via linear context-free tree
grammars (Rounds, 1970) or linear macro tree transducers (Engelfriet and
Vogler, 1985).

A Short Introduction to Formal Syntax and Morphology 47

Sna

WhNP

WP

who

Sna

VBZ

does

Sna

NP

NNP

Bill

VP

VB

think

Sna

NP

NNP

Bill

VP

RB

really

VPna

VBZ

likes

NP

"

�4[likes]

�6[who] �2[think]

�2[Bill] �3[does]

�2[Bill] �1[really]

Figure 2.9: Derived and derivation trees for Who does Bill think Bill really likes?
using the TAG of Figures 2.5 and 2.8.

We concentrate on the latter view, which opens some interesting perspectives to-
wards two-level syntax (see e.g. Shieber, 2006; de Groote, 2001).

Definition 2.17 (Macro Tree Transducers). A macro tree transducer (MTT) is a
tuple T = ⟨Q,Σ,Δ, I, R⟩ consisting of three finite ranked alphabets Q, Σ, and Δ
of states, input, and output symbols, a set I ⊆ Q1 of initial states, all with arity
1, and a set R of rewrite rules over T (Q ∪ Σ ∪ Δ,X ∪ Y) for X ,Y two infinite
countable sets of input variables and parameters, each rule being of form

q(n+1)(a(m)(x1, . . . , xm), y1, . . . , yn)→ t

where q(n+1) is in Qn+1, a(m) in Σm, the input variables xi in Xm, and the param-
eters yj in Yn, and t is a tree in RHS(Q,Δ,m, n) defined by the abstract syntax

t ::= yj ∣ a(r)(t, . . . , t) ∣ q(p+1)(xi, t, . . . , t)

where yj is in Yn, a(r) in Δr, q(p+1) in Qp+1, and xi in Xm.
The semantics JT K of a MTT is a relation in T (Σ)× T (Δ) defined by

JT K = {(t, t′) ∈ T (Σ)× T (Δ) ∣ ∃q(1)
i ∈ I, q

(1)
i (t)

R
=⇒∗ t′} .

To do; this will be in next year’s course...

A Short Introduction to Formal Syntax and Morphology 48

Chapter 3

Categorial Grammars

The last approach to formal syntax we will consider in these notes is also one of See the lecture notes of Retoré
(2005) for a more detailed
treatment of categorial
grammars.

the oldest: categorial grammars were indeed introduced by Bar-Hillel in 1953,
based on earlier ideas of Ajdukiewicz (1935).

In their barest form, categorial grammars are defined using residuation types,
which are usually called syntactic types or categories. Consider a finite set of
primitive types Γ. We define syntactic types over C as terms
 defined by the
abstract syntax

C ::= p ∣ C ∖ C ∣ C / C (syntactic types)

where p is in Γ; let C(Γ) be the set of syntactic types over Γ. The second part of the
course will better emphasize the interest of categorial grammars for semantics rep-
resentation. Indeed, one can apply the Curry-Howard isomorphism and associate
lambda terms (modeling semantics) to syntactic types (modeling syntax).

The interpretation of sequences of syntactic types over the free semigroup
⟨Σ+, ⋅⟩ relies on a finite lexical relation ℓ between Σ and C(Γ), mapping words
to set of syntactic types, so that the interpretation of JCKℓ a syntactic type C given
ℓ is a subset of Σ+:

JpKℓ = ℓ−1(p)

JC1 ∖ C2Kℓ = (JC1Kℓ)−1 ⋅ JC2Kℓ
JC1 / C2Kℓ = JC1Kℓ ⋅ (JC2Kℓ)−1 .

Having a distinguished axiom type S then allows to define a language over Σ as
the interpretation JSKℓ. Categorial grammars are interested in quasi orderings ⊢ The set of operators {∖, /} itself

can be expanded; for instance it is
quite common to introduce an
associative product ∙ with
interpretation
JC1 ∙ C2Kℓ = JC1Kℓ ⋅ JC2Kℓ (we
will see it in the full Lambek
calculus in Section 3.2). Thus we
are considering a product-free

fragment. (See also Morrill,
1994; Steedman, 2000;
Moortgat, 1997, for further
extended sets of operators.)

of derivability between sequences of types, such that if
 ⊢
′ is derivable then
J
Kℓ ⊆ J
′Kℓ.

Definition 3.1. A (product-free) categorial grammar C = ⟨Σ,Γ, S,⊢, ℓ⟩ comprises
a finite alphabet Σ, a finite set of primitive types Γ, a distinguished syntactic type S
in C(Γ), a derivability quasi ordering ⊢ over (C(Γ))+, and a finite lexical relation
ℓ in Σ× C(Γ).

The language of C is defined as

L(C) = {a1 ⋅ ⋅ ⋅ an ∈ Σ+ ∣ n > 0, ∃C1 ∈ ℓ(a1), . . . ,∃Cn ∈ ℓ(an), C1 ⋅ ⋅ ⋅Cn ⊢ S} .

We present two different systems to define derivability quasi orderings in sec-
tions 3.1 and 3.2.

49

A Short Introduction to Formal Syntax and Morphology 50

3.1 AB Categorial Grammars

The derivability quasi ordering for AB categorial grammars (named after Ajdukiewicz
and Bar-Hillel) can be defined by a string rewrite system R over the free semi-
group ⟨C(Γ)+, ⋅⟩ with the two cancellation rule schemata

B ⋅ (B ∖ A)→ A (∖E)

(A / B) ⋅B → A (/E)

for all A,B in C(Γ), so that ⊢ is the reflexive transitive closure of the single-step

rewrite relation R
=⇒—which is by definition a quasi ordering.

Example 3.2. Let Γ = {n, s} and let us consider the following lexical relation:

Σ C(Γ)

Bill , John, Mary , mushrooms n
the, white n / n
works n ∖ s
likes (n ∖ s) / n
thinks (n ∖ s) / s
tells ((n ∖ s) / s) / n
really (n ∖ s) / (n ∖ s)
who (n ∖ n) / (n ∖ s)

We can derive sentences such as

Bill really likes mushrooms.
John thinks Bill likes mushrooms.
Bill who likes mushrooms likes white mushrooms.
John tells Mary Bill likes mushrooms.

Observe that the principles of lexicalization put forward in Section 2.2.1 for
TAGs are also at work here: the syntactic types associated to works, likes, thinks,
and tells reflect their subcategorization frames (only a subject, a subject and a
nominal object, a subject and a clausal object, and a subject and both a nominal
and a clausal object resp.).

3.1.1 Alternative Views

Axiomatic View Other definitions are possible; for instance by algebraic laws
over (C(Γ))+, where the laws left implicit in the string rewrite definition have to be
expressed. More precisely, by definition of a semigroup, the rules are taken modulo
associativity of ⋅, and by definition of a string rewrite system, ⊢ is monotone wrt.
concatenation:

A ⊢ A (reflexivity)

A ⊢ B and B ⊢ C imply A ⊢ C (transitivity)

A ⋅ (B ⋅ C) ⊢ (A ⋅B) ⋅ C (associativity)

(A ⋅B) ⋅ C ⊢ A ⋅ (B ⋅ C) (associativity)

A ⊢ B implies A ⋅ C ⊢ B ⋅ C (left monotonicity)

A ⊢ B implies C ⋅A ⊢ C ⋅B (right monotonicity)

for all A,B,C in (C(Γ))+.

A Short Introduction to Formal Syntax and Morphology 51

Proof-Theoretic View Yet another presentation would be as a natural deduction
sequent calculus: a sequent
 ⊢ C pairs up a non empty sequence
 in (C(Γ))+

with a syntactic type C in C(Γ). The derivability quasi ordering is then defined by
the following substructural proof system

C ⊢ C
(Id)

� ⊢ B � ⊢ B ∖ A
�� ⊢ A

(∖E)
� ⊢ A / B � ⊢ B

�� ⊢ A
(/E)

where the two rules (∖E) and (/E) are non-commutative versions of the traditional
modus ponens rule (which we will recall later as rule (→E)).

3.1.2 Equivalence with Context-Free Grammars

The equivalence of AB categorial grammars and context-free grammars is origi-
nally due to Bar-Hillel et al. (1960).

From AB Categorial Grammars to CFGs The encoding relies on a subformula
property for the cancellation rules: the resulting types are always subtypes of the
left-hand types. Thus, given an AB categorial grammar C = ⟨Σ,Γ, S,⊢, ℓ⟩, the set
of types that can appear during a derivation is in sub(ℓ(Σ))+. A second property is

a context-freeness one: a derivation of form �
R
=⇒n A1 ⋅ ⋅ ⋅Am can be decomposed

into m subderivations �i
R
=⇒ni Ai with n = n1 + ⋅ ⋅ ⋅+ nm and � = �1 ⋅ ⋅ ⋅�m.

Using these two properties, it is straightforward to check that the CFG G =
⟨sub(ℓ(Σ)),Σ, P, S⟩ with

P = {A→ B (B ∖ A) ∣ (B ∖ A) ∈ sub(ℓ(Σ))}
∪ {A→ (A / B) B ∣ (A / B) ∈ sub(ℓ(Σ))}
∪ {A→ a ∣ (a,A) ∈ ℓ}

encodes C.

From CFGs to AB Categorial Grammars Recall that any CFG can be trans-
formed into an equivalent CFG in (quadratic) Greibach normal form (GNF, Greibach,
1965), i.e. such that all its productions are of form

S → " S the axiom

A→ a� a ∈ Σ, � ∈ (N∖{S})≤2

This yields a straightforward encoding of a CFG G with " ∕∈ L(G) in GNF into an
AB categorial grammar C = ⟨N,Σ,⊢, S, ℓ⟩ with

ℓ = {(a, (A / C) / B) ∣ A→ aBC ∈ P}
∪ {(a,A / B) ∣ A→ aB ∈ P}
∪ {(a,A) ∣ A→ a ∈ P} .

Exercise 3.1. Fill out the missing details of the proof of equivalence between AB (∗∗)
categorial grammars and context-free grammars.

Exercise 3.2. The Dyck languageDn over n pairs of parentheses ai, āi is generated (∗∗)
by the CFG with productions {S → aiSāi ∣ 1 ≤ i ≤ n}∪{S → SS}∪{S → "}. Give
an AB categorial grammar for the language Dn$ where $ is an endmarker distinct
from all the ai, āi.

A Short Introduction to Formal Syntax and Morphology 52

3.1.3 Structural Limitations

There exist some structural limitations to AB categorial grammars. Consider for
instance that introducing a subordination as in the mushrooms that Bill likes; in
this frame the type for that would be (n ∖ n) / (s / n) since Bill likes is intu-
itively of type s / n. However, we cannot derive n ⋅ ((n ∖ s) / n) ⊢ s / n using
only the cancellation rules, although it would be correct wrt. the free semigroup
interpretation.

Several extensions were defined in order to circumvent the limitations of AB cat-
egorial grammars (often sparked by semantic rather than syntactic motivations):

type raising B → (A / B) ∖ A and B → A / (B ∖ A),

composition (A / B)(B / C)→ A / C and (C ∖ B)(B ∖ A)→ C ∖ A,

Geach rules A / B → (A / C) / (B / C) and B ∖ A→ (C ∖ B) ∖ (C ∖ A).

All these extensions are captured by the Lambek calculus.

3.2 Lambek Grammars

The Lambek calculus (Lambek, 1958) generalizes all the extensions of AB cat-
egorial rules by proposing instead to add introduction rules to the intuitionistic
fragment of Section 3.1.1.

3.2.1 Background: Substructural Proof Systems

Let us first recall the implicative and conjunctive fragment of propositional cal-
culus, with a presentation based on natural deduction for intuitionistic logic. A
proposition C is defined in this fragment as

C ::= p ∣ C → C ∣ C ∧ C (propositions)

where p is taken from a set Γ of atomic propositions. An assumption a sequence
of propositions, and a judgement has the form
 ⊢ C, meaning that from assump-
tions
 one can conclude proposition C. A version of the propositional calculus is
then defined by the rules

C ⊢ C
(Id)

�� ⊢ A
�� ⊢ A

(Ex)
�AA ⊢ B
�A ⊢ B

(Con)
� ⊢ B
�A ⊢ B

(W)

�B ⊢ A
� ⊢ B → A

(→ I)
� ⊢ B � ⊢ B → A

�� ⊢ A
(→E)

� ⊢ A � ⊢ B
�� ⊢ A ∧B

(∧I)
� ⊢ A ∧B �AB ⊢ C

�� ⊢ C
(∧E)

where (Ex), (Con), and (W) are the structural rules of exchange, contraction, and
weakening, respectively.

A Short Introduction to Formal Syntax and Morphology 53

There exists a rich literature on substructural logics, in particular linear logic
(Girard, 1987) allows to restrict the use of the (Con) and (W) rules. If we com- See e.g. Troelstra (1992) for a

textbook on linear logic, and the
course MPRI 2-1.

pletely forbid these two rules, then the fragment of propositional calculus we just
saw corresponds to the multiplicative fragment of intuitionistic linear logic, which
displays linear implication ⊸ instead of implication, and tensor product ⊗ instead
of conjunction.

One can go a step further and also forbid the exchange rule (Ex). It has however One can go one more step further
and define a non-associative

calculus, where sequents left parts
are terms instead of sequences.
This results in a variant called
the non-associative Lambek

calculus (Lambek, 1961).

the effect of refining the implication rules (→ I) and (→E) into left and right im-
plications, while conjunction becomes a form of concatenation, which we denote
by ∙:

C ⊢ C
(Id)

B� ⊢ A
� ⊢ B ∖ A

(∖ I), � ∕= "
� ⊢ B � ⊢ B ∖ A

�� ⊢ A
(∖E)

�B ⊢ A
� ⊢ A / B

(/ I), � ∕= "
� ⊢ A / B � ⊢ B

�� ⊢ A
(/E)

� ⊢ A � ⊢ B
�� ⊢ A ∙ B

(∙ I)
� ⊢ A ∙ B �AB
 ⊢ C

��
 ⊢ C
(∙E)

Note that this system simply adds insertion counterparts to (∖E) and (/E) and
product rules to the system of Section 3.1.1. What we have just defined is a natural
deduction version of the Lambek calculus.

Example 3.3. Here is a derivation of a type raising rule from Section 3.1.3:

(Id)
A / B ⊢ A / B

(Id)
B ⊢ B

(/E)
(A / B)B ⊢ A

(∖ I)
B ⊢ (A / B) ∖ A

Exercise 3.3. Show that the composition and Geach rules from Section 3.1.3 are (∗)
also derivable in this natural deduction version of the Lambek calculus.

3.2.2 Lambek Calculus

Lambek (1958) actually presents his calculus in Gentzen sequent style, with rules

C ⊢ C
(Id)

� ⊢ B �B
 ⊢ A
��
 ⊢ A

(Cut)

B� ⊢ A
� ⊢ B ∖ A

(∖R), � ∕= "
� ⊢ B �A
 ⊢ C
��(B ∖ A)
 ⊢ C

(∖L)

�B ⊢ A
� ⊢ A / B

(/R), � ∕= "
�A
 ⊢ C � ⊢ B
�(A / B)�
 ⊢ C

(/L)

� ⊢ A � ⊢ B
�� ⊢ A ∙ B

(∙R)
�AB� ⊢ C

�(A ∙ B)� ⊢ C
(∙L)

http://mpri.master.univ-paris7.fr/C-2-1.html

A Short Introduction to Formal Syntax and Morphology 54

Again, one can recognize a non-commutative variation of the multiplicative frag-
ment of intuitionistic linear logic.

Cut Elimination The Lambek calculus enjoys cut elimination, i.e. for any proof
in the sequent calculus, there exists a proof that does not employ the (Cut) rule. A
byproduct of cut elimination is that cut-free proofs have the subformula property,The Lambek calculus is in fact

NPTIME-complete (Pentus,
2006).

in the following strong sense: each application of the rules besides (Cut) adds one
symbol from {∖, /, ∙} to the sequent. Thus working our way backward from a
sequent
 ⊢ C to be proven, there are only finitely many cut-free proofs possible:
the calculus is decidable.

Exercise 3.4. Show that the decision procedure sketched above is in NPTIME.(∗)

Let us prove the cut elimination property. Suppose both � ⊢ B and �B
 ⊢ A are
provable in the cut-free calculus; we want to show that ��
 ⊢ A is also provable.
The proof proceeds by induction on the sum of the sizes of the sequents—defined
as their number of symbols from {∖, /, ∙}—and consists mostly of a large case
analysis depending on the last rule employed to obtain the sequents before the
cut:

1. if either sequent is the result of (Id), then the other is already the result of
the cut,

2. if � ⊢ B is the result of a rule that did not introduce the main connective
of B, i.e. rule (∖L), (/L), or (∙L), then there is a premise of form �′ ⊢ B
of smaller size, which by induction hypothesis yields ��′
 ⊢ A in the cut-
free calculus, and later ��
 ⊢ A by the same rule application that lead from
�′ ⊢ B to � ⊢ B,

3. if �B
 ⊢ A is the result of a rule that did not introduce the main connective
of B, then there is a premise of form �′B
′ ⊢ A′ of smaller size, which by
induction hypothesis yields a cut-free proof of �′�
′ ⊢ A′, and an application
of the rule that lead from �′B
′ ⊢ A′ to �B
 ⊢ A yields the result,

4. if B = C ∙ D is the result of (∙R) and (∙L), and we can replace

�′ ⊢ C �′′ ⊢ D
(∙R)

�′�′′ ⊢ C ∙ D
�CD
 ⊢ A

(∙L)
�(C ∙ D)
 ⊢ A

(Cut)
��′�′′
 ⊢ A

by the proof

�′ ⊢ C
�′′ ⊢ D �CD
 ⊢ A

(Cut)
�C�′′
 ⊢ A

(Cut)
��′�′′
 ⊢ A

with both (Cut) applications are on smaller sequents, thus provable in the
cut-free calculus by induction hypothesis,

5. if B = C / D is the result of (/R) and (/L), and we can replace

�′D ⊢ C
(/R)

�′ ⊢ C / D

�C
 ⊢ A �′′ ⊢ D
(/L)

�(C / D)�′′
 ⊢ A
(Cut)

��′�′′
 ⊢ A

A Short Introduction to Formal Syntax and Morphology 55

by the proof

�′′ ⊢ D
�′D ⊢ C �C
 ⊢ A

(Cut)
��′D
 ⊢ A

(Cut)
��′�′′
 ⊢ A

where both (Cut) applications are on smaller sequents, thus provable in the
cut-free calculus by induction hypothesis,

6. if B = C ∖ D is the result of (∖R) and (∖L), the case is symmetric to case 5.

Encoding Natural Deduction The natural deduction rules (∖E), and (∙E) can
be obtained as (the case of (/E) being symmetric to that of (∖E)):

� ⊢ B ∖ A
� ⊢ B

(Id)
A ⊢ A

(∖L)
�(B ∖ A) ⊢ A

(Cut)
�� ⊢ A

� ⊢ A ∙ B
�AB
 ⊢ C

(∙L)
�(A ∙ B)
 ⊢ C

(Cut)
��
 ⊢ C

Conversely, one can prove that the Lambek calculus is actually equivalent to its
natural deduction presentation (see e.g. Retoré, 2005, Section 2.6).

3.2.3 Equivalence with Context-Free Grammars

Although the Lambek calculus is strictly more expressive than the two cancellation
rules (∖E) and (/E) of AB categorial grammars, Lambek grammars, i.e. the cate-
gorial grammars that employ the (product-free) Lambek calculus for the derivabil-
ity quasi ordering ⊢, are not more expressive: they define exactly the context-free
languages. This result was conjectured by Chomsky in the 1960s but remained
open until the 1992 proof of Pentus.

We merely give a taste of the proof in the product-free case (Pentus, 1997). It
defines the norm ∥
∥ of a product-free type sequence
 in (C(Γ))+ as its number
of atomic type occurrences, i.e.

∥p∥ = 1 ∥C ∖ C ′∥ = ∥C / C ′∥ = ∥C∥+ ∥C ′∥ ∥C1 ⋅ ⋅ ⋅Cn∥ = ∥C1∥+ ⋅ ⋅ ⋅+ ∥Cn∥,

and uses it to define the finite sets of types and type sequences

Cm(Γ) = {C ∈ C(Γ) ∣ ∥C∥ ≤ m} Lm(Γ) = {
 ∈ (C(Γ))+ ∣ ∥
∥ ≤ 2m}

for all m ≥ 0. The (m,Γ)-bounded Lambek calculus is then defined by the two
rules

 ⊢ C
(Ax)

� ⊢ B �B
 ⊢ A
��
 ⊢ A

(Cut)

where
 ⊢ C in (Ax) is any sequent in Lm(Γ)×Cm(Γ) provable in the product-free
Lambek calculus (thus there are only finitely many such axioms for a fixed (m,Γ)
pair).

Theorem 3.4 (Pentus, 1997). Let B1, . . . , Bn, A be types in Cm(Γ). If B1 ⋅ ⋅ ⋅Bn ⊢ A
is provable in the product-free Lambek calculus, then it is also provable in the (m,Γ)-
bounded Lambek calculus.

A Short Introduction to Formal Syntax and Morphology 56

Thus, given a Lambek categorial grammar C = ⟨Σ,Γ, S,⊢, ℓ⟩, there exist m ≥ 0
and Γ′ ⊆ Γ s.t. S ∈ Cm(Γ′) and ℓ(Σ) ⊆ Cm(Γ′). We can construct a context-free
grammar G = ⟨Cm(Γ′),Σ, P, S⟩ with

P = {C →
 ∣ C ∈ Cm(Γ′),
 ∈ Lm(Γ′),
 ⊢ C provable}
∪ {A→ a ∣ (a,A) ∈ ℓ} .

Context-free derivations then simulate the action of the (Cut) rule in the (m,Γ′)-
calculus.

Exercise 3.5. Prove using Theorem 3.4 the equivalence of C and G as defined(∗∗)
above.

Chapter 4

References

Ajdukiewicz, K., 1935. Die syntaktische Konnexität. Studia Philisophica, 1:1–27. Cited
on pages 49, 50.

Bar-Hillel, Y., 1953. A quasi-arithmetical notation for syntactic description. Language, 29
(1):47–58. doi:10.2307/410452. Cited on pages 49, 50.

Bar-Hillel, Y., Gaifman, C., and Shamir, E., 1960. On categorial and phrase-structure
grammars. Bulletin of the research council of Israel, 9F:1–16. Cited on page 51.

Bar-Hillel, Y., Perles, M., and Shamir, E., 1961. On formal properties of simple phrase-
structure grammars. Zeitschrift für Phonetik, Sprachwissenschaft, und Kommunikations-
forschung, 14:143–172. Cited on pages 30, 32.

Berstel, J., 1979. Transductions and Context-Free Languages. Teubner Studienbücher:
Informatik. Teubner. ISBN 3-519-02340-7. http://www-igm.univ-mlv.fr/~berstel/
LivreTransductions/LivreTransductions.html. Cited on pages 2, 9, 11.

Berstel, J. and Reutenauer, C., 2010. Noncommutative Rational Series With Applica-
tions. Cambridge University Press. http://www-igm.univ-mlv.fr/~berstel/LivreSeries/
LivreSeries.html. Cited on page 9.

Billot, S. and Lang, B., 1989. The structure of shared forests in ambiguous parsing. In
ACL’89, pages 143–151. ACL Press. doi:10.3115/981623.981641. Cited on page 30.

Black, E., Abney, S., Flickenger, S., Gdaniec, C., Grishman, C., Harrison, P., Hindle, D.,
Ingria, R., Jelinek, F., Klavans, J., Liberman, M., Marcus, M., Roukos, S., Santorini,
B., and Strzalkowski, T., 1991. A procedure for quantitatively comparing the syntactic
coverage of English grammars. In HLT ’91, pages 306–311. ACL Press. doi:10.3115/
112405.112467. Cited on page 40.

Book, R. and Otto, F., 1993. String Rewriting Systems. Texts and monographs in Computer
Science. Springer. ISBN 3-540-97965-4. Cited on page 3.

Booth, T.L. and Thompson, R.A., 1973. Applying probability measures to ab-
stract languages. IEEE Transactions on Computers, C-22(5):442–450. doi:10.1109/
T-C.1973.223746. Cited on pages 36, 37.

Brants, T., 2000. TnT – a statistical part-of-speech tagger. In ANLP 2000, pages 224–231.
doi:10.3115/974147.974178. Cited on page 16.

Brill, E., 1992. A simple rule-based part of speech tagger. In ANLP ’92, pages 152–155.
ACL Press. doi:10.3115/974499.974526. Cited on pages 16, 17, 18.

Chi, Z. and Geman, S., 1998. Estimation of probabilistic context-free grammars. Compu-
tational Linguistics, 24(2):299–305. http://www.aclweb.org/anthology/J98-2005.pdf.
Cited on page 38.

57

http://dx.doi.org/10.2307/410452
http://www-igm.univ-mlv.fr/~berstel/LivreTransductions/LivreTransductions.html
http://www-igm.univ-mlv.fr/~berstel/LivreTransductions/LivreTransductions.html
http://www-igm.univ-mlv.fr/~berstel/LivreSeries/LivreSeries.html
http://www-igm.univ-mlv.fr/~berstel/LivreSeries/LivreSeries.html
http://www.aclweb.org/anthology/P89-1018
http://www.aclweb.org/anthology/H91-1060.pdf
http://www.aclweb.org/anthology/H91-1060.pdf
http://dx.doi.org/10.1109/T-C.1973.223746
http://dx.doi.org/10.1109/T-C.1973.223746
http://www.aclweb.org/anthology/A00-1031.pdf
http://www.aclweb.org/anthology/A92-1021.pdf
http://www.aclweb.org/anthology/J98-2005.pdf

A Short Introduction to Formal Syntax and Morphology 58

Chomsky, N., 1956. Three models for the description of language. IEEE Transactions on
Information Theory, 2(3):113–124. doi:10.1109/TIT.1956.1056813. Cited on page 29.

Chomsky, N., 1959. On certain formal properties of grammars. Information and Control,
2(2):137–167. doi:10.1016/S0019-9958(59)90362-6. Cited on page 29.

Chomsky, N. and Halle, M., 1968. The Sound Pattern of English. Harper and Row. Cited
on page 13.

Cocke, J. and Schwartz, J.T., 1970. Programming languages and their compilers. Courant
Institute of Mathematical Sciences, New York University. Cited on page 30.

Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Ti-
son, S., and Tommasi, M., 2007. Tree Automata Techniques and Applications. http:
//tata.gforge.inria.fr/. Cited on pages 2, 4, 31.

Coppersmith, D. and Winograd, S., 1990. Matrix multiplication via arithmetic
progressions. Journal of Symbolic Computation, 9(3):251–280. doi:10.1016/
S0747-7171(08)80013-2. Cited on page 30.

Cousot, P. and Cousot, R., 2003. Parsing as abstract interpretation of grammar semantics.
Theoretical Computer Science, 290(1):531–544. doi:10.1016/S0304-3975(02)00034-8.
Cited on page 34.

Crabbé, B., 2005. Grammatical development with XMG. In Blache, P., Stabler, E., Bus-
quets, J., and Moot, R., editors, LACL’05, volume 3492 of Lecture Notes in Computer
Science, pages 84–100. Springer. ISBN 978-3-540-25783-7. doi:10.1007/11422532_6.
Cited on page 45.

Crochemore, M. and Hancart, C., 1997. Automata for matching patterns. In Rozenberg,
G. and Salomaa, A., editors, Handbook of Formal Languages, volume 2. Linear Modeling:
Background and Application, chapter 9, pages 399–462. Springer. ISBN 3-540-60648-3.
Cited on page 18.

de Groote, P., 2001. Towards abstract categorial grammars. In ACL 2001, pages 252–259.
ACL Press. doi:10.3115/1073012.1073045. Cited on pages 46, 47.

Earley, J., 1970. An efficient context-free parsing algorithm. Communications of the ACM,
13(2):94–102. doi:10.1145/362007.362035. Cited on pages 30, 34.

Engelfriet, J. and Vogler, H., 1985. Macro tree transducers. Journal of Computer and
System Sciences, 31:71–146. doi:10.1016/0022-0000(85)90066-2. Cited on page 46.

Etessami, K. and Yannakakis, M., 2009. Recursive Markov chains, stochastic grammars,
and monotone systems of nonlinear equations. Journal of the ACM, 56(1):1–66. doi:
10.1145/1462153.1462154. Cited on page 37.

Fischer, M.J., 1968. Grammars with macro-like productions. In SWAT ’68, pages 131–
142. IEEE Computer Society. doi:10.1109/SWAT.1968.12. Cited on page 46.

Gardent, C. and Kallmeyer, L., 2003. Semantic construction in feature-based
TAG. In EACL’03, pages 123–130. ACL Press. ISBN 1-333-56789-0. doi:10.3115/
1067807.1067825. Cited on page 46.

Gecse, R. and Kovács, A., 2010. Consistency of stochastic context-free grammars. Math-
ematical and Computer Modelling, 52(3–4):490–500. doi:10.1016/j.mcm.2010.03.046.
Cited on page 37.

Girard, J.Y., 1987. Linear logic. Theoretical Computer Science, 50(1):1–101. doi:10.1016/
0304-3975(87)90045-4. Cited on page 53.

Graham, S.L., Harrison, M., and Ruzzo, W.L., 1980. An improved context-free recognizer.
ACM Transactions on Programming Languages and Systems, 2(3):415–462. doi:10.1145/
357103.357112. Cited on page 30.

http://dx.doi.org/10.1109/TIT.1956.1056813
http://dx.doi.org/10.1016/S0019-9958(59)90362-6
http://tata.gforge.inria.fr/
http://tata.gforge.inria.fr/
http://dx.doi.org/10.1016/S0747-7171(08)80013-2
http://dx.doi.org/10.1016/S0747-7171(08)80013-2
http://dx.doi.org/10.1016/S0304-3975(02)00034-8
http://dx.doi.org/10.1007/11422532_6
http://www.aclweb.org/anthology/P01-1033.pdf
http://dx.doi.org/10.1145/362007.362035
http://doc.utwente.nl/69400/
http://dx.doi.org/10.1145/1462153.1462154
http://dx.doi.org/10.1145/1462153.1462154
http://dx.doi.org/10.1109/SWAT.1968.12
http://dx.doi.org/10.3115/1067807.1067825
http://dx.doi.org/10.3115/1067807.1067825
http://dx.doi.org/10.1016/j.mcm.2010.03.046
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1145/357103.357112
http://dx.doi.org/10.1145/357103.357112

A Short Introduction to Formal Syntax and Morphology 59

Greibach, S.A., 1965. A new normal-form theorem for context-free phrase structure
grammars. Journal of the ACM, 12(1):42–52. doi:10.1145/321250.321254. Cited on
page 51.

Grune, D. and Jacobs, C.J.H., 2007. Parsing Techniques. Monographs in Computer Sci-
ence. Springer, second edition. ISBN 0-387-20248-X. Cited on page 30.

Harrison, M.A., 1978. Introduction to Formal Language Theory. Series in Computer Sci-
ence. Addison-Wesley. ISBN 0-201-02955-3. Cited on page 2.

Jones, N.D. and Laaser, W.T., 1976. Complete problems for deterministic polynomial
time. Theoretical Computer Science, 3(1):105–117. doi:10.1016/0304-3975(76)90068-2.
Cited on page 30.

Joshi, A.K., Levy, L.S., and Takahashi, M., 1975. Tree adjunct grammars. Journal of
Computer and System Sciences, 10(1):136–163. doi:10.1016/S0022-0000(75)80019-5.
Cited on page 43.

Joshi, A.K., 1985. Tree-adjoining grammars: How much context sensitivity is required to
provide reasonable structural descriptions? In Dowty, D.R., Karttunen, L., and Zwicky,
A.M., editors, Natural Language Parsing: Psychological, Computational, and Theoretical
Perspectives, chapter 6, pages 206–250. Cambridge University Press. Cited on page 42.

Joshi, A.K., Vijay-Shanker, K., and Weir, D., 1991. The convergence of mildly context-
sensitive grammatical formalisms. In Sells, P., Shieber, S., and Wasow, T., editors, Foun-
dational Issues in Natural Language Processing. MIT Press. http://repository.upenn.edu/
cis_reports/539. Cited on page 42.

Joshi, A.K. and Schabes, Y., 1997. Tree-adjoining grammars. In Rozenberg, G.
and Salomaa, A., editors, Handbook of Formal Languages, volume 3: Beyond Words,
chapter 2, pages 69–124. Springer. ISBN 3-540-60649-1. http://citeseer.ist.psu.edu/
joshi97treeadjoining.html. Cited on page 43.

Jurafsky, D. and Martin, J.H., 2009. Speech and Language Processing. Prentice Hall Series
in Artificial Intelligence. Prentice Hall, second edition. ISBN 978-0-13-187321-6. Cited
on pages 2, 6, 24.

Kallmeyer, L. and Romero, M., 2004. LTAG semantics with semantic unification. In
Rambow, O. and Stone, M., editors, TAG+7, pages 155–162. http://www.cs.rutgers.edu/
TAG+7/papers/kallmeyer-c.pdf. Cited on page 46.

Kanazawa, M., 2009. The pumping lemma for well-nested multiple context-free lan-
guages. In Diekert, V. and Nowotka, D., editors, DLT 2009, volume 5583 of Lecture Notes
in Computer Science, pages 312–325. Springer. doi:10.1007/978-3-642-02737-6_25.
Cited on page 46.

Kaplan, R.M. and Kay, M., 1994. Regular models of phonological rule systems. Compu-
tational Linguistics, 20(3):331–378. http://www.aclweb.org/anthology/J94-3001.pdf.
Cited on page 15.

Karttunen, L., 1983. KIMMO: a general morphological processor. In Dalrymple, M.,
Doron, E., Goggin, J., Goodman, B., and McCarthy, J., editors, Texas Linguistic Fo-
rum, volume 22, pages 165–186. Department of Linguistics, The University of Texas
at Austin. http://www2.parc.com/istl/members/karttune/publications/archive/kimmo/
kimmo-gmp.pdf. Cited on page 12.

Karttunen, L., Chanod, J.P., Grefenstette, G., and Schiller, A., 1996. Regular ex-
pressions for language engineering. Natural Language Engineering, 2:305–328. doi:
10.1017/S1351324997001563. Cited on page 6.

Kasami, T., 1965. An efficient recognition and syntax analysis algorithm for context free
languages. Scientific Report AF CRL-65-758, Air Force Cambridge Research Laboratory,
Bedford, Massachussetts. Cited on page 30.

Knuth, D.E., 1965. On the translation of languages from left to right. Information and
Control, 8(6):607–639. doi:10.1016/S0019-9958(65)90426-2. Cited on page 30.

http://dx.doi.org/10.1145/321250.321254
http://dx.doi.org/10.1016/0304-3975(76)90068-2
http://dx.doi.org/10.1016/S0022-0000(75)80019-5
http://repository.upenn.edu/cis_reports/539
http://repository.upenn.edu/cis_reports/539
http://citeseer.ist.psu.edu/joshi97treeadjoining.html
http://citeseer.ist.psu.edu/joshi97treeadjoining.html
http://www.cs.rutgers.edu/TAG+7/papers/kallmeyer-c.pdf
http://www.cs.rutgers.edu/TAG+7/papers/kallmeyer-c.pdf
http://dx.doi.org/10.1007/978-3-642-02737-6_25
http://www.aclweb.org/anthology/J94-3001.pdf
http://www2.parc.com/istl/members/karttune/publications/archive/kimmo/kimmo-gmp.pdf
http://www2.parc.com/istl/members/karttune/publications/archive/kimmo/kimmo-gmp.pdf
http://dx.doi.org/10.1017/S1351324997001563
http://dx.doi.org/10.1017/S1351324997001563
http://dx.doi.org/10.1016/S0019-9958(65)90426-2

A Short Introduction to Formal Syntax and Morphology 60

Knuth, D.E., 1977. A generalization of Dijkstra’s algorithm. Information Processing Letters,
6(1):1–5. doi:10.1016/0020-0190(77)90002-3. Cited on pages 40, 41.

Koskenniemi, K. and Church, K.W., 1988. Complexity, two-level morphology and Finnish.
In CoLing ’88, pages 335–340. ACL Press. doi:10.3115/991635.991704. Cited on
page 13.

Kroch, A.S. and Joshi, A.K., 1985. The linguistic relevance of tree adjoining gram-
mars. Technical Report MS-CIS-85-16, University of Pennsylvania, Department of Com-
puter and Information Science. http://repository.upenn.edu/cis_reports/671/. Cited on
page 45.

Kroch, A.S. and Santorini, B., 1991. The derived constituent structure of the West Ger-
manic verb-raising construction. In Freidin, R., editor, Principles and Parameters in Com-
parative Grammar, chapter 10, pages 269–338. MIT Press. Cited on page 42.

Kurki-Suonio, R., 1969. Notes on top-down languages. BIT Numerical Mathematics, 9
(3):225–238. doi:10.1007/BF01946814. Cited on page 30.

Lambek, J., 1958. The mathematics of sentence structure. American Mathematical
Monthly, 65(3):154–170. doi:10.2307/2310058. Cited on pages 52, 53.

Lambek, J., 1961. On the calculus of syntactic types. In Jakobson, R., editor, Structure of
Language and its Mathematical Aspects, volume 12 of Proceedings of Symposia in Applied
Mathematics, pages 166–178. AMS. ISBN 0-8218-1312-9. Cited on page 53.

Lang, B., 1974. Deterministic techniques for efficient non-deterministic parsers. In
Loeckx, J., editor, ICALP’74, volume 14 of Lecture Notes in Computer Science, pages 255–
269. Springer. doi:10.1007/3-540-06841-4_65. Cited on page 30.

Lang, B., 1994. Recognition can be harder than parsing. Computational Intelligence, 10
(4):486–494. doi:10.1111/j.1467-8640.1994.tb00011.x. Cited on page 32.

Lee, L., 2002. Fast context-free grammar parsing requires fast boolean matrix multiplica-
tion. Journal of the ACM, 49(1):1–15. doi:10.1145/505241.505242. Cited on page 30.

Leo, J.M.I.M., 1991. A general context-free parsing algorithm running in linear time
on every LR(k) grammar without using lookahead. Theoretical Computer Science, 82(1):
165–176. doi:10.1016/0304-3975(91)90180-A. Cited on page 35.

Lombardy, S. and Sakarovitch, J., 2006. Sequential? Theoretical Computer Science, 356
(1):224–244. doi:10.1016/j.tcs.2006.01.028. Cited on page 28.

Manning, C.D. and Schütze, H., 1999. Foundations of Statistical Natural Language Pro-
cessing. MIT Press. ISBN 978-0-262-13360-9. Cited on pages 2, 24.

Marcus, M.P., Marcinkiewicz, M.A., and Santorini, B., 1993. Building a large annotated
corpus of English: the Penn Treebank. Computational Linguistics, 19(2):313–330. http:
//www.aclweb.org/anthology/J93-2004.pdf. Cited on pages 7, 8, 16, 38.

Matiyasevicha, Y. and Sénizergues, G., 2005. Decision problems for semi-Thue sys-
tems with a few rules. Theoretical Computer Science, 330(1):145–169. doi:10.1016/
j.tcs.2004.09.016. Cited on page 14.

McCarthy, J.J., 1982. Prosodic structure and expletive infixation. Language, 58(3):574–
590. doi:10.2307/413849. Cited on page 6.

McNaughton, R., 1995. Well behaved derivations in one-rule semi-Thue systems. Tech-
nical Report 95-15, Department of Computer Science, Rensselaer Polytechnic Institute.
http://www.cs.rpi.edu/research/ps/95-15.ps. Cited on page 14.

Mohri, M. and Sproat, R., 1996. An efficient compiler for weighted rewrite rules. In ACL
’96, pages 231–238. ACL Press. doi:10.3115/981863.981894. Cited on page 15.

Mohri, M., 1997. Finite-state transducers in language and speech processing. Compu-
tational Linguistics, 23(2):269–311. http://www.cs.nyu.edu/~mohri/pub/cl1.pdf. Cor-
rected version from the author’s webpage. Cited on page 28.

http://dx.doi.org/10.1016/0020-0190(77)90002-3
http://www.aclweb.org/anthology/C88-1069.pdf
http://repository.upenn.edu/cis_reports/671/
http://dx.doi.org/10.1007/BF01946814
http://dx.doi.org/10.2307/2310058
http://dx.doi.org/10.1007/3-540-06841-4_65
http://pauillac.inria.fr/~lang/papers/harder/harder.pdf
http://arxiv.org/pdf/cs/0112018
http://dx.doi.org/10.1016/0304-3975(91)90180-A
http://dx.doi.org/10.1016/j.tcs.2006.01.028
http://www.aclweb.org/anthology/J93-2004.pdf
http://www.aclweb.org/anthology/J93-2004.pdf
http://dx.doi.org/10.1016/j.tcs.2004.09.016
http://dx.doi.org/10.1016/j.tcs.2004.09.016
http://dx.doi.org/10.2307/413849
http://www.cs.rpi.edu/research/ps/95-15.ps
http://www.aclweb.org/anthology/P96-1031.pdf
http://www.cs.nyu.edu/~mohri/pub/cl1.pdf

A Short Introduction to Formal Syntax and Morphology 61

Moore, R.C., 2004. Improved left-corner chart parsing for large context-free gram-
mars. In New Developments in Parsing Technology, pages 185–201. Springer. doi:
10.1007/1-4020-2295-6_9. Cited on page 31.

Moortgat, M., 1997. Multimodal linguistic inference. Journal of Logic, Language and
Information, 5(3–4):349–385. doi:10.1007/BF00159344. Cited on page 49.

Morrill, G.V., 1994. Type Logical Grammar. Kluwer Academic Publishers. ISBN 0-7923-
3095-1. Cited on page 49.

Nederhof, M.J. and Satta, G., 2003. Probabilistic parsing as intersection. In IWPT 2003,
pages 137–148. http://www.cs.st-andrews.ac.uk/~mjn/publications/2003b.pdf. Cited
on page 38.

Nederhof, M.J. and Satta, G., 2004. Tabular parsing. In Martín-Vide, C., Mitrana, V., and
Paun, G., editors, Formal Languages and Applications, volume 148 of Studies in Fuzziness
and Soft Computing, pages 529–549. Springer. arXiv:cs.CL/0404009. Cited on page 32.

Nederhof, M.J. and Satta, G., 2008. Probabilistic parsing. In Bel-Enguix, G., Jiménez-
López, M., and Martín-Vide, C., editors, New Developments in Formal Languages and Ap-
plications, volume 113 of Studies in Computational Intelligence, pages 229–258. Springer.
doi:10.1007/978-3-540-78291-9_7. Cited on page 35.

Parikh, R.J., 1966. On context-free languages. Journal of the ACM, 13(4):570–581.
doi:10.1145/321356.321364. Cited on page 42.

Pentus, M., 1997. Product-free Lambek calculus and context-free grammars. Journal of
Symbolic Logic, 62(2):648–660. doi:10.2307/2275553. Cited on page 55.

Pentus, M., 2006. Lambek calculus is NP-complete. Theoretical Computer Science, 357:
186–201. doi:10.1016/j.tcs.2006.03.018. Cited on page 54.

Pereira, F.C.N. and Warren, D.H.D., 1983. Parsing as deduction. In ACL ’83, pages 137–
144. ACL Press. doi:10.3115/981311.981338. Cited on page 34.

Pesetsky, D., 1985. Morphology and logical form. Linguistic Inquiry, 16(2):193–246.
http://www.jstor.org/stable/4178430. Cited on page 12.

Pullum, G.K. and Scholz, B.C., 2001. On the distinction between model-theoretic and
generative-enumerative syntactic frameworks. In de Groote, P., Morrill, G., and Retoré,
C., editors, LACL 2001, volume 2099 of Lecture Notes in Computer Science, pages 17–43.
Springer. doi:10.1007/3-540-48199-0_2. Cited on page 29.

Raney, G.N., 1958. Sequential functions. Journal of the ACM, 5(2):177–180. doi:
10.1145/320924.320930. Cited on page 10.

Retoré, C., 2005. The logic of categorial grammars: Lecture notes. Technical Report
RR-5703, INRIA. http://hal.inria.fr/inria-00070313/. Cited on pages 49, 55.

Roche, E. and Schabes, Y., 1995. Deterministic part-of-speech tagging with finite-
state transducers. Computational Linguistics, 21(2):227–253. http://www.aclweb.org/
anthology/J95-2004.pdf. Cited on pages 16, 17, 18.

Rosenkrantz, D.J. and Stearns, R.E., 1970. Properties of deterministic top-down gram-
mars. Information and Control, 17(3):226–256. doi:10.1016/S0019-9958(70)90446-8.
Cited on page 30.

Rounds, W.C., 1970. Mappings and grammars on trees. Theory of Computing Systems, 4
(3):257–287. doi:10.1007/BF01695769. Cited on page 46.

Sakarovitch, J., 2009. Elements of Automata Theory. Cambridge University Press. ISBN
978-0-521-84425-3. Translated from Éléments de théorie des automates, Vuibert, 2003.
Cited on pages 2, 9, 10, 11.

Santorini, B., 1990. Part-of-speech tagging guidelines for the Penn Treebank project
(3rd revision). Technical Report MS-CIS-90-47, University of Pennsylvania, Department
of Computer and Information Science. http://repository.upenn.edu/cis_reports/570/.
Cited on page 7.

http://dx.doi.org/10.1007/1-4020-2295-6_9
http://dx.doi.org/10.1007/1-4020-2295-6_9
http://dx.doi.org/10.1007/BF00159344
http://www.cs.st-andrews.ac.uk/~mjn/publications/2003b.pdf
http://arxiv.org/abs/cs.CL/0404009
http://www.cs.st-andrews.ac.uk/~mjn/publications/2008a.pdf
http://dx.doi.org/10.1145/321356.321364
http://dx.doi.org/10.2307/2275553
http://dx.doi.org/10.1016/j.tcs.2006.03.018
http://www.aclweb.org/anthology/P83-1021
http://www.jstor.org/stable/4178430
http://dx.doi.org/10.1007/3-540-48199-0_2
http://dx.doi.org/10.1145/320924.320930
http://dx.doi.org/10.1145/320924.320930
http://hal.inria.fr/inria-00070313/
http://www.aclweb.org/anthology/J95-2004.pdf
http://www.aclweb.org/anthology/J95-2004.pdf
http://dx.doi.org/10.1016/S0019-9958(70)90446-8
http://dx.doi.org/10.1007/BF01695769
http://repository.upenn.edu/cis_reports/570/

A Short Introduction to Formal Syntax and Morphology 62

Schabes, Y. and Shieber, S.M., 1994. An alternative conception of tree-adjoining deriva-
tion. Computational Linguistics, 20(1):91–124. http://www.aclweb.org/anthology/
J94-1004. Cited on page 46.

Schützenberger, M.P., 1961. On the definition of a family of automata. Information and
Control, 4(2–3):245–270. doi:10.1016/S0019-9958(61)80020-X. Cited on page 11.

Schützenberger, M.P., 1977. Sur une variante des fonctions séquentielles. Theoretical
Computer Science, 4(1):47–57. doi:0.1016/0304-3975(77)90055-X. Cited on page 10.

Seki, H., Matsumura, T., Fujii, M., and Kasami, T., 1991. On multiple context-
free grammars. Theoretical Computer Science, 88(2):191–229. doi:10.1016/
0304-3975(91)90374-B. Cited on page 42.

Seki, H. and Kato, Y., 2008. On the generative power of multiple context-free grammars
and macro grammars. IEICE Transactions on Information and Systems, E91-D(2):209–
221. doi:10.1093/ietisy/e91-d.2.209. Cited on page 46.

Sénizergues, G., 1996. On the termination problem for one-rule semi-Thue system. In
Ganzinger, H., editor, RTA ’96, volume 1103 of Lecture Notes in Computer Science, pages
302–316. Springer. doi:10.1007/3-540-61464-8_61. Cited on page 14.

Shieber, S.M., 1985. Evidence against the context-freeness of natural language. Linguis-
tics and Philosophy, 8(3):333–343. doi:10.1007/BF00630917. Cited on page 42.

Shieber, S.M., 2006. Unifying synchronous tree-adjoining grammars and tree transducers
via bimorphisms. In EACL’06. ACL Press. ISBN 1-932432-59-0. http://www.aclweb.org/
anthology/E06-1048. Cited on page 47.

Sikkel, K., 1997. Parsing Schemata - a framework for specification and analysis of parsing
algorithms. Texts in Theoretical Computer Science - An EATCS Series. Springer. ISBN
3-540-61650-0. Cited on page 34.

Simon, I., 1994. String matching algorithms and automata. In Karhumäki, J., Maurer,
H., and Rozenberg, G., editors, Results and Trends in Theoretical Computer Science: Collo-
quium in Honor of Arto Salomaa, volume 812 of Lecture Notes in Computer Science, pages
386–395. Springer. ISBN 978-3-540-58131-4. doi:10.1007/3-540-58131-6_61. Cited on
page 18.

Sproat, R.W., 1992. Morphology and Computation. ACL–MIT Press series in natural-
language processing. MIT Press. ISBN 0-262-19314-0. Cited on page 12.

Steedman, M., 2000. The Syntactic Process. MIT Press. ISBN 0-262-69268-6. Cited on
page 49.

Sudborough, I.H., 1978. On the tape complexity of deterministic context-free languages.
Journal of the ACM, 25(3):405–414. doi:10.1145/322077.322083. Cited on page 30.

Thatcher, J.W., 1967. Characterizing derivation trees of context-free grammars through
a generalization of finite automata theory. Journal of Computer and System Sciences, 1
(4):317–322. doi:10.1016/S0022-0000(67)80022-9. Cited on page 30.

Tomita, M., 1986. Efficient Parsing for Natural Language. Kluwer Academic Publishers.
ISBN 0-89838-202-5. Cited on page 30.

Troelstra, A.S., 1992. Lectures on Linear Logic, volume 29 of CSLI Lecture Notes. CSLI.
http://standish.stanford.edu/bin/detail?fileID=1846861073. Cited on page 53.

Valiant, L.G., 1975. General context-free recognition in less than cubic time. Journal of
Computer and System Sciences, 10(2):308–314. doi:10.1016/S0022-0000(75)80046-8.
Cited on page 30.

Weir, D.J., 1992. Linear context-free rewriting systems and deterministic tree-walking
transducers. In ACL ’92, pages 136–143. ACL Press. doi:10.3115/981967.981985. Cited
on page 42.

http://www.aclweb.org/anthology/J94-1004
http://www.aclweb.org/anthology/J94-1004
http://igm.univ-mlv.fr/~berstel/Schutzenberger/Travaux/A/1961-4DefinitionFamilyAutInfCtl.pdf
http://igm.univ-mlv.fr/~berstel/Mps/Travaux/A/1977-3SequentiellesTcs.pdf
http://dx.doi.org/10.1016/0304-3975(91)90374-B
http://dx.doi.org/10.1016/0304-3975(91)90374-B
http://isw3.naist.jp/IS/TechReport/report/2006007.ps
http://dx.doi.org/10.1007/3-540-61464-8_61
http://dx.doi.org/10.1007/BF00630917
http://www.aclweb.org/anthology/E06-1048
http://www.aclweb.org/anthology/E06-1048
http://dx.doi.org/10.1007/3-540-58131-6_61
http://dx.doi.org/10.1145/322077.322083
http://dx.doi.org/10.1016/S0022-0000(67)80022-9
http://standish.stanford.edu/bin/detail?fileID=1846861073
http://dx.doi.org/10.1016/S0022-0000(75)80046-8
http://www.aclweb.org/anthology/P92-1018.pdf

A Short Introduction to Formal Syntax and Morphology 63

Wich, K., 2005. Ambiguity Functions of Context-Free Grammars and Lan-
guages. PhD thesis, Institut fur Formale Methoden der Informatik, Univer-
sität Stuttgart. ftp://ftp.informatik.uni-stuttgart.de/pub/library/ncstrl.ustuttgart_fi/
DIS-2005-01/DIS-2005-01.pdf. Cited on page 31.

XTAG Research Group, 2001. A lexicalized tree adjoining grammar for English. Tech-
nical Report IRCS-01-03, University of Pennsylvania, Institute for Research in Cognitive
Science. http://www.cis.upenn.edu/~xtag/. Cited on page 45.

Younger, D.H., 1967. Recognition and parsing of context-free languages in time n3.
Information and Control, 10(2):189–208. doi:10.1016/S0019-9958(67)80007-X. Cited
on page 30.

Zimmer, K., 1964. Affixal negation in English and other languages. William Clowes.
Supplement to Word 20:2, monograph 5. Cited on page 12.

Zwicky, A.M., 1985. Clitics and particles. Language, 61(2):283–305. doi:10.2307/
414146. Cited on page 6.

Zwicky, A.M. and Pullum, G.K., 1987. Plain morphology and expressive morphology. In
Aske, J., Beery, N., Michaelis, L., and Filip, H., editors, Berkeley Linguistics Society ’87,
pages 330–340. http://www.ling.ed.ac.uk/~gpullum/bls_1987.pdf. Cited on page 7.

ftp://ftp.informatik.uni-stuttgart.de/pub/library/ncstrl.ustuttgart_fi/DIS-2005-01/DIS-2005-01.pdf
ftp://ftp.informatik.uni-stuttgart.de/pub/library/ncstrl.ustuttgart_fi/DIS-2005-01/DIS-2005-01.pdf
http://www.cis.upenn.edu/~xtag/
http://dx.doi.org/10.1016/S0019-9958(67)80007-X
http://www.stanford.edu/~zwicky/cliticsparticles.pdf
http://www.stanford.edu/~zwicky/cliticsparticles.pdf
http://www.ling.ed.ac.uk/~gpullum/bls_1987.pdf

	Morphology
	Background: Linguistic Aspects
	A Bit of English Morphology
	Part-of-Speech Tags

	Finite-State Morphology
	Background: Rational Transductions
	Morphological Analysis
	Phonological Rules

	Part-of-Speech Tagging
	Rule-Based Tagging
	Learning Contextual Rules
	Contextual Rules as Sequential Functions

	HMM Tagging
	Constructing HMMs from N-Grams
	HMM Decoding

	Generative Syntax
	Context-Free Parsing
	Tabular Parsing
	Parsing as Intersection
	Parsing as Deduction

	Probabilistic Parsing
	Weighted and Probabilistic CFGs
	Learning PCFGs
	Probabilistic Parsing as Intersection

	Mildly Context-Sensitive Languages
	Tree Adjoining Grammars
	Linguistic Analyses Using TAGs

	Well-Nested MCSLs

	Categorial Grammars
	AB Categorial Grammars
	Alternative Views
	Equivalence with Context-Free Grammars
	Structural Limitations

	Lambek Grammars
	Background: Substructural Proof Systems
	Lambek Calculus
	Equivalence with Context-Free Grammars

	References

