
MPRI 1-22 Introduction to Verification February 1, 2011

Home Assignment 2:
Model Checking Basic Parallel Processes

To hand in before or on February 22, 2011.
The penalty for delays is 2 points per day.

F
eb

ru
ar

y 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28

Electronic versions (PDF only) can be sent by email to ⟨schmitz@lsv.ens-cachan.fr⟩,
paper versions should be handed in on the 22nd or put in my mailbox at LSV, ENS

Cachan.

This assignment is concerned with the verification of a rather simple class of infinite-
state systems with parallelism: basic parallel processes (BPPs). They are easily seen to
be equivalent to a subclass of Petri nets (Exercise 1), but enjoy more decidable properties
and lower complexities than general Petri nets.

1 Basic Parallel Processes

BPPs can be compared to context-free grammars in Greibach normal form that employ
a parallel composition operator. Here is one way to define BPPs that emphasizes the
resemblance:

Definition 1. Given a set X , we note ⟨X⊗, ∥, 0⟩ the free commutative monoid built
from the elements of X using an associative, commutative operation ∥ with identity 0.
If � is in X⊗, then we define �0 = 0 and �i+1 = �i∥� for all i in ℕ.

A BPP is a tuple ℬ = ⟨Σ,X , R, Y ⟩ where Σ is a finite set of atomic actions, X a
finite set of process variables disjoint from Σ, R ⊆ X ×Σ×X⊗ is a finite set of transition
rules of form X

a−→ � where X is a variable in X , a an action in Σ, and � a parallel
composition in X⊗, and Y is a leading variable in X .

The semantics of a BPP is captured by a (generally infinite) labeled transition system
⟨Q,Σ, T, I⟩ with Q = X⊗ as set of states, Σ as set of actions, I = {Y } as set of initial
states, and a transition relation T ⊆ X⊗ × Σ× X⊗ defined by T = {�∥X a−→ �∥� ∣ � ∈
X⊗, X a−→ � ∈ R}. As usual, the transition relation is lifted to X⊗×Σ∗×X⊗ by �

"−→ �
for all � in X⊗ and �

au−→ if there exists � in X⊗ with �
a−→ �

u−→ , for all �, in X⊗,
a in Σ, and u in Σ∗.

1

mailto:schmitz@lsv.ens-cachan.fr

MPRI 1-22 Introduction to Verification February 1, 2011

The size of a BPP is defined as the sum of the sizes of its transition rules, i.e.
∣ℬ∣ =

∑
X

a−→�
∣�∣+ 3, where the size of a parallel composition � is defined as its number

of ∥ operators, i.e. ∣0∣ = 0 and ∣X1∥ ⋅ ⋅ ⋅ ∥Xm ∣ = m− 1.

Exercise 1 (BPPs as Petri nets). Recall that a marked labeled Petri net is a tuple
N = ⟨P, T,Σ,W, ℓ,m0⟩ where P is a finite set of places, T a finite set of transitions, Σ
a finite alphabet, W : (P × T) ∪ (T × P) → ℕ the arc weight mapping, ℓ : T → Σ is a
labeling morphism, and m0 : P → ℕ is the initial marking.

A transition t in T is firable in a marking m in ℕP if m(p) ≥ W (p, t) for all p ∈ P ,
and results in a new marking m′ defined by m′(p) = m(p) −W (p, t) + W (t, p) for all

p in P ; we note m
t−→ m′ in this case. Thus a Petri net defines a labeled transition

system ⟨Q,Σ, T ′, I⟩ with state set Q = ℕP , action set Σ, initial state set I = {m0}, and

transition relation T ′ = {m ℓ(t)−−→ m′ ∈ ℕP × Σ× ℕP ∣ ∀p ∈ P, m(p) ≥W (p, t) ∧m′(p) =
m(p)−W (p, t) +W (t, p)}.

1. Show that to every BPP ℬ one can associate a marked labeled Petri net N that[1]

defines an isomorphic labeled transition system.

2. Call a Petri net communication-free if the sum of the inbound weights of each[1]

transition is at most 1, i.e. if for all t in T ,
∑

p∈P W (p, t) ≤ 1. Show that to every
communication-free marked labeled Petri net N one can associate a BPP ℬ that
defines an isomorphic labeled transition system.

2 Model-Checking

Since BPPs define in general infinite-state transition systems, CTL model-checking for
BPPs cannot proceed as in the finite case, and requires special techniques. As we will
see, model-checking is indeed significantly harder than for finite systems (where it is in
PTime), even for fragments of CTL.

The fragments of CTL we are going to use do not feature atomic propositions. They
include instead a relativized EX modality for each action in Σ, noted E⟨a⟩, such that the
classical EX can be expressed as EX' ≡

⋁
a∈Σ E⟨a⟩'.

Definition 2. Let Σ be a finite set of actions. The syntax of CTL(EF,EG) is defined by

' ::= ⊤ ∣ ¬' ∣ ' ∧ ' ∣ E⟨a⟩' ∣ EF' ∣ EG' ,

where a ranges over Σ. By CTL(EF) (resp. CTL(EG)), we refer to the above fragment
without the EG (resp. EF) modality.

Given a labeled transition system ⟨Q,Σ, T, I⟩ and a state q in Q, note Paths(q) the
set of infinite paths starting in q, i.e. Paths(q) = {q0q1 ⋅ ⋅ ⋅ ∈ Q! ∣ q0 = q ∧ ∀i ≥ 0, ∃ai ∈

2

MPRI 1-22 Introduction to Verification February 1, 2011

Σ, qi
ai−→ qi+1}. The satisfaction relation is then defined by

q ∣= ⊤ always

q ∣= ¬' iff q ∕∣= '

q ∣= ' ∧ iff (q ∣= ') ∧ (q ∣=)

q ∣= E⟨a⟩' iff ∃q′ ∈ Q, q a−→ q′ ∧ q′ ∣= '

q ∣= EF' iff ∃q0q1 ⋅ ⋅ ⋅ ∈ Paths(q),∃i ≥ 0, qi ∣= '

q ∣= EG' iff ∃q0q1 ⋅ ⋅ ⋅ ∈ Paths(q),∀i ≥ 0, qi ∣= ' .

Turning to BPPs, a BPP ℬ satisfies ', noted ℬ ∣= ', if Y ∣= ' holds for its implicit
labeled transition system—Y being the leading variable of ℬ. The corresponding model-
checking problem is then, given ⟨ℬ, '⟩, to decide whether ℬ ∣= '.

2.1 The EF Case

We prove in this section a PSpace lower for the CTL(EF) model-checking problem on
BPPs.1 The proof for the lower bound consists of a reduction from QBF.

Definition 3 (QBF). The QBF problem consists of deciding whether a quantified
boolean formula ' without free variables evaluates to “true”. More precisely, ' is defined
as

' = ∃x1∀x2∃x3 ⋅ ⋅ ⋅ ∀xn.
m⋀
j=1

cj

where each clause cj for 1 ≤ j ≤ m is of form

cj = ℓj,1 ∨ ℓj,2 ∨ ℓj,3
where each literal ℓj,k for 1 ≤ j ≤ m and 1 ≤ k ≤ 3 is of form

ℓj,k = xi

or of form

ℓj,k = ¬xi

for some 1 ≤ i ≤ n. Note that we assume an alternation on the quantifiers, without loss
of generality, since one can introduce phony variables that are never used in the clauses.

Exercise 2 (Reducing QBF). In order to prove PSpace-hardness, we need to exhibit a
polynomial reduction from ⟨'⟩ to ⟨ℬ, '′⟩ where ℬ is a BPP and '′ a CTL(EF) formula,
such that ' evaluates to true iff ℬ ∣= '′.

For all 1 ≤ i ≤ n, let Cl(i) = {1 ≤ j ≤ m ∣ ∃1 ≤ k ≤ 3, ℓj,k = xi} (resp. NCl(i) =
{1 ≤ j ≤ m ∣ ∃1 ≤ k ≤ 3, ℓj,k = ¬xi}) be the set of clause indices validated by setting xi

1In fact, the problem is PSpace-complete, but the proof for the upper bound is too long to be included
in this assignment. Also, the problem is undecidable for general Petri nets.

3

MPRI 1-22 Introduction to Verification February 1, 2011

to true (resp. to false). Here is a suitable BPP for the reduction: let ℬ = ⟨Σ,X , R, Y ⟩
where

Σ = {y} ∪ {xi ∣ 1 ≤ i ≤ n} ∪ {cj ∣ 1 ≤ j ≤ m}
X = {Y } ∪ {Xi ∣ 1 ≤ i ≤ n} ∪ {Cj ∣ 1 ≤ j ≤ m}

R = {Xi
xi−→ ∥j∈Cl(i)Cj , Xi

xi−→ ∥j∈NCl(i)Cj ∣ 1 ≤ i ≤ n}

∪ {Cj
cj−→ Cj ∣ 1 ≤ j ≤ m}

∪ {Y y−→ ∥1≤i≤nXi} .

1. Provide a CTL(EF) formula '′ s.t. ' is valid iff ℬ ∣= '′ (prove the equivalence!).[3]

2. Deduce that the CTL(EF) model checking problem for BPPs is PSpace-hard.[1]

2.2 The EG Case

Our goal in this section is to prove that model-checking for the EG fragment is undecid-
able for BPPs. The proof consists of a reduction from the halting problem of Minsky
machines.

Definition 4 (Minsky Machines). A 2-counter Minsky machine is a tupleℳ = ⟨Q,C, �, q0, qf ⟩
where Q is a finite set of states with distinguished initial state q0 and halting state qf ,
C = {1, 2} are two counter indices, and � : Q∖{qf} → (C × Q) ∪ (C × Q2) is a state
labeling function that associates to each state q except qf a unique transition instruction.
If j is in {1, 2}, let j̄ = 3− j.

The run of a 2-counter Minsky machine is the infinite sequence ((qi, ci,1, ci,2))i≥0 of

configurations in Q × ℕ2 holding the current state and the current values of the two
counters, where (q0, c0,1, c0,2) = (q0, 0, 0), and respecting the transition instructions for
all i ≥ 0:

1. either �(qi) = (j, q) in C ×Q, and then qi+1 = q, ci+1,j = ci,j + 1, and ci+1,j̄ = ci,j̄ ,
corresponding to the instruction

qi: cj++; goto q,

2. or �(qi) = (j, q, q′) in C ×Q2, and

∙ either ci,j = 0 and then qi+1 = q, ci+1,j = ci,j , and ci+1,j̄ = ci,j̄ ,

∙ or ci,j > 0 and then qi+1 = q′, ci+1,j = ci,j − 1, and ci+1,j̄ = ci,j̄ ,

corresponding to the instruction

qi: if (cj == 0) { goto q } else { cj--; goto q′ },

3. or qi = qf , and then qi + 1 = qf , ci+1,1 = ci,1, and ci+1,2 = ci,2, corresponding to
the instruction

4

MPRI 1-22 Introduction to Verification February 1, 2011

qf: halt.

The run ((qi, ci,1, ci,2))i≥0 halts if qn = qf for some n ∈ ℕ (regardless of the counter
values). It is undecidable, given ⟨ℳ⟩, whether its run halts.

Reducing the Halting Problem Given a 2-counter Minsky machineℳ = ⟨Q, {1, 2}, �, q0, qf ⟩,
we want to construct a pair ⟨ℬ, '⟩ consisting of a BPP and a CTL(EG) formula s.t. ℳ
halts iff ℬ ∣= '.

The idea is that ℬ will be able to simulate the run of ℳ, but also many “incorrect”
runs. The formula ' will have to filter the incorrect runs out and ensure that the halting
state qf is eventually reached in the correct run.

Exercise 3 (The BPP ℬ). Define the BPP ℬ as ⟨Σ,X , R,Xq0⟩ with

Σ = {xq ∣ q ∈ Q} ∪ {aq ∣ q ∈ Q ∧ �(q) ∈ C ×Q} ∪ {cq, dq, eq ∣ q ∈ Q ∧ �(q) ∈ C ×Q2}
∪ {xj , yj , zj ∣ j ∈ {1, 2}} ∪ {bqf }

X = {Xq∣q ∈ Q} ∪ {Aq ∣ q ∈ Q ∧ �(q) ∈ C ×Q} ∪ {Cq, Dq, Eq ∣ q ∈ Q ∧ �(q) ∈ C ×Q2}
∪ {Xj , Yj , Zj ∣ j ∈ {1, 2}} ∪ {Bqf }

R = {Xq
xq−→ Aq, Aq

aq−→ Xj∥Xq′ ∣ q ∈ Q ∧ �(q) = (j, q′)}

∪ {Xq
xq−→ Eq, Eq

eq−→ Xq′ , Xq
xq−→ Cq, Cq

cq−→ Dq, Dq
dq−→ Xq′′ ∣ q ∈ Q ∧ �(q) = (j, q′, q′′)}

∪ {Xqf

xqf−−→ Bqf , Bqf
bqf−−→ Xqf }

∪ {Xj
xj−→ Yj , Yj

yj−→ Zj , Zj
zj−→ 0 ∣ j ∈ {1, 2}}

Your goal in this exercise is to identify the relationships between the run ofℳ and some
specific runs of ℬ.

Let us call a configuration � in X⊗ of ℬ significant if it has the form � = Xq∥Xc1
1 ∥X

c2
2

for some (q, c1, c2) in Q× ℕ2. Define the homomorphism � from (X⊗)∞ to (Q× ℕ2)∞

generated by

�(�) =

{
(q, c1, c2) if � = Xq∥Xc1

1 ∥X
c2
2

" otherwise

that maps runs in ℬ to configuration sequences of ℳ by discarding insignificant con-
figurations of ℬ. Note that �(�) with � in Paths(Xq0) is not necessarily the run of
ℳ.

Conversely, define another homomorphism from (Q × ℕ2)∞ to (X⊗)∞ by setting
 (q, c1, c2) to be the finite sequence⎧⎨⎩

(Xq∥X
cj
j ∥X

cj̄
j̄

) (Aq∥X
cj
j ∥X

cj̄
j̄

) if �(q) = (j, q′)

(Xq∥X
cj̄
j̄

) (Eq∥X
cj̄
j̄

) if �(q) = (j, q′, q′′) ∧ cj = 0

(Xq∥X
cj
j ∥X

cj̄
j̄

) (Cq∥X
cj
j ∥X

cj̄
j̄

) (Cq∥Yj∥X
cj−1
j ∥Xcj̄

j̄
)

⋅(Dq∥Yj∥X
cj−1
j ∥Xcj̄

j̄
) (Dq∥Zj∥X

cj−1
j ∥Xcj̄

j̄
) (Xq′′∥Zj∥X

cj−1
j ∥Xcj̄

j̄
) if �(q) = (j, q′, q′′) ∧ cj > 0

(Xq∥Xc1
1 ∥X

c2
2) (Bqf ∥X

c1
1 ∥X

c2
2) otherwise, i.e. if q = qf

5

MPRI 1-22 Introduction to Verification February 1, 2011

1. Show that, if � in (Q × ℕ2)! is the run of ℳ, then (�) in (X⊗)! is a run in[1]

Paths(Xq0). We say in this case that (�) is the honest run of ℬ.

2. Show that, if � is the honest run of ℬ, then �(�) is the run of ℳ.[1]

Exercise 4 (The CTL(EG) formula '). Set

' = ¬EG('ℎ ∧ ¬E⟨xqf ⟩⊤)

where 'ℎ is a CTL(EG) formula ensuring that the run of ℬ is honest, and E⟨xqf ⟩⊤ that
the run halts. Your goal in this exercise is to find 'ℎ and prove it correct.

More precisely, let � = �0�1 ⋅ ⋅ ⋅ be in Paths(Xq0): propose a CTL(EG) formula 'ℎ
s.t.

(a) if ∀i ≥ 0, �i ∣= 'ℎ, then � is honest, and[5]

(b) if � is honest, then ∀i ≥ 0, �i ∣= 'ℎ.[3]

Hint: One only needs to check rather “local” constraints, thus 'ℎ can be chosen with
only E⟨a⟩ modalities, a in Σ. The proofs should contain, among other things:

(a) for (a) above, given the ith configuration (qi, ci,1, ci,2) in the run of ℳ, draw
four (large) trees of possible transitions of ℬ out of Xqi∥X

ci,1
1 ∥X

ci,2
2 depending on

whether

(i) �(qi) = (j, q),

(ii) �(qi) = (j, q′, q′′) ∧ ci,j = 0,

(iii) �(qi) = (j, q′, q′′) ∧ ci,j > 0, or

(iv) qi = qf ,

and annotate every branch that deviates from the sequence

 (qi, ci,1, ci,2) ⋅ (Xqi+1∥X
ci+1,1

1 ∥Xci+1,2

2) (1)

with a proof of why it is eventually ruled out by 'ℎ, thus 'ℎ selects the only honest
run out of all the possible ones;

(b) for (b) above, you need to show that every step in (1) is compatible with 'ℎ in the
same four cases.

Exercise 5 (Conclusion). Prove that ℳ halts iff ℬ ∣= '.[2]

6

	Basic Parallel Processes
	Model-Checking
	The EF Case
	The EG Case

