
MPRI 1-22 Introduction to Verification October 19, 2010

Home Assignment 1b: A Shared Key Protocol

To hand in before or on November 2, 2010.
The penalty for delays is 2 points per day.

O
ct

ob
er 1 2 3

4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

N
ov

em
be

r 1 2 3 4 5 6 7
8 9 10 11 12 13 14

Electronic versions (PDF only) can be sent by email to 〈schmitz@lsv.ens-cachan.fr〉,
paper versions should be handed in on the 2nd or put in my mailbox at LSV, ENS
Cachan.

1 A Shared Key Protocol

The protocol relies on

• the generation of nounces NC : random numbers that should only be used in a
single session, and

• on key encryption: we denote the encryption of message M using C’s secret key
KC by 〈M〉KC

.

We assume perfect cryptography and nounce generation, which means that an attacker
cannot decrypt a message without the corresponding key, nor guess a nounce.

A(lice) and B(ob) try to make establish a secure shared key KAB with the help of
an authentication S(erver). They follow the following exchange:

1

mailto:schmitz@lsv.ens-cachan.fr


MPRI 1-22 Introduction to Verification October 19, 2010

A B S

1.NA , A, B, 〈NA , A, B〉K
A

2.NA , A, B, 〈NA , A, B〉K
A , NB , 〈NA , A, B〉K

B

3.NA, 〈NA, KAB〉KA
, 〈NB, KAB〉KB

4.NA, 〈NA, KAB〉KA

1. Alice first generates a fresh nounce NA and initiates the exchange with B, with
an encrypted tuple 〈NA, A,B〉KA

that only her and the authentication server can
decrypt.

2. Bob generates a fresh nounce NB, adds it with an encrypted tuple 〈NA, A,B〉KB

to the message, and forwards the whole thing to the server.

3. The server, knowing the keys of both Alice and Bob, can decrypt the tuples, thus
checks that the nounces and participants correspond with the clear parts of the
message, generates a fresh shared key KAB, and sends it encrypted in two tuples
〈NA, KAB〉KA

and 〈NB, KAB〉KB
to Bob.

4. Bob opens his tuple, checks that the nounce NB is the desired one, saves the shared
key for future exchanges, and forwards the remaining part of the message to Alice.

5. Alice can open the remaining tuple 〈NA, KAB〉KA
and get the shared key.

In order to account for the insecure channel, we have to add an intruder I to the
model, who has his own nounce NI and secret key KI (also held by the server), and can
read and send any message it fancies, but can only decrypt messages of form 〈· · · 〉KI

and cannot guess the nounces and keys of Alice and Bob.

2 Exercises

The purpose of the exercises is to find a flaw in the protocol using spin. The installation
of spin and its learning are part of your work; see http://spinroot.com/ for everything
you need. The answer for the assignment consists in both a paper part for the models
of exercises 1 and 2 and the specification and the attack of exercise 4, and an electronic
part with the full promela source for the implementations and the specification.

The flaw appears when several sessions of the protocol are executed simultaneously;
since for each session one should generate new nounces and shared keys, we need to
bound the number of sessions in order to keep a finite system. In fact two interleaved
sessions are enough to find the flaw.

2

http://spinroot.com/


MPRI 1-22 Introduction to Verification October 19, 2010

Exercise 1 (Model for Alice and Bob). Although the presentation of the protocol differ-
entiates between Alice and Bob, the roles can be exchanged in a multi-session scenario:
a principal might initiate one session as Alice, but receive a message of type 1 and start
another session as Bob with both sessions active from there on.

1. Propose a model for a single session s of principal C. It takes as parameters a
name C, a secret key KC , and a nounce N s

C (that should be unique in the full
system). It can either initiate a session as Alice by sending a message of type 1, or
as Bob by receiving a message of type 1. Upon completion of a session, respectively
after reception and after sending a message of type 4, it goes to a final state with
information on the shared key KAB and the participants A and B—the set of
atomic propositions should allow to access this information.

2. Implement your model in spin.

Exercise 2 (Model for the Server). Model the server and implement your model in
spin.

Exercise 3 (Model for the Intruder). We want the intruder to be able to read any
message over the public channel, decide to drop it, replicate it, open it and save some
part of it (including the contents of an encrypted tuple if the intruder has found the
corresponding secret key earlier) using some finite amount of memory, and forge new
messages using its saved information or public information.

The intruder has its own name I, nounce NI (we could allow a bounded number of
nounces, but actually one is enough) and secret key KI , and knows the names A and B.

Implement an intruder model in spin.

Exercise 4 (Specification and Flaw). The overall system consists two sessions for the
server, two instances A and B for Alice and Bob with two sessions each (thus four
instances of a principal in total), and one instance of the intruder.

1. Specify the following property in LTL, using an appropriate set of atomic proposi-
tions matching your model for Exercise 1: if Alice is in its final state and believes
it has a shared key with Bob, then the same holds for the other and the intruder
does not have this shared key.

2. Construct a Büchi automaton for this LTL formula using the method seen during
the lectures.

3. Implement this specification in spin.

4. Use spin to find a counter-example to this property and draw a timeline execution
for it (as done in this subject for the normally expected execution).

3



MPRI 1-22 Introduction to Verification October 19, 2010

5. Does the attack you found look like an actual attack on the protocol? If not, refine
your models and/or specification...

4


	A Shared Key Protocol
	Exercises

