
MPRI 1-22 Introduction to Verification November 2, 2010

TD 4: Complexity of LTL Fragments

Exercises 1–3 (marked with an asterisk in the margin) are to be prepared at home
before the session.

1 LTL(X)

Exercise 1 (Model Checking a Path). We want to verify a model with a single run w, (∗)
which is an ultimately periodic word uv! with u in Σ∗ and v in Σ+.

Give an algorithm for checking whether w, 0 ∣= ' holds, where ' is a LTL(X,U)
formula, in time bounded by O(∣uv∣ ⋅ ∣'∣).

Exercise 2 (Complexity of LTL(X)). We want to show that LTL(X) existential model (∗)
checking is NP-complete (instead of PSpace-complete for the full LTL(X,U)).

1. Show that MC∃(X) is in NP.

2. Reduce 3SAT to MC∃(X) in order to prove NP-hardness.

2 LTL(U)

Exercise 3 (Stuttering and LTL(U)). In the context of a word � in Σ!, stuttering (∗)
denotes the existence of consecutive symbols, like aaaa and bb in baaaabb. Concrete
systems tend to stutter, and thus some argue that verification properties should be
stutter invariant.

A stuttering function f : ℕ → ℕ+ from the positive integers to the strictly positive
integers. Let � = a0a1 ⋅ ⋅ ⋅ be an infinite word of Σ! and f a stuttering function, we

denote by �[f] the infinite word a
f(0)
0 a

f(1)
1 ⋅ ⋅ ⋅ , i.e. where the i-th symbol of � is repeated

f(i) times. A language L ⊆ Σ! is stutter invariant if, for all words � in Σ! and all
stuttering functions f ,

� ∈ L iff �[f] ∈ L .

1. Prove that if ' is a LTL(U) formula, then L(') is stutter-invariant.

2. A word � = a0a1 ⋅ ⋅ ⋅ in Σ! is stutter-free if, for all i in ℕ, either ai ∕= ai+1, or
ai = aj for all j ≥ i. We note sf(L) for the set of stutter-free words in a language
L.

Show that, if L and L′ are two stutter invariant languages, then sf(L) = sf(L′) iff
L = L′.

3. Let ' be a LTL(X,U) formula such that L(') is stutter invariant. Construct
inductively a formula �(') of LTL(U) such that sf(L(')) = sf(L(�('))), and thus
such that L(') = L(�(')) according to the previous question. What is the size of
�(') (there exists a solution of size O(∣'∣ ⋅ 2∣'∣))?

1

MPRI 1-22 Introduction to Verification November 2, 2010

Exercise 4 (Complexity of LTL(U)). We want to prove that the model checking and
satisfiability problems for LTL(U) formulæ are both PSpace-complete.

1. Prove that MC∃(X,U) can be reduced to MC∃(U): given an instance (M,') of
MC∃(X,U), construct a stutter-free Kripke structure M ′ and an LTL(U) formula
� ′('). Beware: the � construction of the previous exercise does not yield a polyno-
mial reduction!

2. Show that MC∃(X,U) can be reduced to SAT(U).

3 LTL(F)

Exercise 5 (Small Model Property for LTL(F)). Fix Σ = 2AP and let w = w0w1w2 ⋅ ⋅ ⋅
be an infinite word in Σ!. Let

alph(w) = {a ∈ Σ ∣ ∣w∣a ≥ 1}

be the set of letters appearing in w and

inf(w) = {a ∈ Σ ∣ ∣w∣a =∞}

be the set of letters appearing infinitely often in w. We consider decompositions u ⋅ v in
Σ∗ × Σ∞ such that alph(v) = inf(v); this definition enforces that either v = " or v is in
Σ!. Given an infinite word w there exists a unique decomposition w = u ⋅v with u ∈ Σ∗,
v ∈ (inf(w))!, and u of minimal length.

Define the size ∥u ⋅ v∥ of a decomposition pair u ⋅ v as ∥u ⋅ v∥ = ∣u∣ + ∣inf(v)∣. Our
goal is, for any satisfiable ' in LTL(F), to prove the existence of a model w = u ⋅ v with
∥u ⋅ v∥ ≤ ∣'∣.

1. Consider an infinite word w decomposed as u ⋅ v and two indices i, j ≥ ∣u∣ with
wi = wj ; show that for all ' in LTL(F), w, i ∣= ' iff w, j ∣= '.

2. Let w,w′ be two infinite words decomposed as u ⋅ v and u ⋅ v′ (thus with a shared
initial prefix) with inf(w) = inf(w′) and w0 = w′0 (necessary in case u = "). Show
that for all ' in LTL(F), w, 0 ∣= ' iff w′, 0 ∣= '.

Let �, �′ be words in Σ∞; �′ is a subsequence of �, noted �′ ⪯ �, if there exists a
monotone injection f�′ : {0, . . . , ∣�′∣−1} → {0, . . . , ∣�∣−1} s.t. for all i ∈ {0, . . . , ∣�′∣−1},
�′i = �f�′ (i). Alternatively, given a subset R�′ of {0, . . . , ∣�∣−1} with cardinal ∣R�′ ∣ = ∣�′∣,
define f�′ as the unique monotone bijection mapping {0, . . . , ∣�′∣ − 1} to R�′ . If � ∕= "
and �′ ⪯ �, define the sequence s(�′) ⪯ � by Rs(�′) = {0} ∪R�′ .

Given a decomposition u ⋅ v, a subdecomposition u′ ⋅ v′ is a decomposition such that
u′ ⪯ u and v′ ⪯ v (by definition this enforces alph(v′) = inf(v′)). We write Ru′⋅v′ for
Ru′ ∪{∣u′∣+ i ∣ i ∈ Rv′}; this is compatible with the notion of subsequence on the words
w′ = u′ ⋅ v′ and w = u ⋅ v.

2

MPRI 1-22 Introduction to Verification November 2, 2010

3. Given two subdecompositions u1 ⋅ v1 and u2 ⋅ v2 of some decomposition u ⋅ v, show
that u′ ⋅ v′ with Ru′ = Ru1 ∪ Ru2 and Rv′ = Rv1 ∪ Rv2 is a subdecomposition of
u ⋅ v and s.t. ∥u′ ⋅ v′∥ ≤ ∥u1 ⋅ v1∥+ ∥u2 ⋅ v2∥.

Consider a formula ' in LTL(F). By the standard “push negations using dualities”
argument, it can be transformed into an equivalent formula in negative normal form,
where negations only occur in front of atomic fomulæ, using only F and G modalities,
i.e. is in NNF(F,G). Let us note m(') the number of F modalities in a LTL formula
'; we have m() ≤ m(') ≤ ∣'∣.

4. Let w be an infinite word in Σ! decomposed as w = u ⋅ v and let in NNF(F,G).
Show by induction on that, if there exists a subdecomposition u′ ⋅ v′ of u ⋅ v, s.t.
for all i ∈ Ru′⋅v′ , w, i ∣= , then there exists a subdecomposition � ⋅ � of u ⋅ v of
size ∥� ⋅ �∥ ≤ m() such that, for all subdecompositions �′ ⋅ � ′ of u ⋅ v for which
� ⋅ � is a subdecomposition, and for all i ∈ Ru′⋅v′ ∩R�′⋅� ′ , �

′ ⋅ � ′, i ∣= .

5. Conclude.

Exercise 6 (Complexity of LTL(F)).

1. Show that MC∃(F) and SAT(F) are NPTime-hard.

2. Show that MC∃(F) and SAT(F) are in NPTime.

3

	LTL(X)
	LTL(U)
	LTL(F)

