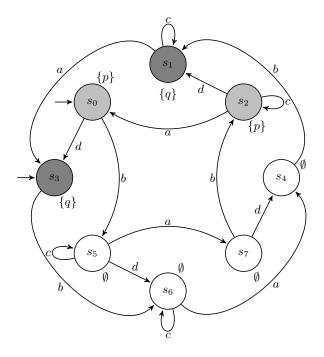
TD 8: Partial Order Reductions

1 Ample Sets

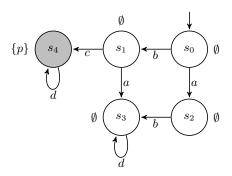
Exercise 1 (Ample Sets). Consider the following transition system with state set $S = \{s_0, \ldots, s_7\}$ and transition alphabet $\Delta = \{a, b, c, d\}$:



- 1. Compute the independence set $I \subseteq \Delta^2$.
- 2. What is the set of invisible actions $U \subseteq \Delta$?
- 3. Propose an assignment $red: S \to 2^{\Delta}$ of ample sets satisfying conditions C_0 – C_3 of the lecture notes.
- 4. Propose a stutter-equivalent system with a reduced set of states.

Exercise 2 (Alternate conditions).

1. Consider the alternate condition C_1'' : for any s with $red(s) \neq en(s)$, any a in red(s) is independent from every b in $en(s) \setminus red(s)$. Show that C_1 implies C_1'' . Does the converse implication hold? Hint: consider the following system with $red: s_0 \mapsto \{a\}, s_2 \mapsto \{b\}, and s_3 \mapsto \{d\}.$



2. Consider the alternate condition C_3'' : any cycle in \mathcal{K}' contains at least one state s with red(s) = en(s). Show that $C_0 - C_2$ and C_3'' together imply C_3 . Do $C_0 - C_3$ together imply C_3'' ?

2 Nested DFS

Partial order reduction using ample sets is especially suited for on-the-fly algorithms for the emptiness of Büchi automata. The usual, linear-time algorithm for this task uses a nested depth-first search.

Recall a DFS-based algorithm for cycle detection from a given state $s \in S$ in a finite directed graph (Q, T), with a global variable $V \subseteq Q$ for the set of already visited vertices:

```
/* no cycle found yet */
 1 found \leftarrow false
                                         /* a stack P \in Q^* of vertices to process */
 2 P \leftarrow s
 3 V \leftarrow V \cup \{s\}
                                                         /* the set of visited vertices */
 4 repeat
        s' \leftarrow top(P)
 5
        if s \in T(s') then
 6
            found \leftarrow true
 7
            push(s, P)
 8
        else
 9
            if T(s') \setminus V \neq \emptyset then
10
                 s'' \leftarrow some(T(s') \backslash V)
                                                   /* some vertice accessible from s^\prime */
11
                 push(s'', P)
12
                 V \leftarrow V \cup \{s''\}
13
            else
14
                pop(P)
15
            \mathbf{end}
16
17
        end
18 until P = \varepsilon \vee found
19 return found
```

Algorithm 1: Cycle(s)

One way to use this algorithm for Büchi automata emptiness is to first find the accepting states s in F of the automaton $\mathcal{B} = \langle Q, \Sigma, \delta, I, F \rangle$ that are reachable from I (also by an *external* DFS), and then call CYCLE(s) with $V = \emptyset$ for each such state—a quadratic time algorithm. The next exercise refines this approach:

Exercise 3 (Nested DFS). The idea of the nested DFS algorithm is to avoid states from previous cycle searches in latter searches—hence the global V in CYCLE. Consider the following external DFS ACYCLE that uses a set of visited states U, and calls CYCLE on reachable accepting states s' of \mathcal{B} once their reachable states have been processed (see line 12).

```
1 P' \leftarrow s
                                      /* a stack P' \in Q^* of vertices to process */
 2 U \leftarrow U \cup \{s\}
                                                      /* the set of visited vertices */
 3 repeat
       s' \leftarrow top(P')
       if T(s')\setminus U\neq\emptyset then
 \mathbf{5}
           s'' \leftarrow some(T(s')\backslash U)
                                                /* some vertice accessible from s' */
 6
           push(s'', P')
 7
           U \leftarrow U \cup \{s''\}
 8
       else
 9
           pop(P')
                              /* all the successors of s' have been processed */
10
           if s' \in F then
11
               found \leftarrow Cycle(s')
                                                                      /* call Cycle on s' */
12
           end
13
       end
14
15 until P' = \varepsilon \vee found
```

Algorithm 2: ACYCLE(s)

1. Consider a call to $ACYCLE(s_0)$ with empty initial U and V. Assume there exists a call to CYCLE(s) performed by ACYCLE such that, before the call,

there is a cycle
$$q_0q_1\cdots q_k, q_0=s=q_k \wedge \exists i, q_i \in V$$
; (†)

without loss of generality assume that s is the first state s.t. (†) occurs. Note that there has to be $s' \in Q$ s.t. Cycle(s') was invoked before Cycle(s) and q_i was visited and added to V during this call to Cycle(s').

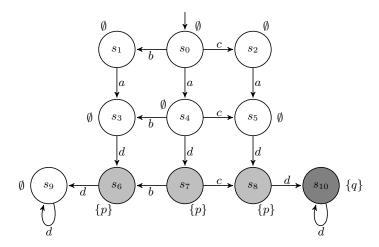
- (a) Consider the two cases: s was visited (i.e. pushed on P') before or after s' in the run of ACYCLE, and derive a contradiction in both cases.
- (b) Why does ACYCLE succeeds in finding acceptance cycles from s_0 ?
- 2. Provide the missing invocation context for ACYCLE to solve Büchi automata emptiness.
- 3. Show that the algorithm works in linear time.

Exercise 4 (Ample Sets in Nested DFS).

- 1. Assume you are given ample sets for each reachable state (i.e. you can call red(s) for any reachable state s and obtain the ample set for s). Adapt the nested DFS algorithm to only explore the reduced system.
- 2. Assume now that you are only provided with a red'(s) function that provides ample sets verifying C_0 – C_2 , but not necessarily C_3 . Adapt your algorithm to enforce C_3'' on the fly. How do C_3' and C_3'' compare?

3 CTL(U) Model Checking

Exercise 5 (C_0 – C_3 are not Sufficient). Consider the following system with $\Delta = \{a, b, c, d\}$:



- 1. Let $red(s_0) = \{b, c\}$ and red(s) = en(s) for $s \neq s_0$; show that this ample set assignment is compatible with C_0 – C_3 .
- 2. Exhibit a CTL(U) formula that distinguishes between the original system and its reduction.
- 3. Can you propose an assignment that also complies with C_4 : if $red(s) \neq en(s)$, then |red(s)| = 1?