TD 3: Büchi Automata

Exercises 1-5 (marked with an asterisk in the margin) are to be prepared at home before the session.

1 LTL and Büchi Automata

Exercise 1 (Specification). We would like to verify the properties of a boolean circuit with input x, output y, and two registers r_{1} and r_{2}. We define accordingly $\mathrm{AP}=$ $\left\{x, y, r_{1}, r_{2}\right\}$ as our set of atomic propositions, and model check infinite runs $\sigma=$ $s_{0} s_{1} s_{2} \cdots$ from $\left(2^{\mathrm{AP}}\right)^{\omega}$.

Provide a Büchi automaton for each of the following properties:

1. "it is impossible to get two consecutive 1 as output"
2. "each time the input is 1 , at most two ticks later the output will be 1 "
3. "each time the input is 1 , the register contents remains the same over the next tick"
4. "register r_{1} is infinitely often 1 "

Note that there might be several, non-equivalent formal specifications matching these informal descriptions-that's the whole point of writing specifications!

Exercise 2 (Büchi Automaton Construction). Use the LTL to Büchi algorithm seen during the last lecture to construct another Büchi automaton for the LTL formula $\varphi=$ $\mathrm{G}(\neg p \vee \neg \mathrm{X} p)$.

2 Recognizable Languages

Recall from the course that a language of infinite words in Σ^{ω} is recognizable iff there exists a Büchi automaton for it.

Exercise 3 (Basic Closure Properties). Show that $\operatorname{Rec}\left(\Sigma^{\omega}\right)$ is closed under

1. finite union, and
2. finite intersection.

Exercise 4 (Ultimately Periodic Words). An ultimately periodic word over Σ is a word of form $u \cdot v^{\omega}$ with u in Σ^{*} and v in Σ^{+}.

Prove that any nonempty recognizable language in $\operatorname{Rec}\left(\Sigma^{\omega}\right)$ contains an ultimately periodic word.

Exercise 5 (Rational Languages). A rational language L of infinite words over Σ is a finite union

$$
L=\bigcup X \cdot Y^{\omega}
$$

where X is in $\operatorname{Rat}\left(\Sigma^{*}\right)$ and Y in $\operatorname{Rat}\left(\Sigma^{+}\right)$. We denote the set of rational languages of infinite words by $\operatorname{Rat}\left(\Sigma^{\omega}\right)$.

Show that $\operatorname{Rec}\left(\Sigma^{\omega}\right)=\operatorname{Rat}\left(\Sigma^{\omega}\right)$.

Exercise 6 (Deterministic Büchi Automata). A Büchi automaton is deterministic if $|I| \leq 1$, and for each state q in Q and symbol a in $\Sigma,\left|\left\{\left(q, a, q^{\prime}\right) \in T \mid q^{\prime} \in Q\right\}\right| \leq 1$.

1. Give a nondeterministic Büchi automaton for the language in $\{a, b\}^{\omega}$ described by the expression $(a+b)^{*} a^{\omega}$.
2. Show that there does not exist any deterministic Büchi automaton for this language.
3. Let $A=\left(Q, \Sigma, T, q_{0}, F\right)$ be a finite deterministic automaton that recognizes the language of finite words $L \subseteq \Sigma^{*}$. We can also interpret \mathcal{A} as a deterministic Büchi automaton with a language $L^{\prime} \subseteq \Sigma^{\omega}$; our goal here is to relate the languages of finite and infinite words defined by \mathcal{A}.

Let the limit of a language $L \subseteq \Sigma^{*}$ be

$$
\vec{L}=\left\{w \in \Sigma^{\omega} \mid w \text { has infinitely many prefixes in } L\right\}
$$

Characterize the language L^{\prime} of infinite words of \mathcal{A} in terms of its language of finite words L and of the limit operation.

3 Büchi Complementation

Exercise 7 (Lower Bound on Büchi Complementation). The best known lower bound on the size of a Büchi automaton for the complement \bar{L} of a language, compared to that of the Büchi automaton for L, is $\Omega\left((0.76 n)^{n}\right)$ [Yan, LMCS 4(1:5), 2008], with a matching upper bound modulo a quadratic factor [Schewe, STACS 2009]. We see in this exercise an easier to obtain lower bound of $\Omega(n!)$.

Let $\Sigma_{n}=\{\#, 1,2, \ldots, n\}$ be our alphabet, and L_{n} the language of the following Büchi automaton (note the two-ways transitions):

1. Let $a_{1} \cdots a_{k}$ be a fixed, finite word in $\{1, \ldots, n\}^{*}$. Prove that any infinite word in

$$
\left(\Sigma_{n}^{*} a_{1} a_{2} \Sigma_{n}^{*} a_{2} a_{3} \Sigma_{n}^{*} \cdots \Sigma_{n}^{*} a_{k-1} a_{k} \Sigma_{n}^{*} a_{k} a_{1}\right)^{\omega}
$$

is also a word of L_{n}.
2. Let $\left(i_{1}, \ldots, i_{n}\right)$ be a permutation of $\{1, \ldots, n\}$. Show that the infinite word

$$
\left(i_{1} \cdots i_{n} \#\right)^{\omega}
$$

is not in L_{n}.
3. Consider two different permutations $\left(i_{1}, \ldots, i_{n}\right)$ and $\left(j_{1}, \ldots, j_{n}\right)$ of $\{1, \ldots, n\}$. As shown in the previous question, the two infinite words $\rho=\left(i_{1} \cdots i_{n} \#\right)^{\omega}$ and $\sigma=$ $\left(j_{1} \cdots j_{n} \#\right)^{\omega}$ are in $\overline{L_{n}}$.
Suppose that \mathcal{B} is a Büchi automaton that recognizes $\overline{L_{n}}$; show that if ρ eventually loops forever in a subset R of the states of \mathcal{B}, and σ does the same in a subset S, then R and S are disjoint sets.
4. Conclude.

Exercise 8 (Closure by Complementation). The purpose of this exercise is to prove that $\operatorname{Rec}\left(\Sigma^{\omega}\right)$ is closed under complement. We consider for this a Büchi automaton $A=(Q, \Sigma, T, I, F)$, and want to prove that its complement language $\overline{L(A)}$ is in $\operatorname{Rec}\left(\Sigma^{\omega}\right)$.

We note $q \xrightarrow{u} q^{\prime}$ for q, q^{\prime} in Q and $u=a_{1} \cdots a_{n}$ in Σ^{*} if there exists a sequence of states q_{0}, \ldots, q_{n} such that $q_{0}=q, q_{n}=q^{\prime}$ and for all $0 \leq i<n,\left(q_{i}, a_{i+1}, q_{i+1}\right)$ is in T. We note in the same way $q \xrightarrow{u}_{F} q^{\prime}$ if furthermore at least one of the states q_{0}, \ldots, q_{n} belongs to F.

We define a congruence \sim_{A} over Σ^{*} by

$$
u \sim_{A} v \text { iff } \forall q, q^{\prime} \in Q, \quad\left(q \xrightarrow{u} q^{\prime} \Leftrightarrow q \xrightarrow{v} q^{\prime}\right) \text { and }\left(q \xrightarrow{u}_{F} q^{\prime} \Leftrightarrow q \xrightarrow{v}_{F} q^{\prime}\right)
$$

1. Show that \sim_{A} has finitely many congruence classes $[u]$, for u in Σ^{*}.
2. Show that each $[u]$ for u in Σ^{*} is in $\operatorname{Rec}\left(\Sigma^{*}\right)$, i.e. is a regular language of finite words.
3. Consider the language $K(L)$ for $L \subseteq \Sigma^{\omega}$

$$
K(L)=\left\{[u][v]^{\omega} \mid u, v \in \Sigma^{*},[u][v]^{\omega} \cap L \neq \emptyset\right\} .
$$

Show that $K(L)$ is in $\operatorname{Rec}\left(\Sigma^{\omega}\right)$ for any $L \subseteq \Sigma^{\omega}$.
4. Show that $K(L(A)) \subseteq L(A)$ and $K(\overline{L(A)}) \subseteq \overline{L(A)}$.
5. Prove that for any infinite word σ in Σ^{ω} there exist u and v in Σ^{*} such that σ belongs to $[u][v]^{\omega}$. The following theorem might come in handy when applied to couples of positions (i, j) inside σ :

Theorem 1 (Ramsey, infinite version). Let X be some countably infinite set, n an integer, and $c: X^{(n)} \rightarrow\{1, \ldots, k\}$ a k-coloring of the n-tuples of X. Then there exists some infinite monochromatic subset M of X such that all the n-tuples of M have the same image by c.
6. Conclude.

