Home Assignment 1a: Multi-focus Games for LTL

To hand in before or on November 2, 2010. The penalty for delays is 2 points per day.

Jer					1	2	3
tok	4	5	6	7	8	9	10
ŏ	11	12	13	14	15	16	17
	18	(19)	20	21	22	23	24
	25	26	27	28	29	30	31
er	1	(2)	3	4	5	6	7
emb	8	$\widetilde{9}$	10	11	12	13	14
lovi							
· ·							

Electronic versions (PDF only) can be sent by email to $\langle \text{schmitz}@lsv.ens-cachan.fr} \rangle$, paper versions should be handed in on the 2nd or put in my mailbox at LSV, ENS Cachan.

1 Multi-focus Games

1.1 LTL Formulæ

We are interested in a game-theoretic approach to proving satisfiability of LTL formulæ. We consider for this LTL formulæ in *negative normal form*, i.e. using the abstract syntax

 $\varphi ::= p \mid \neg p \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \mathsf{X}\varphi \mid \varphi \mathsf{U} \varphi \mid \varphi \mathsf{R} \varphi ,$

where p ranges over a non-empty finite set of atomic propositions AP. Let $\top \equiv p \lor \neg p$ and $\perp \equiv p \land \neg p$ for some atomic proposition p. The F and G modalities are defined as usual by $\mathsf{F}\varphi \equiv \top \mathsf{U}\varphi$ and $\mathsf{G}\varphi \equiv \perp \mathsf{R}\varphi$.

Given a LTL formula φ , the *closure* $cl(\varphi)$ of φ is the smallest set of LTL formulæ such that

- $\varphi \in \operatorname{cl}(\varphi),$
- if $\neg \psi \in \operatorname{cl}(\varphi)$ or $\mathsf{X}\psi \in \operatorname{cl}(\varphi)$, then $\psi \in \operatorname{cl}(\varphi)$,
- if $\psi_1 \vee \psi_2 \in \operatorname{cl}(\varphi)$, $\psi_1 \wedge \psi_2 \in \operatorname{cl}(\varphi)$, $\psi_1 \cup \psi_2 \in \operatorname{cl}(\varphi)$, or $\psi_1 \mathsf{R} \psi_2 \in \operatorname{cl}(\varphi)$, then $\psi_1 \in \operatorname{cl}(\varphi)$ and $\psi_2 \in \operatorname{cl}(\varphi)$,
- if $\psi_1 \cup \psi_2 \in cl(\varphi)$, then $X(\psi_1 \cup \psi_2) \in cl(\varphi)$, and
- if $\psi_1 \mathsf{R} \psi_2 \in \mathrm{cl}(\varphi)$, then $\mathsf{X}(\psi_1 \mathsf{R} \psi_2) \in \mathrm{cl}(\varphi)$.

1.2 Definition of Multi-focus Games

The multi-focus game for φ is a finite graph (the arena, where vertices are called *positions*) $G(\varphi) = \langle V, \longrightarrow \rangle$ along with both a winning condition $W \subseteq V^*$ and a losing condition $L \subseteq V^*$ on sequences of positions in this arena.

A play in the game is a sequence $\rho = P_0P_1 \cdots P_n$ in $W \cup L$ such that P_0 is the *initial* position, and for each $0 \leq i < n$, $P_i \longrightarrow P_{i+1}$ and the prefix $P_0 \cdots P_i$ is not in $W \cup L$. Thus a play stops as soon as it is in W or L. The play is winning for the unique player if $\rho \in W$. The game is winning if there exists a winning play. A position P in V is useful if there exists $P_1, \ldots, P_i, P_i + 1, \ldots, P_n$ in V such that $P_0P_1 \cdots P_iP_{i+1} \cdots P_n$ is a play.

Positions In our case $V = \{r, c\} \times cl(\varphi) \times cl(\varphi)$ is the set of positions $P = m, [\Gamma], \Delta$ where

- *m* is a mode in $\{r, c\}$, standing respectively for reset and check,
- $\Gamma \subseteq cl(\varphi)$ is a set of *focused* formulæ, and
- $\Delta \subseteq \operatorname{cl}(\varphi)$ is a set of formulæ.

A position $P = m, [\Gamma], \Delta$ is *reduced* if all the formulæ in both Γ and Δ are either literals p or $\neg p$ or under the scope of a next modality, i.e. of form $X\psi$. Given a position $P = m, [\Gamma], \Delta$,

$$\bigwedge P = \bigwedge_{\psi \in \Gamma} \psi \land \bigwedge_{\psi \in \Delta} \psi$$

denotes the conjunction of all the formulæ in P, and

$$\Sigma_P = \bigwedge_{p \in \mathcal{AP} \cap \Delta} p \land \bigwedge_{\neg p \in \Delta, p \in \mathcal{AP}} \neg p$$

denotes its atomic satisfaction formula. We write " Γ , ψ " for the set $\Gamma \uplus \{\psi\} \subseteq cl(\varphi)$, as in e.g. " $P = m, [\Gamma, X(\psi_1 \cup \psi_2)], \Delta, \psi_1$ " denoting that a formula $X(\psi_1 \cup \psi_2)$ is in focus in P and a formula ψ_1 is in its non-focused set.

Initial Position The initial position of the game is $P_0 = r, [\emptyset], \varphi$.

Transitions	The set of transitions is defined by	
	$m, [\Gamma], \Delta, \psi_1 \lor \psi_2 \longrightarrow m, [\Gamma], \Delta, \psi_1$	(\vee_1)
	$m, [\Gamma], \Delta, \psi_1 \lor \psi_2 \longrightarrow m, [\Gamma], \Delta, \psi_2$	(\vee_2)
	$m, [\Gamma], \Delta, \psi_1 \land \psi_2 \longrightarrow m, [\Gamma], \Delta, \psi_1, \psi_2$	(\wedge)
	$m, [\Gamma], \Delta, \psi_1 \cup \psi_2 \longrightarrow m, [\Gamma], \Delta, \psi_2$	(U_2)
	$r, [\Gamma], \Delta, \psi_1 \cup \psi_2 \longrightarrow r, [\Gamma, X(\psi_1 \cup \psi_2)], \Delta, \psi_1$	(U_1^r)
	$c, [\Gamma], \Delta, \psi_1 \cup \psi_2 \longrightarrow c, [\Gamma], \Delta, \psi_1, X(\psi_1 \cup \psi_2)$	(U_1^c)
	$c, [\Gamma, \psi_1 \cup \psi_2], \Delta \longrightarrow c, [\Gamma], \Delta, \psi_2$	(U_2^f)
	$c, [\Gamma, \psi_1 \cup \psi_2], \Delta \longrightarrow c, [\Gamma, X(\psi_1 \cup \psi_2)], \Delta, \psi_1$	(U_1^f)

$$m, [\Gamma], \Delta, \psi_1 \ \mathsf{R} \ \psi_2 \longrightarrow m, [\Gamma], \Delta, \psi_1, \psi_2$$

$$(\mathsf{R}_1)$$

$$m, [\Gamma], \Delta, \psi_1 \mathsf{R} \psi_2 \longrightarrow m, [\Gamma], \Delta, \psi_2, \mathsf{X}(\psi_1 \mathsf{R} \psi_2) \tag{R}_2$$

$$m, [\emptyset], \mathsf{X}\psi_1, \dots, \mathsf{X}\psi_r, l_1, \dots, l_s \longrightarrow r, [\emptyset], \psi_1, \dots, \psi_r \tag{X}$$

$$m, [\mathsf{X}\psi_1, \dots, \mathsf{X}\psi_r], \mathsf{X}\psi_{r+1}, \dots, \mathsf{X}\psi_t, l_1, \dots, l_s \longrightarrow c, [\psi_1, \dots, \psi_r], \psi_{r+1}, \dots, \psi_t \qquad (\mathsf{X}^f)$$

for all $r \ge 1$, $s, t \ge 0$, $m \in \{r, c\}$, $\Gamma, \Delta \subseteq cl(\varphi), \psi_1, \psi_2, \ldots \in cl(\varphi)$, and l_1, l_2, \ldots literals of form p or $\neg p$ for some $p \in AP \cap cl(\varphi)$.

Observe that an until subformula $\psi_1 \cup \psi_2$ can enter the focus by rule (\bigcup_1^r) if it is not immediately fulfilled (i.e. ψ_2 does not hold), and conversely leave the focus by rule (\bigcup_2^f) when fulfilled. Only formulæ of form $\psi_1 \cup \psi_2$ or of form $X(\psi_1 \cup \psi_2)$ can ever be in focus.

Also note that transitions of type (X) and (X^f) are possible if and only if the position is reduced. It is generally useful to distinguish between applications of rules (\vee_1) to (R_2) and applications of rules (X) and (X^f) ; we write $P \longrightarrow_{\varepsilon} P'$ in the former case and $P \longrightarrow_{\mathsf{X}} P'$ in the latter case.

Winning and Losing Conditions Consider a play $\rho = P_0 P_1 \cdots P_n$ with $P_i = m_i, [\Gamma_i], \Delta_i$ for all $0 \le i \le n$.

The play is *winning* if either

$$\Gamma_n = \emptyset \land \Delta_n = l_1, \dots, l_s \land \Sigma_{P_n} \text{ is satisfiable, or}$$
(W1)

$$P_n \text{ is reduced } \land \exists 0 \le i < n. (\Gamma_i = \Gamma_n \land \Delta_i = \Delta_n \land \exists i \le j \le n. (\Gamma_j = \emptyset)) \tag{W_2}$$

for some l_1, l_2, \ldots literals of form p or $\neg p$ with $p \in AP \cap cl(\varphi)$. Note that condition (W_1) also implies that P_n is reduced.

The play is *losing* if either

$$\Sigma_{P_n} \text{ is unsatisfiable, or } (L_1)$$

$$P_n \text{ is reduced } \wedge \Gamma_n \neq \emptyset \wedge \exists 0 \le i < n. (\Gamma_i = \Gamma_n \wedge \Delta_i = \Delta_n \wedge \forall i \le j \le n. (\Gamma_j \neq \emptyset)) .$$

$$(L_2)$$

2 Exercises

Indications of difficulty are given in the margin. The questions are not always detailed, and some intermediate lemmata can be required in order to provide a clean proof—you are expected to come up with these lemmata on your own.

Exercise 1 (Game Example). Let $\varphi = p \ \mathsf{R} \ (\neg q \ \mathsf{U} \ q)$. We are interested in plays $P_0 \xrightarrow{(a)} P_1 \xrightarrow{(b)} \cdots P_n$ in the arena $G(\varphi)$ with appropriate transition labels a, b, \ldots in $\{\vee_1, \vee_2, \wedge, \mathsf{U}_2, \ldots, \mathsf{X}^f\}$:

- [1] 1. exhibit a play that loses according to (L_1) ,
- [1] 2. exhibit a play that loses according to (L_2) ,

- [1] 3. exhibit a play that wins according to (W_1) and give a model for φ corresponding to this particular winning play, and
- [1] 4. exhibit a play that wins according to (W_2) and give a model for φ corresponding to this particular winning play.

Exercise 2 (Determinacy).

- [1] 1. Show that a play cannot be both winning and losing: $W \cap L = \emptyset$.
- [2] 2. Show that if a game is *not* winning, then there exists a losing play: $W = \emptyset$ implies $L \neq \emptyset$.
- [2] **Exercise 3** (Direct Transitions). Which transitions rules are needed in the game arena in order to treat the case of modalities F and G directly?

Exercise 4 (A Winning Strategy). The unique player of the multi-focus game has an optimal strategy that will always build a winning game from a satisfiable formula φ . The point of the strategy is to avoid both losing conditions (L_1) and (L_2) .

The strategy maintains a *context formula* γ along with the current position $P = m, [\psi_1 \cup \psi'_1, \dots, \psi_r \cup \psi'_r, \mathsf{X}(\psi_{r+1} \cup \psi'_{r+1}), \dots, \mathsf{X}(\psi_t \cup \psi'_t)], \Delta$, and makes sure that

$$f(\gamma, P) = \gamma \ \mathsf{U} \ (\gamma \land \bigvee_{i=1}^t \psi_i') \land \bigwedge P$$

remains satisfiable throughout the play—initially this context formula is \top , thus $f(\top, r, [\emptyset], \varphi)$ is initially satisfiable.

The idea is to reset the context to \top whenever rule (U_2^f) is used. Conversely, the context is augmented to $\gamma \land \neg \bigwedge P = \gamma \land (\bigvee_{i=1}^t \mathsf{X} \neg \psi_i \lor \bigvee_{j=1}^s \neg l_j)$ upon firing rule (X^f) . In all the other cases, the context remains the same.

- [1] 1. There are a number of choices of moves in the game, i.e. (\vee_1) vs. (\vee_2) , (U_2) vs. (U_1^r) and (U_1^c) , (U_2^f) vs. (U_1^f) , and (R_1) vs. (R_2) . The strategy consists in all these cases to choose the first alternative if it yields a satisfiable $f(\gamma, P)$, and the second alternative otherwise. Show that this strategy also preserves the satisfiability of $f(\gamma, P)$ when it is forced to take the second alternative or one of (\wedge) or (X).
 - 2. We want to show that the strategy also preserves the satisfiability of $f(\gamma, P)$ upon firing (X^f) .
 - (a) Show that, if $\gamma \land (\varphi \cup \psi)$ is satisfiable, then $\gamma \land (\psi \lor (\varphi \land \mathsf{X}((\varphi \land \neg \gamma) \cup (\psi \land \neg \gamma))))$ is also satisfiable, for any LTL formulæ γ, φ , and ψ .

- [1] (b) Show that in a reduced position $P = m, [X(\psi_1 \cup \psi'_1), \dots, X(\psi_t \cup \psi'_t)], \Delta$ reached through the strategy, $\gamma \land \bigvee_{i=1}^t \psi'_i \land \bigwedge P$ is not satisfiable.
- [1] (c) Conclude.
- [0] 3. Can losing condition (L_1) be fulfilled with this strategy?
- [3] 4. Show that losing condition (L_2) cannot be fulfilled either.

Exercise 5 (Extracting Models from Winning Plays). We want to show that the existence of a winning play $\rho = P_0 \cdots P_n$ in $G(\varphi)$ implies that φ is satisfiable. Define $P_i = m_i, [\Gamma_i], \Delta_i$.

To this end, we consider the indices i_1, \ldots, i_k such that P_{i_j} is reduced in the play. If ρ is winning by condition (W_1) , then define the infinite word $w = a_1 \cdots a_k \emptyset^{\omega}$ in $(2^{AP})^{\omega}$ with $a_j \models \Sigma_{P_{i_j}}$ for all $1 \leq j \leq k$. If ρ is winning by condition (W_2) , then consider the index $i = i_\ell$ of the condition and define instead the infinite word $w = a_1 \cdots a_{\ell-1} (a_\ell \cdots a_k)^{\omega}$ in $(2^{AP})^{\omega}$ with $a_j \models \Sigma_{P_{i_j}}$ for all $1 \leq j \leq k$.

- [5] 1. Show by induction on ψ in $cl(\varphi)$ that, if $\psi \in \Gamma_i \cup \Delta_i$ and $i_j < i \le i_{j+1}$, then $w, j+1 \models \psi$.
- [0] 2. Conclude.
- [2] **Exercise 6** (Complexity). Show that this multi-focus game view of LTL satisfiability yields a PSPACE algorithm.