MPRI 1-22 Introduction to Verification January 25, 2011

TD 8: Partial Order Reductions

1 Ample Sets

Exercise 1 (Ample Sets). Consider the following transition system with state set S =
{s0,...,s7} and transition alphabet A = {a, b, ¢, d}:

1. Compute the independence set I C A2,
2. What is the set of invisible actions U C A?

3. Propose an assignment red : S — 22 of ample sets satisfying conditions Cy—C3 of
the lecture notes.

4. Propose a stutter-equivalent system with a reduced set of states.

Exercise 2 (Alternate conditions).

1. Consider the alternate condition C7: for any s with red(s) # en(s), any a in
red(s) is independent from every b in en(s)\red(s). Show that Cy implies CY.
Does the converse implication hold? Hint: consider the following system with red:
so — {a}, so — {b}, and s3 — {d}.

MPRI 1-22 Introduction to Verification January 25, 2011

2. Consider the alternate condition C%: any cycle in K’ contains at least one state
s with red(s) = en(s). Show that Cp—C3 and C¥ together imply C3. Do Cy—Cs
together imply C%?

2 Nested DFS

Partial order reduction using ample sets is especially suited for on-the-fly algorithms for
the emptiness of Biichi automata. The usual, linear-time algorithm for this task uses a
nested depth-first search.

Recall a DFS-based algorithm for cycle detection from a given state s € S in a finite
directed graph (@, T), with a global variable V' C @ for the set of already visited vertices:

1 found < false /* no cycle found yet */
2 P+ s /* a stack P € Q* of vertices to process */
3 V+VuU{s} /* the set of visited vertices */
4 repeat

5 s+ top(P)

6 if s € T'(s') then

7 found < true

8 push(s, P)

9 else

10 if T(s")\V # 0 then

11 s" < some(T(s")\V) /* some vertice accessible from s */
12 push(s”, P)

13 V<« VU{s}

14 else

15 | pop(P)

16 end

17 end

18 until P = ¢V found
19 return found
Algorithm 1: CYCLE(s)

MPRI 1-22 Introduction to Verification January 25, 2011

One way to use this algorithm for Biichi automata emptiness is to first find the
accepting states s in F' of the automaton B = (Q, %, 0, I, F') that are reachable from I
(also by an external DFS), and then call CYCLE(s) with V' = {) for each such state—a
quadratic time algorithm. The next exercise refines this approach:

Exercise 3 (Nested DFS). The idea of the nested DFS algorithm is to avoid states from
previous cycle searches in latter searches—hence the global V in CyCLE. Consider the
following external DFS ACYCLE that uses a set of visited states U, and calls CYCLE on
reachable accepting states s’ of B once their reachable states have been processed (see
line 12).

1 P+s /* a stack P’ € Q* of vertices to process */
2 U+ UU{s} /* the set of visited vertices */
3 repeat

4 s+ top(P")

5 if T(s")\U # 0 then

6 s" + some(T(s")\U) /* some vertice accessible from s’ */
7 push(s”, P’)

8 U<+ UU{s"}

9 else

10 pop(P") /* all the successors of s’ have been processed */
11 if s’ € F then

12 | found < CYCLE(s') /* call CYCLE on s’ */
13 end

14 end

15 until P’ = ¢V found

Algorithm 2: ACYCLE(s)

1. Consider a call to ACYCLE(sg) with empty initial U and V. Assume there exists
a call to CYCLE(s) performed by ACYCLE such that, before the call,

there is a cycle qoq1 - g, o = s = qp AN i, ¢ €V ; ()

without loss of generality assume that s is the first state s.t. occurs. Note that
there has to be ' € @ s.t. CYCLE(s') was invoked before CYCLE(s) and ¢; was
visited and added to V' during this call to CYCLE(s’).

(a) Consider the two cases: s was visited (i.e. pushed on P’) before or after s in
the run of ACYCLE, and derive a contradiction in both cases.

(b) Why does ACYCLE succeeds in finding acceptance cycles from s¢?

2. Provide the missing invocation context for ACYCLE to solve Biichi automata
emptiness.

3. Show that the algorithm works in linear time.

MPRI 1-22 Introduction to Verification January 25, 2011

Exercise 4 (Ample Sets in Nested DFS).

1. Assume you are given ample sets for each reachable state (i.e. you can call red(s)
for any reachable state s and obtain the ample set for s). Adapt the nested DFS
algorithm to only explore the reduced system.

2. Assume now that you are only provided with a red’(s) function that provides ample
sets verifying Co—C2, but not necessarily C3. Adapt your algorithm to enforce C¥
on the fly. How do C4 and C¥% compare?

3 CTL(U) Model Checking
Exercise 5 (Cp—C3 are not Sufficient). Consider the following system with A = {a, b, ¢, d}:

0 Lo 0

@ Q € S2
LN
53\ (Dfs) c rs5
1020501
0(so Ce\ fs) “ és\ d {q}
D A

1. Let red(sp) = {b,c} and red(s) = en(s) for s # sp; show that this ample set
assignment is compatible with Cy—Cls.

2. Exhibit a CTL(U) formula that distinguishes between the original system and its
reduction.

3. Can you propose an assignment that also complies with Cy: if red(s) # en(s), then
|red(s)| = 17

	Ample Sets
	Nested DFS
	CTL(U) Model Checking

