TD 6: BDDs

Exercise 1 (Some BDDs). Draw the reduced BDDs for the following functions, using the order of your choice on the variables $\left\{x_{1}, x_{2}, x_{3}\right\}$:

1. $\left(x_{1} \Leftrightarrow x_{2}\right) \vee\left(x_{1} \Leftrightarrow x_{3}\right)$,
2. the majority function $m\left(x_{1}, x_{2}, x_{3}\right)$: its value is 1 iff the majority of the input bits are 1's,
3. the constant sum function $s_{c}\left(x_{1}, x_{2}, x_{3}\right)$ for $c=1$: its value is 1 iff $c=\sum_{i=1}^{3} x_{i}$,
4. the hidden weighted bit function $h\left(x_{1}, x_{2}, x_{3}\right)$: its value is that of variable x_{s}, where $s=\sum_{i=1}^{3} x_{i}$ and x_{0} is defined as 0.

Exercise 2 (Symmetric Functions). A symmetric function of n variables has the same value for all permutations of the same n tuple of arguments. Clearly, all variable orderings lead to the same reduced BDD size for symmetric functions.

Show that a reduced BDD for a symmetric function has at most $\binom{n+2}{2}$ nodes.

Exercise 3 (Counting Solutions). Write a linear time algorithm for counting the number of solutions of a boolean function f represented by a reduced BDD, i.e. of the number of valuations ν s.t. $\nu \models f$.

Exercise 4 (Shared BDDs). When dealing with several boolean functions at once, with a fixed order on the variables, one can share the reduced BDDs for identical subfunctions. A shared $B D D$ between m functions is a reduced BDD with m root pointers assigning a root node to each of the functions.

Let $x_{1}, \ldots, x_{2 n}$ be the ordered set of variables. We want to compute the $n+1$ bits $f_{n+1} f_{n} \cdots f_{1}$ of the sum of two n bits numbers $x_{1} x_{3} \cdots x_{2 n-1}$ and $x_{2} x_{4} \cdots x_{2 n}$. Represent the shared BDD for the functions f_{3}, \ldots, f_{1}, i.e. for $n=2$.

Exercise 5 (An Upper Bound on the Size of BDDs). The size $B(f)$ of a reduced BDD for a function f is defined as the number of its nodes. Consider an arbitrary boolean function f on the ordered set $x_{1} \cdots x_{n}$, and consider a variable x_{k}.

1. Show that we can bound the number of nodes labeled by $\left\{x_{1}, \ldots, x_{k}\right\}$ by 2^{k}.
2. How many different subfunctions on the ordered set of variables $x_{k+1} \cdots x_{n}$ exist? Deduce another bound for the number of nodes labeled by $\left\{x_{k+1}, \ldots, x_{n}\right\}$.
3. What global bound do you obtain for $k=n-\log _{2}\left(n-\log _{2} n\right)$?

Exercise 6 (Finding the Optimal Order). There are in general n ! different orders for the variables $\left\{x_{1}, \ldots, x_{n}\right\}$. One can nevertheless design an exponential time algorithm for finding the optimal order. Indeed, an optimal ordering on a subset X of variables does not depend on the order in which $\left\{x_{1}, \ldots, x_{n}\right\} \backslash X$ has been accessed.

1. Given a subset X of $\left\{x_{1}, \ldots, x_{n}\right\}$ and a variable x in X, how many nodes labeled by x does a BDD have if it first treats $\left\{x_{1}, \ldots, x_{n}\right\} \backslash X$, then x, and last $X \backslash\{x\}$?
2. Reduce the optimal order problem to the search of a path of minimal weight in a weighted graph with subsets of $\left\{x_{1}, \ldots, x_{n}\right\}$ as vertices.
3. Find the optimal order for the functions of Exercises 1.1 and 1.4.

Exercise 7 (Quasi Reduced BDDs). An ordered BDD for a boolean function f on $\left\{x_{1}, \ldots, x_{n}\right\}$ is complete if all paths from the root to a sink are of length n. A BDD is quasi reduced if it is complete and no two nodes define the same subfunction.

1. Show that a quasi reduced BDD is unique up to isomorphism for an ordered set of variables $x_{1} \cdots x_{n}$.
2. Let $Q(f)$ be the size of the quasi reduced BDD for the boolean function f on the ordered set of variables $x_{1} \cdots x_{n}$. Show that $Q(f) \leq(n-1) B(f)$.

Exercise 8 (Minimal DFAs). A deterministic finite automaton \mathcal{A} recognizes a boolean function f on the ordered set of variables $x_{1} \cdots x_{n}$ if $L(\mathcal{A})=\left\{\nu \in\{0,1\}^{n} \mid \nu \models f\right\}$, i.e. \mathcal{A} recognizes exactly the solutions of f.

What are the relations between the reduced BDD , the quasi reduced BDD , and the minimal DFA recognizing the same boolean function f on the ordered set of variables $x_{1} \cdots x_{n}$?

