Home Assignment 1a: Multi-focus Games for LTL

To hand in before or on November 2, 2010. The penalty for delays is 2 points per day.

Electronic versions (PDF only) can be sent by email to 〈schmitz@lsv.ens-cachan.fr〉, paper versions should be handed in on the 2nd or put in my mailbox at LSV, ENS Cachan.

1 Multi-focus Games

1.1 LTL Formulæ

We are interested in a game-theoretic approach to proving satisfiability of LTL formulæ. We consider for this LTL formulæ in negative normal form, i.e. using the abstract syntax

$$
\varphi::=p|\neg p| \varphi \vee \varphi|\varphi \wedge \varphi| \mathrm{X} \varphi|\varphi \mathrm{U} \varphi| \varphi \mathrm{R} \varphi
$$

where p ranges over a non-empty finite set of atomic propositions AP. Let $\top \equiv p \vee \neg p$ and $\perp \equiv p \wedge \neg p$ for some atomic proposition p. The F and G modalities are defined as usual by $\mathrm{F} \varphi \equiv \mathrm{T} \mathrm{U} \varphi$ and $\mathrm{G} \varphi \equiv \perp \mathrm{R} \varphi$.

Given a LTL formula φ, the closure $\operatorname{cl}(\varphi)$ of φ is the smallest set of LTL formulæ such that

- $\varphi \in \operatorname{cl}(\varphi)$,
- if $\neg \psi \in \operatorname{cl}(\varphi)$ or $\mathrm{X} \psi \in \operatorname{cl}(\varphi)$, then $\psi \in \operatorname{cl}(\varphi)$,
- if $\psi_{1} \vee \psi_{2} \in \operatorname{cl}(\varphi), \psi_{1} \wedge \psi_{2} \in \operatorname{cl}(\varphi), \psi_{1} \cup \psi_{2} \in \operatorname{cl}(\varphi)$, or $\psi_{1} \mathrm{R} \psi_{2} \in \operatorname{cl}(\varphi)$, then $\psi_{1} \in \operatorname{cl}(\varphi)$ and $\psi_{2} \in \operatorname{cl}(\varphi)$,
- if $\psi_{1} \cup \psi_{2} \in \operatorname{cl}(\varphi)$, then $X\left(\psi_{1} \cup \psi_{2}\right) \in \operatorname{cl}(\varphi)$, and
- if $\psi_{1} \mathrm{R} \psi_{2} \in \operatorname{cl}(\varphi)$, then $\mathrm{X}\left(\psi_{1} \mathrm{R} \psi_{2}\right) \in \operatorname{cl}(\varphi)$.

1.2 Definition of Multi-focus Games

The multi-focus game for φ is a finite graph (the arena, where vertices are called positions) $G(\varphi)=\langle V, \longrightarrow\rangle$ along with both a winning condition $W \subseteq V^{*}$ and a losing condition $L \subseteq V^{*}$ on sequences of positions in this arena.

A play in the game is a sequence $\rho=P_{0} P_{1} \cdots P_{n}$ in $W \cup L$ such that P_{0} is the initial position, and for each $0 \leq i<n, P_{i} \longrightarrow P_{i+1}$ and the prefix $P_{0} \cdots P_{i}$ is not in $W \cup L$. Thus a play stops as soon as it is in W or L. The play is winning for the unique player if $\rho \in W$. The game is winning if there exists a winning play. A position P in V is useful if there exists $P_{1}, \ldots, P_{i}, P_{i}+1, \ldots, P_{n}$ in V such that $P_{0} P_{1} \cdots P_{i} P P_{i+1} \cdots P_{n}$ is a play.

Positions In our case $V=\{r, c\} \times \operatorname{cl}(\varphi) \times \operatorname{cl}(\varphi)$ is the set of positions $P=m,[\Gamma], \Delta$ where

- m is a mode in $\{r, c\}$, standing respectively for reset and check,
- $\Gamma \subseteq \operatorname{cl}(\varphi)$ is a set of focused formulæ, and
- $\Delta \subseteq \operatorname{cl}(\varphi)$ is a set of formulæ.

A position $P=m,[\Gamma], \Delta$ is reduced if all the formulæ in both Γ and Δ are either literals p or $\neg p$ or under the scope of a next modality, i.e. of form $\mathrm{X} \psi$. Given a position $P=m,[\Gamma], \Delta$,

$$
\bigwedge P=\bigwedge_{\psi \in \Gamma} \psi \wedge \bigwedge_{\psi \in \Delta} \psi
$$

denotes the conjunction of all the formulæ in P, and

$$
\Sigma_{P}=\bigwedge_{p \in \mathrm{AP} \cap \Delta} p \wedge \bigwedge_{\neg p \in \Delta, p \in \mathrm{AP}} \neg p
$$

denotes its atomic satisfaction formula. We write " Γ, ψ " for the set $\Gamma \uplus\{\psi\} \subseteq \operatorname{cl}(\varphi)$, as in e.g. " $P=m,\left[\Gamma, \mathrm{X}\left(\psi_{1} \cup \psi_{2}\right)\right], \Delta, \psi_{1}$ " denoting that a formula $\mathrm{X}\left(\psi_{1} \cup \psi_{2}\right)$ is in focus in P and a formula ψ_{1} is in its non-focused set.

Initial Position The initial position of the game is $P_{0}=r,[\emptyset], \varphi$.
Transitions The set of transitions is defined by

$$
\begin{align*}
& m,[\Gamma], \Delta, \psi_{1} \vee \psi_{2} \longrightarrow m,[\Gamma], \Delta, \psi_{1} \tag{1}\\
& m,[\Gamma], \Delta, \psi_{1} \vee \psi_{2} \longrightarrow m,[\Gamma], \Delta, \psi_{2} \tag{2}\\
& m,[\Gamma], \Delta, \psi_{1} \wedge \psi_{2} \longrightarrow m,[\Gamma], \Delta, \psi_{1}, \psi_{2} \\
& m,[\Gamma], \Delta, \psi_{1} \cup \psi_{2} \longrightarrow m,[\Gamma], \Delta, \psi_{2} \tag{2}\\
& r,[\Gamma], \Delta, \psi_{1} \cup \psi_{2} \longrightarrow r,\left[\Gamma, \mathrm{X}\left(\psi_{1} \cup \psi_{2}\right)\right], \Delta, \psi_{1} \tag{1}\\
& c,[\Gamma], \Delta, \psi_{1} \cup \psi_{2} \longrightarrow c,[\Gamma], \Delta, \psi_{1}, \mathrm{X}\left(\psi_{1} \cup \psi_{2}\right) \tag{1}\\
& c,\left[\Gamma, \psi_{1} \cup \psi_{2}\right], \Delta \longrightarrow c,[\Gamma], \Delta, \psi_{2} \tag{2}\\
& c,\left[\Gamma, \psi_{1} \cup \psi_{2}\right], \Delta \longrightarrow c,\left[\Gamma, \mathrm{X}\left(\psi_{1} \cup \psi_{2}\right)\right], \Delta, \psi_{1} \tag{1}
\end{align*}
$$

$$
\begin{align*}
m,[\Gamma], \Delta, \psi_{1} \mathrm{R} \psi_{2} & \longrightarrow m,[\Gamma], \Delta, \psi_{1}, \psi_{2} \tag{1}\\
m,[\Gamma], \Delta, \psi_{1} \mathrm{R} \psi_{2} & \longrightarrow m,[\Gamma], \Delta, \psi_{2}, \mathrm{X}\left(\psi_{1} \mathrm{R} \psi_{2}\right) \tag{2}\\
m,[\emptyset], \mathrm{X} \psi_{1}, \ldots, \mathrm{X} \psi_{r}, l_{1}, \ldots, l_{s} & \longrightarrow r,[\emptyset], \psi_{1}, \ldots, \psi_{r} \tag{X}\\
m,\left[\mathrm{X} \psi_{1}, \ldots, \mathrm{X} \psi_{r}\right], \mathrm{X} \psi_{r+1}, \ldots, \mathrm{X} \psi_{t}, l_{1}, \ldots, l_{s} & \longrightarrow c,\left[\psi_{1}, \ldots, \psi_{r}\right], \psi_{r+1}, \ldots, \psi_{t} \tag{f}
\end{align*}
$$

for all $r \geq 1, s, t \geq 0, m \in\{r, c\}, \Gamma, \Delta \subseteq \operatorname{cl}(\varphi), \psi_{1}, \psi_{2}, \ldots \in \operatorname{cl}(\varphi)$, and l_{1}, l_{2}, \ldots literals of form p or $\neg p$ for some $p \in \operatorname{AP} \cap \operatorname{cl}(\varphi)$.

Observe that an until subformula $\psi_{1} \cup \psi_{2}$ can enter the focus by rule U_{1}^{r} if it is not immediately fulfilled (i.e. ψ_{2} does not hold), and conversely leave the focus by rule U_{2}^{f}) when fulfilled. Only formulæ of form $\psi_{1} \cup \psi_{2}$ or of form $X\left(\psi_{1} \cup \psi_{2}\right)$ can ever be in focus.

Also note that transitions of type (X) and X^{f}) are possible if and only if the position is reduced. It is generally useful to distinguish between applications of rules $\left(V_{1}\right)$ to $\left(R_{2}\right)$ and applications of rules X and X^{f}; we write $P \longrightarrow \longrightarrow_{\varepsilon} P^{\prime}$ in the former case and $P \longrightarrow \mathrm{x} P^{\prime}$ in the latter case.

Winning and Losing Conditions Consider a play $\rho=P_{0} P_{1} \cdots P_{n}$ with $P_{i}=$ $m_{i},\left[\Gamma_{i}\right], \Delta_{i}$ for all $0 \leq i \leq n$.

The play is winning if either

$$
\begin{gather*}
\Gamma_{n}=\emptyset \wedge \Delta_{n}=l_{1}, \ldots, l_{s} \wedge \Sigma_{P_{n}} \text { is satisfiable, or } \tag{1}\\
P_{n} \text { is reduced } \wedge \exists 0 \leq i<n .\left(\Gamma_{i}=\Gamma_{n} \wedge \Delta_{i}=\Delta_{n} \wedge \exists i \leq j \leq n .\left(\Gamma_{j}=\emptyset\right)\right) \tag{2}
\end{gather*}
$$

for some l_{1}, l_{2}, \ldots literals of form p or $\neg p$ with $p \in \operatorname{AP} \cap \operatorname{cl}(\varphi)$. Note that condition (W) also implies that P_{n} is reduced.

The play is losing if either

$$
\begin{equation*}
\Sigma_{P_{n}} \text { is unsatisfiable, or } \tag{1}
\end{equation*}
$$

P_{n} is reduced $\wedge \Gamma_{n} \neq \emptyset \wedge \exists 0 \leq i<n .\left(\Gamma_{i}=\Gamma_{n} \wedge \Delta_{i}=\Delta_{n} \wedge \forall i \leq j \leq n .\left(\Gamma_{j} \neq \emptyset\right)\right)$.

2 Exercises

Indications of difficulty are given in the margin. The questions are not always detailed, and some intermediate lemmata can be required in order to provide a clean proof-you are expected to come up with these lemmata on your own.

Exercise 1 (Game Example). Let $\varphi=p \mathrm{R}(\neg q \cup q)$. We are interested in plays $P_{0} \xrightarrow{(a)} P_{1} \xrightarrow{(b)} \cdots P_{n}$ in the arena $G(\varphi)$ with appropriate transition labels a, b, \ldots in $\left\{\vee_{1}, \vee_{2}, \wedge, \mathrm{U}_{2}, \ldots, \mathrm{X}^{f}\right\}:$
[1] 1. exhibit a play that loses according to L_{1},
[1] 2. exhibit a play that loses according to $\left(L_{2}\right.$,

Exercise 2 (Determinacy).

[1] 1. Show that a play cannot be both winning and losing: $W \cap L=\emptyset$.
[2] 2. Show that if a game is not winning, then there exists a losing play: $W=\emptyset$ implies $L \neq \emptyset$.
[2] Exercise 3 (Direct Transitions). Which transitions rules are needed in the game arena in order to treat the case of modalities F and G directly?

Exercise 4 (A Winning Strategy). The unique player of the multi-focus game has an optimal strategy that will always build a winning game from a satisfiable formula φ. The point of the strategy is to avoid both losing conditions $\left(L_{1}\right)$ and $\left(L_{2}\right)$.

The strategy maintains a context formula γ along with the current position $P=$ $m,\left[\psi_{1} \cup \psi_{1}^{\prime}, \ldots, \psi_{r} \cup \psi_{r}^{\prime}, \mathrm{X}\left(\psi_{r+1} \cup \psi_{r+1}^{\prime}\right), \ldots, \mathrm{X}\left(\psi_{t} \cup \psi_{t}^{\prime}\right)\right], \Delta$, and makes sure that

$$
f(\gamma, P)=\gamma \mathrm{U}\left(\gamma \wedge \bigvee_{i=1}^{t} \psi_{i}^{\prime}\right) \wedge \bigwedge P
$$

remains satisfiable throughout the play-initially this context formula is \top, thus $f(\top, r,[\emptyset], \varphi)$ is initially satisfiable.

The idea is to reset the context to T whenever rule $\left(\mathrm{U}_{2}^{f}\right)$ is used. Conversely, the context is augmented to $\gamma \wedge \neg \wedge P=\gamma \wedge\left(\bigvee_{i=1}^{t} \mathrm{X} \neg \psi_{i} \vee \bigvee_{j=1}^{s} \neg l_{j}\right)$ upon firing rule X^{f}. In all the other cases, the context remains the same.
[1] 1. There are a number of choices of moves in the game, i.e. ∇_{1} vs. V_{2}, (U_{2} vs. $\left(\mathrm{U}_{1}^{r}\right)$ and $\left.\left(\mathrm{U}_{1}^{c}\right), \mathrm{U}_{2}^{f}\right)$ vs. U_{1}^{f}, and $\left(\mathrm{R}_{1}\right.$ vs. $\left(\mathrm{R}_{2}\right)$. The strategy consists in all these cases to choose the first alternative if it yields a satisfiable $f(\gamma, P)$, and the second alternative otherwise. Show that this strategy also preserves the satisfiability of $f(\gamma, P)$ when it is forced to take the second alternative or one of $\triangle \wedge$ or \triangle.
2. We want to show that the strategy also preserves the satisfiability of $f(\gamma, P)$ upon firing X^{f}.
(a) Show that, if $\gamma \wedge(\varphi \mathcal{U})$ is satisfiable, then $\gamma \wedge(\psi \vee(\varphi \wedge X((\varphi \wedge \neg \gamma) U(\psi \wedge \neg \gamma))))$ is also satisfiable, for any LTL formulæ γ, φ, and ψ.

Exercise 5 (Extracting Models from Winning Plays). We want to show that the existence of a winning play $\rho=P_{0} \cdots P_{n}$ in $G(\varphi)$ implies that φ is satisfiable. Define $P_{i}=m_{i},\left[\Gamma_{i}\right], \Delta_{i}$.

To this end, we consider the indices i_{1}, \ldots, i_{k} such that $P_{i_{j}}$ is reduced in the play. If ρ is winning by condition $\left(\overline{W_{1}}\right)$, then define the infinite word $w=a_{1} \cdots a_{k} \emptyset^{\omega}$ in $\left(2^{\mathrm{AP}}\right)^{\omega}$ with $a_{j}=\Sigma_{P_{i_{j}}}$ for all $1 \leq j \leq k$. If ρ is winning by condition W_{2}, then consider the index $i=i_{\ell}$ of the condition and define instead the infinite word $w=a_{1} \cdots a_{\ell-1}\left(a_{\ell} \cdots a_{k}\right)^{\omega}$ in $\left(2^{\mathrm{AP}}\right)^{\omega}$ with $a_{j} \models \Sigma_{P_{i_{j}}}$ for all $1 \leq j \leq k$.
[5] 1. Show by induction on ψ in $\operatorname{cl}(\varphi)$ that, if $\psi \in \Gamma_{i} \cup \Delta_{i}$ and $i_{j}<i \leq i_{j+1}$, then $w, j+1 \models \psi$.
2. Conclude.
[2] Exercise 6 (Complexity). Show that this multi-focus game view of LTL satisfiability yields a PSPACE algorithm.

