TD 7: Simulation & Bisimulation

Exercise 1 (Bisimulations). Consider the following Kripke structures:

For each couple of structures, exhibit a bisimulation relation if they are bisimilar, or a CTL^{*} formula allowing to distinguish between them if they are not bisimilar.

Exercise 2 (Computing the Coarsest Bisimulation). Computing \equiv on a single Kripke structure is very similar to the computation of a minimal DFA.

- 1. Design a partition refinement algorithm for computing \equiv , i.e. an algorithm that computes an initial relation \equiv_0 and refines it successively until $\equiv_k = \equiv$ for some k. Prove that your algorithm terminates and computes \equiv .
- 2. Apply your algorithm to the union of two bisimilar systems from the previous exercise and draw the quotiented system.

Exercise 3 (Simulations). Consider the following two systems:

- 1. Exhibit a simulation to prove $t_0 \leq s_0$.
- 2. Show that $s_0 \not\preceq t_0$.
- 3. Let $M = \langle S, T, I, AP, l \rangle$ be a single Kripke structure. Show that \leq is reflexive and transitive on S. Is it symmetric?
- 4. Propose an algorithm for computing \leq on a single structure M.

Exercise 4 (Simulation Quotienting). Two Kripke structures M_1 and M_2 are simulation equivalent, noted $M_1 \simeq M_2$ if $M_1 \preceq M_2$ and $M_2 \preceq M_1$. The lecture notes provide an example of two simulation equivalent but not bisimilar structures. Consider now the two following structures M_s and M_t :

- 1. Which of the following relations hold: $M_s \leq M_t, M_t \leq M_s, M_s \simeq M_t$?
- 2. Construct the quotient of $(M_s \cup M_t)$ by \simeq . Is the resulting system bisimilar to $(M_s \cup M_t)$?
- 3. Prove that if M/\simeq is the quotient of M by \simeq , then $M/\simeq \preceq M$ and $M \preceq M/\simeq$.
- 4. Call a Kripke structure $M = \langle S, T, I, AP, l \rangle$ AP-deterministic if

- (a) for all the subsets a of AP, $I \cap \{s \in S \mid l(s) = a\} \leq 1$, i.e. there is at most one initial state labeled with each valuation in 2^{AP} , and
- (b) for each state s, if there exist two transitions (s, s_1) and (s, s_2) in T with $l(s_1) = l(s_2)$, then $s_1 = s_2$.

Show that, if two Kripke structures M_1 and M_2 are AP-deterministic, then they are bisimilar iff they are simulation equivalent.

Exercise 5 (Logical Characterization). Let us define *existential* CTL^* as the fragment of CTL^{*} defined by the following abstract syntax, where p ranges over the set of atomic propositions AP:

$$\varphi ::= \top \mid \perp \mid p \mid \neg p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \mathsf{E}\psi \qquad (\text{state formulæ})$$

$$\psi ::= \varphi \mid \mathsf{X}\psi \mid \psi \land \psi \mid \psi \lor \psi \mid \psi \lor \psi \mid \psi \mathsf{R}\psi .$$
 (path formulæ)

Existential CTL^* includes both LTL and *existential CTL* (hereafter noted ECTL), which is defined by the following abstract syntax:

$$\varphi ::= \top \mid \perp \mid p \mid \neg p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \mathsf{EX}\varphi \mid \mathsf{E}(\varphi \cup \varphi) \mid \mathsf{E}(\varphi \mathsf{R}\varphi) . \quad \text{(state formulæ)}$$

Let us consider two (not necessarily different) Kripke structures $M_1 = \langle S_1, T_1, I_1, AP, l_1 \rangle$ and $M_2 = \langle S_2, T_2, I_2, AP, l_2 \rangle$. We assume these structures to be *total*, where for any state s there exists some state s' such that (s, s') is a transition.

- 1. Prove the following two statements, for any two states s_1 and s_2 , and any two infinite paths π_1 and π_2 in M_1 and M_2 , resp.:
 - (a) if $s_1 \leq s_2$, then for any existential CTL* state formula φ , $s_1 \models \varphi$ implies $s_2 \models \varphi$,
 - (b) if $\pi_1 = s_{0,1}s_{1,1}\cdots$ and $\pi_2 = s_{0,2}s_{1,2}\cdots$ with $s_{i,1} \leq s_{i,2}$ for all i in \mathbb{N} , then for any existential CTL* path formula ψ , $\pi_1 \models \psi$ implies $\pi_2 \models \psi$.
- 2. Let us consider the following relation on $S_1 \times S_2$:

$$\mathcal{F} = \{ (s_1, s_2) \in S_1 \times S_2 \mid \forall \varphi \in \text{ECTL}, s_1 \models \varphi \Rightarrow s_2 \models \varphi \}.$$

Assuming that for all initial states s in I_1 , $\mathcal{F}(s) \cap I_2$ is not empty, show that \mathcal{F} is a simulation between M_1 and M_2 .

3. Conclude by proving the following theorem:

Theorem 1 (Logical Characterization of Simulation). Let $M_1 = \langle S_1, T_1, I_1, AP, l_1 \rangle$ and $M_2 = \langle S_2, T_2, I_2, AP, l_2 \rangle$ be two total Kripke structures and s_1 and s_2 be two states of S_1 and S_2 resp. The following three statements are equivalent:

- 1. $s_1 \leq s_2$,
- 2. for all existential CTL* formulæ φ : $s_1 \models \varphi$ implies $s_2 \models \varphi$,
- 3. for all existential CTL formulæ φ : $s_1 \models \varphi$ implies $s_2 \models \varphi$.