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TD 4: Complexity of LTL Fragments

Exercises 1-3 (marked with an asterisk in the margin) are to be prepared at home
before the session.

1 LTL(X)

Exercise 1 (Model Checking a Path). We want to verify a model with a single run w,
which is an ultimately periodic word uv* with u in ¥* and v in X7.

Give an algorithm for checking whether w,0 = ¢ holds, where ¢ is a LTL(X,U)
formula, in time bounded by O(|uv| - |¢|).

Exercise 2 (Complexity of LTL(X)). We want to show that LTL(X) existential model
checking is NP-complete (instead of PSPACE-complete for the full LTL(X, U)).

1. Show that MC(X) is in NP.
2. Reduce 3SAT to MC?(X) in order to prove NP-hardness.

2 LTL(U)

Exercise 3 (Stuttering and LTL(U)). In the context of a word o in X¥, stuttering
denotes the existence of consecutive symbols, like aaaa and bb in baaaabb. Concrete
systems tend to stutter, and thus some argue that verification properties should be
stutter invariant.

A stuttering function f: N — Ny from the positive integers to the strictly positive

integers. Let o = agay--- be an infinite word of 3¥“ and f a stuttering function, we
denote by o[f] the infinite word ag(o)a{(l) -++, i.e. where the i-th symbol of ¢ is repeated

f(i) times. A language L C X¥ is stutter invariant if, for all words o in ¥ and all
stuttering functions f,
celLiff o[f]e L.

1. Prove that if ¢ is a LTL(U) formula, then L(yp) is stutter-invariant.

2. A word ¢ = agay--- in X¥ is stutter-free if, for all ¢ in N, either a; # a;11, or
a; = a; for all j > i. We note sf(L) for the set of stutter-free words in a language
L.

Show that, if L and L’ are two stutter invariant languages, then sf(L) = sf(L’) iff
L=1T.

3. Let ¢ be a LTL(X,U) formula such that L(y) is stutter invariant. Construct
inductively a formula 7(¢) of LTL(U) such that sf(L(y)) = sf(L(7(¢))), and thus
such that L(¢) = L(7(¢)) according to the previous question. What is the size of
7(p) (there exists a solution of size O(|¢| - 2!¢1))?
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Exercise 4 (Complexity of LTL(U)). We want to prove that the model checking and
satisfiability problems for LTL(U) formule are both PSPACE-complete.

1. Prove that MC(X,U) can be reduced to MC(U): given an instance (M, ) of
MC3(X, U), construct a stutter-free Kripke structure M’ and an LTL(U) formula
7'(¢). Beware: the T construction of the previous exercise does not yield a polyno-
mial reduction!

2. Show that MCZ(X, U) can be reduced to SAT(U).

3 LTL(F)

Exercise 5 (Small Model Property for LTL(F)). Fix ¥ = 24P and let w = wowjws - - -
be an infinite word in 3. Let

alph(w) ={a € £ | |w|q > 1}
be the set of letters appearing in w and
inf(w) ={a € X | |w|, = o0}

be the set of letters appearing infinitely often in w. We consider decompositions u - v in
¥* x X such that alph(v) = inf(v); this definition enforces that either v = € or v is in
3. Given an infinite word w there exists a unique decomposition w = u-v with u € 3%,
v € (inf(w))¥, and u of minimal length.

Define the size ||u - v|| of a decomposition pair u - v as ||u - v|| = |u| + [inf(v)]. Our
goal is, for any satisfiable ¢ in LTL(F), to prove the existence of a model w = u - v with
ol < lol:

1. Consider an infinite word w decomposed as u - v and two indices i,j > |u| with
w; = wj; show that for all ¢ in LTL(F), w,i = ¢ iff w, j = ¢.

2. Let w,w’ be two infinite words decomposed as u - v and u - v (thus with a shared
initial prefix) with inf(w) = inf(w’) and wy = w{, (necessary in case u = ). Show
that for all ¢ in LTL(F), w,0 = ¢ iff w',0 | ¢.

Let 0,0’ be words in X°°; o’ is a subsequence of o, noted o’ =< o, if there exists a

monotone injection f,s : {0,...,|0'| =1} = {0,...,|o|—1} s.t. for all i € {0, ...,|0"|—1},
o; =0y (i) Alternatively, given a subset R,/ of {0, ..., |o[—1} with cardinal [ Ry/| = [o”],
define f, as the unique monotone bijection mapping {0,...,[c'| — 1} to Ry. If 0 # &

and ¢’ < 0, define the sequence s(0’) < o by R,y = {0} U Ryr.

Given a decomposition u - v, a subdecomposition u' -v' is a decomposition such that
v < wand v < v (by definition this enforces alph(v’) = inf(v)). We write Ry, for
R, U{|u/| 4+ ]| i € Ry}; this is compatible with the notion of subsequence on the words
w=u"-v and w=1u-wv.
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3. Given two subdecompositions uy - v1 and us - v9 of some decomposition u - v, show
that «’ - o' with Ry = Ry, U Ry, and Ry = Ry, U R, is a subdecomposition of
w-vand s.t. ||u V|| < JJug - vr]] + [Jug - ve|-

Consider a formula ¢ in LTL(F). By the standard “push negations using dualities”
argument, it can be transformed into an equivalent formula v in negative normal form,
where negations only occur in front of atomic fomulee, using only F and G modalities,
i.e. ¥ is in NNF(F,G). Let us note m(y) the number of F modalities in a LTL formula
¢; we have m(1)) < m(p) < |¢|.

4. Let w be an infinite word in 3“ decomposed as w = u - v and let ¢ in NNF(F, G).
Show by induction on 1 that, if there exists a subdecomposition u’ - v’ of u - v, s.t.
for all i € Ry, w,i = 1, then there exists a subdecomposition o - 7 of u - v of
size ||o - || < m(v)) such that, for all subdecompositions ¢’ - 7/ of u - v for which
o - 7 is a subdecomposition, and for all i € R,y N Ryr.rry o - 70 = ).

5. Conclude.

Exercise 6 (Complexity of LTL(F)).
1. Show that MC?(F) and SAT(F) are NPTIME-hard.
2. Show that MC?(F) and SAT(F) are in NPTIME.
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