TD 7: Simulation \& Bisimulation

Exercise 1 (Bisimulations). Consider the following Kripke structures:

For each couple of structures, exhibit a bisimulation relation if they are bisimilar, or a CTL* formula allowing to distinguish between them if they are not bisimilar.

Exercise 2 (Computing the Coarsest Bisimulation). Computing \equiv on a single Kripke structure is very similar to the computation of a minimal DFA.

1. Design a partition refinement algorithm for computing \equiv, i.e. an algorithm that computes an initial relation \equiv_{0} and refines it successively until $\equiv_{k}=\equiv$ for some k. Prove that your algorithm terminates and computes \equiv.
2. Apply your algorithm to the union of two bisimilar systems from the previous exercise and draw the quotiented system.

Exercise 3 (Simulations). Consider the following two systems:

1. Exhibit a simulation to prove $t_{0} \preceq s_{0}$.
2. Show that $s_{0} \npreceq t_{0}$.
3. Let $M=\langle S, T, I, \mathrm{AP}, l\rangle$ be a single Kripke structure. Show that \preceq is reflexive and transitive on S. Is it symmetric?
4. Propose an algorithm for computing \preceq on a single structure M.

Exercise 4 (Simulation Quotienting). Two Kripke structures M_{1} and M_{2} are simulation equivalent, noted $M_{1} \simeq M_{2}$ if $M_{1} \preceq M_{2}$ and $M_{2} \preceq M_{1}$. The lecture notes provide an example of two simulation equivalent but not bisimilar structures. Consider now the two following structures M_{s} and M_{t} :

1. Which of the following relations hold: $M_{s} \preceq M_{t}, M_{t} \preceq M_{s}, M_{s} \simeq M_{t}$?
2. Construct the quotient of $\left(M_{s} \cup M_{t}\right)$ by \simeq. Is the resulting system bisimilar to $\left(M_{s} \cup M_{t}\right)$?
3. Prove that if M / \simeq is the quotient of M by \simeq, then $M / \simeq \preceq M$ and $M \preceq M / \simeq$.
4. Call a Kripke structure $M=\langle S, T, I, \mathrm{AP}, l\rangle \mathrm{AP}$-deterministic if
(a) for all the subsets a of AP, $I \cap\{s \in S \mid l(s)=a\} \mid \leq 1$, i.e. there is at most one initial state labeled with each valuation in 2^{AP}, and
(b) for each state s, if there exist two transitions $\left(s, s_{1}\right)$ and $\left(s, s_{2}\right)$ in T with $l\left(s_{1}\right)=l\left(s_{2}\right)$, then $s_{1}=s_{2}$.

Show that, if two Kripke structures M_{1} and M_{2} are AP-deterministic, then they are bisimilar iff they are simulation equivalent.

Exercise 5 (Logical Characterization). Let us define existential CTL* as the fragment of CTL* defined by the following abstract syntax, where p ranges over the set of atomic propositions AP:

$$
\begin{array}{ll}
\varphi::=\top|\perp| p|\neg p| \varphi \wedge \varphi|\varphi \vee \varphi| \mathrm{E} \psi & \text { (state formulæ) } \\
\psi::=\varphi|\mathrm{X} \psi| \psi \wedge \psi|\psi \vee \psi| \psi \cup \psi \mid \psi \mathrm{R} \psi & \text { (path formulæ) }
\end{array}
$$

Existential CTL* includes both LTL and existential CTL (hereafter noted ECTL), which is defined by the following abstract syntax:

$$
\varphi::=\top|\perp| p|\neg p| \varphi \wedge \varphi|\varphi \vee \varphi| \mathrm{EX} \varphi|\mathrm{E}(\varphi \mathrm{U} \varphi)| \mathrm{E}(\varphi \mathrm{R} \varphi) . \quad \text { (state formulæ) }
$$

Let us consider two (not necessarily different) Kripke structures $M_{1}=\left\langle S_{1}, T_{1}, I_{1}, \mathrm{AP}, l_{1}\right\rangle$ and $M_{2}=\left\langle S_{2}, T_{2}, I_{2}, \mathrm{AP}, l_{2}\right\rangle$. We assume these structures to be total, where for any state s there exists some state s^{\prime} such that $\left(s, s^{\prime}\right)$ is a transition.

1. Prove the following two statements, for any two states s_{1} and s_{2}, and any two infinite paths π_{1} and π_{2} in M_{1} and M_{2}, resp.:
(a) if $s_{1} \preceq s_{2}$, then for any existential CTL^{*} state formula $\varphi, s_{1} \models \varphi$ implies $s_{2} \models \varphi$,
(b) if $\pi_{1}=s_{0,1} s_{1,1} \cdots$ and $\pi_{2}=s_{0,2} s_{1,2} \cdots$ with $s_{i, 1} \preceq s_{i, 2}$ for all i in \mathbb{N}, then for any existential CTL* path formula $\psi, \pi_{1} \models \psi$ implies $\pi_{2} \models \psi$.
2. Let us consider the following relation on $S_{1} \times S_{2}$:

$$
\mathcal{F}=\left\{\left(s_{1}, s_{2}\right) \in S_{1} \times S_{2}\left|\forall \varphi \in \mathrm{ECTL}, s_{1} \models \varphi \Rightarrow s_{2}\right|=\varphi\right\}
$$

Assuming that for all initial states s in $I_{1}, \mathcal{F}(s) \cap I_{2}$ is not empty, show that \mathcal{F} is a simulation between M_{1} and M_{2}.
3. Conclude by proving the following theorem:

Theorem 1 (Logical Characterization of Simulation). Let $M_{1}=\left\langle S_{1}, T_{1}, I_{1}, \mathrm{AP}, l_{1}\right\rangle$ and $M_{2}=\left\langle S_{2}, T_{2}, I_{2}\right.$, AP, $\left.l_{2}\right\rangle$ be two total Kripke structures and s_{1} and s_{2} be two states of S_{1} and S_{2} resp. The following three statements are equivalent:

1. $s_{1} \preceq s_{2}$,
2. for all existential CTL* formula φ : $s_{1} \models \varphi$ implies $s_{2} \models \varphi$,
3. for all existential CTL formula φ : $s_{1} \models \varphi$ implies $s_{2} \models \varphi$.
