TD 4: Complexity of LTL Fragments

Exercises 1-3 (marked with an asterisk in the margin) are to be prepared at home before the session.

$1 \operatorname{LTL}(\mathbf{X})$

Exercise 1 (Model Checking a Path). We want to verify a model with a single run $w,(*)$ which is an ultimately periodic word $u v^{\omega}$ with u in Σ^{*} and v in Σ^{+}.

Give an algorithm for checking whether $w, 0 \models \varphi$ holds, where φ is a $\operatorname{LTL}(\mathrm{X}, \mathrm{U})$ formula, in time bounded by $O(|u v| \cdot|\varphi|)$.

Exercise 2 (Complexity of $\operatorname{LTL}(X)$). We want to show that LTL (X) existential model checking is NP-complete (instead of PSPACE-complete for the full LTL (X, U)).

1. Show that $M C^{\exists}(X)$ is in NP.
2. Reduce 3SAT to $\mathrm{MC}^{\exists}(\mathrm{X})$ in order to prove NP-hardness.

2 LTL(U)

Exercise 3 (Stuttering and LTL(U)). In the context of a word σ in Σ^{ω}, stuttering denotes the existence of consecutive symbols, like $a a a a$ and $b b$ in baaaabb. Concrete systems tend to stutter, and thus some argue that verification properties should be stutter invariant.

A stuttering function $f: \mathbb{N} \rightarrow \mathbb{N}_{+}$from the positive integers to the strictly positive integers. Let $\sigma=a_{0} a_{1} \cdots$ be an infinite word of Σ^{ω} and f a stuttering function, we denote by $\sigma[f]$ the infinite word $a_{0}^{f(0)} a_{1}^{f(1)} \cdots$, i.e. where the i-th symbol of σ is repeated $f(i)$ times. A language $L \subseteq \Sigma^{\omega}$ is stutter invariant if, for all words σ in Σ^{ω} and all stuttering functions f,

$$
\sigma \in L \text { iff } \sigma[f] \in L
$$

1. Prove that if φ is a $\operatorname{LTL}(\mathrm{U})$ formula, then $L(\varphi)$ is stutter-invariant.
2. A word $\sigma=a_{0} a_{1} \cdots$ in Σ^{ω} is stutter-free if, for all i in \mathbb{N}, either $a_{i} \neq a_{i+1}$, or $a_{i}=a_{j}$ for all $j \geq i$. We note $\operatorname{sf}(L)$ for the set of stutter-free words in a language L.

Show that, if L and L^{\prime} are two stutter invariant languages, then $\operatorname{sf}(L)=\operatorname{sf}\left(L^{\prime}\right)$ iff $L=L^{\prime}$ 。
3. Let φ be a $\operatorname{LTL}(\mathrm{X}, \mathrm{U})$ formula such that $L(\varphi)$ is stutter invariant. Construct inductively a formula $\tau(\varphi)$ of $\operatorname{LTL}(\mathrm{U})$ such that $\operatorname{sf}(L(\varphi))=\operatorname{sf}(L(\tau(\varphi)))$, and thus such that $L(\varphi)=L(\tau(\varphi))$ according to the previous question. What is the size of $\tau(\varphi)$ (there exists a solution of size $O\left(|\varphi| \cdot 2^{|\varphi|}\right)$)?

Exercise 4 (Complexity of LTL(U)). We want to prove that the model checking and satisfiability problems for $\operatorname{LTL}(\mathrm{U})$ formulæ are both PSPACE-complete.

1. Prove that $\mathrm{MC}^{\exists}(\mathrm{X}, \mathrm{U})$ can be reduced to $\mathrm{MC}^{\exists}(\mathrm{U})$: given an instance (M, φ) of $\mathrm{MC}^{\exists}(\mathrm{X}, \mathrm{U})$, construct a stutter-free Kripke structure M^{\prime} and an LTL(U) formula $\tau^{\prime}(\varphi)$. Beware: the τ construction of the previous exercise does not yield a polynomial reduction!
2. Show that $M C^{\exists}(X, U)$ can be reduced to $\operatorname{SAT}(U)$.

$3 \operatorname{LTL}(F)$

Exercise 5 (Small Model Property for LTL(F)). Fix $\Sigma=2^{\text {AP }}$ and let $w=w_{0} w_{1} w_{2} \ldots$ be an infinite word in Σ^{ω}. Let

$$
\operatorname{alph}(w)=\left\{\left.a \in \Sigma| | w\right|_{a} \geq 1\right\}
$$

be the set of letters appearing in w and

$$
\inf (w)=\left\{\left.a \in \Sigma| | w\right|_{a}=\infty\right\}
$$

be the set of letters appearing infinitely often in w. We consider decompositions $u \cdot v$ in $\Sigma^{*} \times \Sigma^{\infty}$ such that alph $(v)=\inf (v)$; this definition enforces that either $v=\varepsilon$ or v is in Σ^{ω}. Given an infinite word w there exists a unique decomposition $w=u \cdot v$ with $u \in \Sigma^{*}$, $v \in(\inf (w))^{\omega}$, and u of minimal length.

Define the size $\|u \cdot v\|$ of a decomposition pair $u \cdot v$ as $\|u \cdot v\|=|u|+|\inf (v)|$. Our goal is, for any satisfiable φ in $\operatorname{LTL}(\mathbf{F})$, to prove the existence of a model $w=u \cdot v$ with $\|u \cdot v\| \leq|\varphi|$.

1. Consider an infinite word w decomposed as $u \cdot v$ and two indices $i, j \geq|u|$ with $w_{i}=w_{j}$; show that for all φ in $\operatorname{LTL}(\mathbf{F}), w, i \models \varphi$ iff $w, j \models \varphi$.
2. Let w, w^{\prime} be two infinite words decomposed as $u \cdot v$ and $u \cdot v^{\prime}$ (thus with a shared initial prefix) with $\inf (w)=\inf \left(w^{\prime}\right)$ and $w_{0}=w_{0}^{\prime}$ (necessary in case $u=\varepsilon$). Show that for all φ in $\operatorname{LTL}(\mathbf{F}), w, 0 \models \varphi$ iff $w^{\prime}, 0 \models \varphi$.

Let σ, σ^{\prime} be words in $\Sigma^{\infty} ; \sigma^{\prime}$ is a subsequence of σ, noted $\sigma^{\prime} \preceq \sigma$, if there exists a monotone injection $f_{\sigma^{\prime}}:\left\{0, \ldots,\left|\sigma^{\prime}\right|-1\right\} \rightarrow\{0, \ldots,|\sigma|-1\}$ s.t. for all $i \in\left\{0, \ldots,\left|\sigma^{\prime}\right|-1\right\}$, $\sigma_{i}^{\prime}=\sigma_{\sigma_{\sigma^{\prime}}(i)}$. Alternatively, given a subset $R_{\sigma^{\prime}}$ of $\{0, \ldots,|\sigma|-1\}$ with cardinal $\left|R_{\sigma^{\prime}}\right|=\left|\sigma^{\prime}\right|$, define $f_{\sigma^{\prime}}$ as the unique monotone bijection mapping $\left\{0, \ldots,\left|\sigma^{\prime}\right|-1\right\}$ to $R_{\sigma^{\prime}}$. If $\sigma \neq \varepsilon$ and $\sigma^{\prime} \preceq \sigma$, define the sequence $s\left(\sigma^{\prime}\right) \preceq \sigma$ by $R_{s\left(\sigma^{\prime}\right)}=\{0\} \cup R_{\sigma^{\prime}}$.

Given a decomposition $u \cdot v$, a subdecomposition $u^{\prime} \cdot v^{\prime}$ is a decomposition such that $u^{\prime} \preceq u$ and $v^{\prime} \preceq v$ (by definition this enforces alph $\left(v^{\prime}\right)=\inf \left(v^{\prime}\right)$). We write $R_{u^{\prime} \cdot v^{\prime}}$ for $R_{u^{\prime}} \cup\left\{\left|u^{\prime}\right|+i \mid i \in R_{v^{\prime}}\right\}$; this is compatible with the notion of subsequence on the words $w^{\prime}=u^{\prime} \cdot v^{\prime}$ and $w=u \cdot v$.
3. Given two subdecompositions $u_{1} \cdot v_{1}$ and $u_{2} \cdot v_{2}$ of some decomposition $u \cdot v$, show that $u^{\prime} \cdot v^{\prime}$ with $R_{u^{\prime}}=R_{u_{1}} \cup R_{u_{2}}$ and $R_{v^{\prime}}=R_{v_{1}} \cup R_{v_{2}}$ is a subdecomposition of $u \cdot v$ and s.t. $\left\|u^{\prime} \cdot v^{\prime}\right\| \leq\left\|u_{1} \cdot v_{1}\right\|+\left\|u_{2} \cdot v_{2}\right\|$.

Consider a formula φ in $\operatorname{LTL}(F)$. By the standard "push negations using dualities" argument, it can be transformed into an equivalent formula ψ in negative normal form, where negations only occur in front of atomic fomulæ, using only F and G modalities, i.e. ψ is in $\operatorname{NNF}(\mathrm{F}, \mathrm{G})$. Let us note $m(\varphi)$ the number of F modalities in a LTL formula φ; we have $m(\psi) \leq m(\varphi) \leq|\varphi|$.
4. Let w be an infinite word in Σ^{ω} decomposed as $w=u \cdot v$ and let ψ in $\operatorname{NNF}(\mathrm{F}, \mathrm{G})$. Show by induction on ψ that, if there exists a subdecomposition $u^{\prime} \cdot v^{\prime}$ of $u \cdot v$, s.t. for all $i \in R_{u^{\prime} \cdot v^{\prime}}, w, i \equiv \psi$, then there exists a subdecomposition $\sigma \cdot \tau$ of $u \cdot v$ of size $\|\sigma \cdot \tau\| \leq m(\psi)$ such that, for all subdecompositions $\sigma^{\prime} \cdot \tau^{\prime}$ of $u \cdot v$ for which $\sigma \cdot \tau$ is a subdecomposition, and for all $i \in R_{u^{\prime} \cdot v^{\prime}} \cap R_{\sigma^{\prime} \cdot \tau^{\prime}}, \sigma^{\prime} \cdot \tau^{\prime}, i \models \psi$.
5. Conclude.

Exercise 6 (Complexity of LTL(F)).

1. Show that $M C^{\exists}(F)$ and $S A T(F)$ are NPTime-hard.
2. Show that $M C^{\exists}(F)$ and $S A T(F)$ are in NPTime.
