TD 3: Büchi Automata

Exercises 1-5 (marked with an asterisk in the margin) are to be prepared at home *before* the session.

1 LTL and Büchi Automata

Exercise 1 (Specification). We would like to verify the properties of a boolean circuit (*) with input x, output y, and two registers r_1 and r_2 . We define accordingly AP = $\{x, y, r_1, r_2\}$ as our set of atomic propositions, and model check infinite runs $\sigma = s_0 s_1 s_2 \cdots$ from $(2^{AP})^{\omega}$.

Provide a Büchi automaton for each of the following properties:

- 1. "it is impossible to get two consecutive 1 as output"
- 2. "each time the input is 1, at most two ticks later the output will be 1"
- 3. "each time the input is 1, the register contents remains the same over the next tick"
- 4. "register r_1 is infinitely often 1"

Note that there might be several, non-equivalent formal specifications matching these informal descriptions—that's the whole point of writing specifications!

Exercise 2 (Büchi Automaton Construction). Use the LTL to Büchi algorithm seen (*) during the last lecture to construct another Büchi automaton for the LTL formula $\varphi = G(\neg p \lor \neg Xp)$.

2 Recognizable Languages

Recall from the course that a language of infinite words in Σ^{ω} is *recognizable* iff there exists a Büchi automaton for it.

Exercise 3 (Basic Closure Properties). Show that $\operatorname{Rec}(\Sigma^{\omega})$ is closed under (*)

- 1. finite union, and
- 2. finite intersection.

Exercise 4 (Ultimately Periodic Words). An *ultimately periodic word* over Σ is a word (*) of form $u \cdot v^{\omega}$ with u in Σ^* and v in Σ^+ .

Prove that any nonempty recognizable language in $\mathsf{Rec}(\Sigma^{\omega})$ contains an ultimately periodic word.

Exercise 5 (Rational Languages). A rational language L of infinite words over Σ is a (*) finite union

$$L = \bigcup X \cdot Y^{\omega}$$

where X is in $\mathsf{Rat}(\Sigma^*)$ and Y in $\mathsf{Rat}(\Sigma^+)$. We denote the set of *rational* languages of infinite words by $\mathsf{Rat}(\Sigma^{\omega})$.

Show that $\operatorname{Rec}(\Sigma^{\omega}) = \operatorname{Rat}(\Sigma^{\omega})$.

Exercise 6 (Deterministic Büchi Automata). A Büchi automaton is *deterministic* if $|I| \leq 1$, and for each state q in Q and symbol a in Σ , $|\{(q, a, q') \in T \mid q' \in Q\}| \leq 1$.

- 1. Give a nondeterministic Büchi automaton for the language in $\{a, b\}^{\omega}$ described by the expression $(a + b)^* a^{\omega}$.
- 2. Show that there does not exist any deterministic Büchi automaton for this language.
- 3. Let $A = (Q, \Sigma, T, q_0, F)$ be a finite deterministic automaton that recognizes the language of finite words $L \subseteq \Sigma^*$. We can also interpret \mathcal{A} as a deterministic Büchi automaton with a language $L' \subseteq \Sigma^{\omega}$; our goal here is to relate the languages of finite and infinite words defined by \mathcal{A} .

Let the *limit* of a language $L \subseteq \Sigma^*$ be

 $\overrightarrow{L} = \{ w \in \Sigma^{\omega} \mid w \text{ has infinitely many prefixes in } L \} .$

Characterize the language L' of infinite words of \mathcal{A} in terms of its language of finite words L and of the limit operation.

3 Büchi Complementation

Exercise 7 (Lower Bound on Büchi Complementation). The best known lower bound on the size of a Büchi automaton for the complement \overline{L} of a language, compared to that of the Büchi automaton for L, is $\Omega((0.76 n)^n)$ [Yan, LMCS 4(1:5), 2008], with a matching upper bound modulo a quadratic factor [Schewe, STACS 2009]. We see in this exercise an easier to obtain lower bound of $\Omega(n!)$.

Let $\Sigma_n = \{\#, 1, 2, ..., n\}$ be our alphabet, and L_n the language of the following Büchi automaton (note the two-ways transitions):

1. Let $a_1 \cdots a_k$ be a fixed, finite word in $\{1, \ldots, n\}^*$. Prove that any infinite word in

$$(\Sigma_n^* a_1 a_2 \Sigma_n^* a_2 a_3 \Sigma_n^* \cdots \Sigma_n^* a_{k-1} a_k \Sigma_n^* a_k a_1)^{\omega}$$

is also a word of L_n .

2. Let (i_1, \ldots, i_n) be a permutation of $\{1, \ldots, n\}$. Show that the infinite word

 $(i_1\cdots i_n\#)^{\omega}$

is not in L_n .

3. Consider two different permutations (i_1, \ldots, i_n) and (j_1, \ldots, j_n) of $\{1, \ldots, n\}$. As shown in the previous question, the two infinite words $\rho = (i_1 \cdots i_n \#)^{\omega}$ and $\sigma = (j_1 \cdots j_n \#)^{\omega}$ are in $\overline{L_n}$.

Suppose that \mathcal{B} is a Büchi automaton that recognizes $\overline{L_n}$; show that if ρ eventually loops forever in a subset R of the states of \mathcal{B} , and σ does the same in a subset S, then R and S are disjoint sets.

4. Conclude.

Exercise 8 (Closure by Complementation). The purpose of this exercise is to prove that $\operatorname{Rec}(\Sigma^{\omega})$ is closed under complement. We consider for this a Büchi automaton $A = (Q, \Sigma, T, I, F)$, and want to prove that its complement language $\overline{L(A)}$ is in $\operatorname{Rec}(\Sigma^{\omega})$.

We note $q \stackrel{u}{\to} q'$ for q, q' in Q and $u = a_1 \cdots a_n$ in Σ^* if there exists a sequence of states q_0, \ldots, q_n such that $q_0 = q$, $q_n = q'$ and for all $0 \le i < n$, (q_i, a_{i+1}, q_{i+1}) is in T. We note in the same way $q \stackrel{u}{\to}_F q'$ if furthermore at least one of the states q_0, \ldots, q_n belongs to F.

We define a *congruence* \sim_A over Σ^* by

$$u \sim_A v \text{ iff } \forall q, q' \in Q, \ (q \xrightarrow{u} q' \Leftrightarrow q \xrightarrow{v} q') \text{ and } (q \xrightarrow{u}_F q' \Leftrightarrow q \xrightarrow{v}_F q').$$

1. Show that \sim_A has finitely many congruence classes [u], for u in Σ^* .

- 2. Show that each [u] for u in Σ^* is in $\operatorname{Rec}(\Sigma^*)$, i.e. is a regular language of finite words.
- 3. Consider the language K(L) for $L \subseteq \Sigma^{\omega}$

 $K(L) = \{ [u][v]^{\omega} \mid u, v \in \Sigma^*, [u][v]^{\omega} \cap L \neq \emptyset \} .$

Show that K(L) is in $\operatorname{Rec}(\Sigma^{\omega})$ for any $L \subseteq \Sigma^{\omega}$.

- 4. Show that $K(L(A)) \subseteq L(A)$ and $K(\overline{L(A)}) \subseteq \overline{L(A)}$.
- 5. Prove that for any infinite word σ in Σ^{ω} there exist u and v in Σ^* such that σ belongs to $[u][v]^{\omega}$. The following theorem might come in handy when applied to couples of positions (i, j) inside σ :

Theorem 1 (Ramsey, infinite version). Let X be some countably infinite set, n an integer, and $c: X^{(n)} \to \{1, \ldots, k\}$ a k-coloring of the n-tuples of X. Then there exists some infinite monochromatic subset M of X such that all the n-tuples of M have the same image by c.

6. Conclude.