TD 5: CTL* and CTL

1 CTL*

Exercise 1 (Equivalences). Are the following formulæ equivalent?

1. $\operatorname{AXAG} \varphi$ and $\operatorname{AXG} \varphi$
2. $\mathrm{EXEG} \varphi$ and $\mathrm{EXG} \varphi$
3. $\mathrm{A}(\varphi \wedge \psi)$ and $\mathrm{A} \varphi \wedge \mathrm{A} \psi$
4. $\mathrm{E}(\varphi \wedge \psi)$ and $\mathrm{E} \varphi \wedge \mathrm{E} \psi$
5. $\neg \mathrm{A}(\varphi \Rightarrow \psi)$ and $\mathrm{E}(\varphi \wedge \neg \psi)$

Exercise 2 (Model Checking).

Check whether the above Kripke structure verifies the following CTL* formula:

$$
\mathrm{E}(\mathrm{X}(a \wedge \neg b) \wedge \mathrm{XA}(b \cup(\mathrm{G} a)))
$$

2 CTL and CTL ${ }^{+}$

Exercise 3 (CTL Equivalences).

1. Are the two formulæ $\varphi=\mathrm{AG}(\mathrm{EF} p)$ and $\psi=\mathrm{EF} p$ equivalent? Does one imply the other?
2. Same questions for $\varphi=\mathrm{EG} q \vee(\mathrm{EG} p \wedge \mathrm{EF} q)$ and $\psi=\mathrm{E}(p \mathrm{U} q)$.

Exercise $4\left(\mathrm{CTL}^{+}\right) . \mathrm{CTL}^{+}$extends CTL by allowing boolean connectives on path formulæ, according to the following abstract syntax:

$$
f::=\top|a| f \wedge g|\neg f| \mathrm{E} \varphi \mid \mathrm{A} \varphi
$$

$$
\varphi::=\varphi \wedge \psi|\neg \varphi| \times f \mid f \cup g \quad \quad \text { (path formulæ } \varphi, \psi \text {) }
$$

where a is an atomic proposition. The associated semantics is that of CTL*.
We want to prove that, for any CTL^{+}formula, there exists an equivalent CTL formula.

1. Give an equivalent CTL formula for

$$
\mathrm{E}\left(\left(a_{1} \cup b_{1}\right) \wedge\left(a_{2} \cup b_{2}\right)\right)
$$

2. Generalize your translation for any formula of form

$$
\begin{equation*}
\mathrm{E}\left(\bigwedge_{i=1, \ldots, n}\left(\psi_{i} \cup \psi_{i}^{\prime}\right) \wedge \mathrm{G} \varphi\right) \tag{1}
\end{equation*}
$$

What is the complexity of your translation?
3. Give an equivalent CTL formula for the following CTL^{+}formula:

$$
\mathrm{E}(\mathrm{X} a \wedge(b \cup c))
$$

4. Using subformulæ of form (1) and EX modalities, give an equivalent CTL formula to

$$
\begin{equation*}
\mathrm{E}\left(\mathrm{X} \varphi \wedge \bigwedge_{i=1, \ldots, n}\left(\psi_{i} \cup \psi_{i}^{\prime}\right) \wedge \mathrm{G} \varphi^{\prime}\right) \tag{2}
\end{equation*}
$$

What is the complexity of your translation?
5. We only have to transform any CTL^{+}formula into (nested) disjuncts of form (2). Detail this translation for the following formula:

$$
\mathrm{A}((\mathrm{~F} a \vee \mathrm{X} a \vee \mathrm{X} \neg b \vee \mathrm{~F} \neg d) \wedge(d \mathrm{U} \neg c))
$$

Exercise 5 (Fair CTL). We consider strong fairness constraints, which are conjunctions of formulæ of form

$$
\mathrm{GF} \psi_{1} \Rightarrow \mathrm{GF} \psi_{2}
$$

We want to check whether the following Kripke structure fairly verifies

$$
\varphi=\mathrm{AGAF} a
$$

under the fairness requirement e defined by

$$
\begin{aligned}
\psi_{1} & =b \wedge \neg a \\
\psi_{2} & =\mathrm{E}(b \mathrm{U}(a \wedge \neg b)) \\
e & =\mathrm{GF} \psi_{1} \Rightarrow \mathrm{GF} \psi_{2} .
\end{aligned}
$$

1. Compute $\llbracket \psi_{1} \rrbracket$ et $\llbracket \psi_{2} \rrbracket$.
2. Compute $\llbracket \mathrm{EGT} \rrbracket e$.
3. Compute $\llbracket \varphi \rrbracket_{e}$.
