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TD 9: Petri Nets

1 Modeling Using Petri Nets

Exercise 1 (Traffic Lights). Consider again the traffic lights example from the lecture
notes:

r

y

g

r → ry y → r

ry → g g → y

1. How can you modify this Petri net so that it becomes 1-safe?

2. Extend your Petri net to model two traffic lights handling a street intersection.

Exercise 2 (Producer/Consumer). A producer/consumer system gathers two types of
processes:

producers who can make the actions produce (p) or deliver (d), and

consumers with the actions receive (r) and consume (c).

All the producers and consumers communicate through a single unordered channel.

1. Model a producer/consumer system with two producers and three consumers. How
can you modify this system to enforce a maximal capacity of ten simultaneous items
in the channel?

2. An inhibitor arc between a place p and a transition t makes t firable only if the
current marking at p is zero. In the following example, there is such an inhibitor
arc between p1 and t. A marking (0, 2, 1) allows to fire t to reach (0, 1, 2), but
(1, 1, 1) does not allow to fire t.
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p1

p2

p3

t

Using inhibitor arcs, enforce a priority for the first producer and the first consumer
on the channel: the other processes can use the channel only if it is not currently
used by the first producer and the first consumer.

2 Unfoldings

Exercise 3 (Adequate Partial Orders). A partial order ≺ between events is adequate if
the three following conditions are verified:

(a) ≺ is well-founded,

(b) Ct ⊊ Ct′ implies t ≺ t′, and

(c) ≺ is preserved by finite extensions: as in the lecture notes, if t ≺ t′ and Mt = Mt′ ,
and E and E′ are two isomorphic extensions of Ct and Ct′ with Cu = Ct ⊕E and
Cu′ = Ct′ ⊕ E′, then u ≺ u′.

As you can guess, adequate partial orders result in complete unfoldings.

1. Show that ≺s defined by t ≺s t
′ iff ∣Ct∣ < ∣Ct′ ∣ is adequate.

2. Construct the finite unfolding of the following Petri net using ≺s; how does the
size of this unfolding relate to the number of reachable markings?

p0

p1

p2

t1 t2

t3 t4

3. Suppose we define an arbitrary total order≪ on the transitions T of the Petri net,
i.e. they are t1 ≪ ⋅ ⋅ ⋅ ≪ tn. Given a set S of events and conditions of Q, '(S) is
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the sequence ti11 ⋅ ⋅ ⋅ tinn in T ∗ where ij is the number of events labeled by tj in S.
We also note ≪ for the lexicographic order on T ∗.

Show that ≺e defined by t ≺e t
′ iff ∣Ct∣ < ∣Ct′ ∣ or ∣Ct∣ = ∣Ct′ ∣ and '(Ct)≪ '(Ct′)

is adequate. Construct the finite unfolding for the previous Petri net using ≺e.

4. There might still be examples where ≺e performs poorly. One solution would be
to use a total adequate order. Give a 1-safe Petri net that shows that ≺e is not
total.

3 Model Checking Petri Nets

Exercise 4 (Upper Bounds). Let us fix a Petri net N = ⟨P, T, F,W,m0⟩. We consider
as usual propositional LTL, with a set of atomic propositions AP equal to P the set
of places of the Petri net. We define proposition p to hold in a marking m in ℕP if
m(p) > 0.

The models of our LTL formulæ are computations m0m1 ⋅ ⋅ ⋅ in (ℕP )! such that, for
all i ∈ ℕ, mi →N mi+1 is a transition step of the Petri net N .

1. We want to prove that state-based LTL model checking can be performed in poly-
nomial space for 1-safe Petri nets. For this, prove that one can construct an
exponential-sized Büchi automaton ℬN from a 1-safe Petri net that recognizes all
the infinite computations of N starting in m0.

2. In the general case, state-based LTL model checking is undecidable. Prove it for
Petri nets with at least two unbounded places, by a reduction from the halting
problem for 2-counter Minsky machines.

3. We consider now a different set of atomic propositions, such that Σ = 2AP, and a
labeled Petri net, with a labeling homomorphism � : T → Σ. The models of our

LTL formulæ are infinite words a0a1 ⋅ ⋅ ⋅ in Σ! such that m0
t0−→N m1

t1−→N m2 ⋅ ⋅ ⋅
is an execution of N and �(ti) = ai for all i.

Prove that action-based LTL model checking can be performed in polynomial space
for labeled 1-safe Petri nets.

Exercise 5 (Lower Bounds for 1-Safe Petri Nets). A linear bounded automaton (LBA)
ℳ = ⟨Q,Σ ⊎ {⊣,⊢},Γ, �, q0,#, F ⟩ is a Turing machine with a left endmarker ⊣ and a
right endmarker ⊢,

∙ that cannot move left from ⊣ nor right from ⊢,

∙ that cannot print over ⊣ or ⊢, and

∙ that starts with input ⊣ x ⊢ for some x in Σ∗.
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A LBA is thus restricted to its initial tape contents. The membership problem for a
LBA with input ⊣ x ⊢ is PSpace-hard.

1. Show how to simulate a LBA with input ⊣ x ⊢ by a 1-safe Petri net of quadratic
size.

2. Show that state-based LTL model checking is PSpace-hard in the size of the Petri
net for 1-safe Petri nets.

3. Show that action-based LTL model checking is PSpace-hard in the size of the
Petri net for labeled 1-safe Petri nets.

4 Coverability

The coverability problem for Petri nets is the following decision problem:

Instance: A Petri net N = ⟨P, T, F,W,m0⟩ and a marking m1 in ℕP .

Question: Does there exist m2 in ReachN (m0) such that m1 ≤ m2?

For 1-safe Petri nets, coverability coincides with reachability, and is thus PSpace-
complete according to the previous exercises.

Exercise 6 (Inhibitor Arcs). Prove that the coverability problem is undecidable for
Petri nets having two inhibitor arcs.
(Hint: start by proving its undecidability for Petri nets with two places that are the
sources of all the inhibitor arcs.)

Exercise 7 (Rackoff’s Algorithm). Let us fix a Petri net N = ⟨P, T, F,W,m0⟩. We
consider generalized markings in ℤP . A generalized computation is a sequence �1 ⋅ ⋅ ⋅�n
in (ℤP )∗ such that, for all 1 ≤ i < n, there is a transition t in T with �i+1(p) =
�i(p)−W (p, t) +W (t, p) for all p ∈ P (i.e. we do not enforce enabling conditions). For a
subset I of P , a generalized sequence is I-admissible if furthermore �i(p) ≥ W (p, t) for
all p in I at each step 1 ≤ i < n. For a value B in ℕ, it is I–B-bounded if furthermore
�i(p) < B for all p in I at each step 1 ≤ i ≤ n. A generalized sequence is an I-covering
for m1 if �1 = m0 and �n(p) ≥ m1(p) for all p in I.

Thus a computation is a P -admissible generalized computation, and a P -admissible
P -covering for m1 answers the coverability problem.

For a Petri net N = ⟨P, T, F,W,m0⟩ and a marking m1 in ℕP , let ℓ(N ,m1) be the
length of the shortest P -admissible P -covering for m1 in N if one exists, and otherwise
ℓ(N ,m1) = 0. For L, k in ℕ, define

ML(k) = sup{ℓ(N ,m1) ∣ ∣P ∣ = k,

max{W (p, t) ∣ p ∈ P, t ∈ T}+ max{m1(p) ∣ p ∈ P} ≤ L} .
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1. Show that ML(0) ≤ 1.

2. We want to show that

ML(k) ≤ (L ⋅ML(k − 1))k +ML(k − 1)

for all k ≥ 1. To this end, we prove that, for every marking m1 in ℕP for a Petri
net N with ∣P ∣ = k,

ℓ(N ,m1) ≤ (L ⋅ML(k − 1))k +ML(k − 1) . (∗)

Let

B = ML(k − 1) ⋅max{W (p, t) ∣ p ∈ P, t ∈ T}+ max{m1(p) ∣ p ∈ P} .

and suppose that there exists a P -admissible P -covering w = �1 ⋅ ⋅ ⋅�n for m1 in
N .

(a) Show that, if w is P–B-bounded, then (∗) holds.

(b) Assume the contrary: we can split w as w1w2 such that w1 is P–B-bounded
and w2 starts with a marking �j with a place p such that �j(p) ≥ B. Show
that (∗) also holds.

3. Show that ML(∣P ∣) ≤ L(3⋅∣P ∣)! for L = 2 + max{W (p, t) ∣ p ∈ P, t ∈ T} +
max{m1(p) ∣ p ∈ P}.

4. Assuming that the size n of the instance (N ,m1) of the coverability problem is
more than

max{logL, ∣P ∣,max{logW (t, p) ∣ t ∈ T, p ∈ P}} ,

deduce that we can guess a P -admissible P -covering for m1 of length at most
22

c⋅n logn
for some constant c. Conclude that coverability can be solved in Ex-

pSpace.

5 Vector Addition Systems

Exercise 8 (VASS). An n-dimensional vector addition system with states (VASS) is
a tuple V = ⟨Q, �, q0⟩ where Q is a finite set of states, q0 ∈ Q the initial state, and
� ⊆ Q× ℤn ×Q the transition relation. A configuration of V is a pair (q, v) in Q× ℕn.
An execution of V is a sequence of configurations (q0, v0)(q1, v1) ⋅ ⋅ ⋅ (qm, vm) such that
v0 = 0̄, and for 0 < i ≤ m, (qi−1, vi − vi−1, qi) is in �.

1. Show that any VASS can be simulated by a Petri net.

2. Show that, conversely, any Petri net can be simulated by a VASS.
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Exercise 9 (VAS). An n-dimensional vector addition system (VAS) is a pair (v0,W )
where v0 ∈ ℕn is the initial vector and W ⊆ ℤn is the set of transition vectors. An
execution of (v0,W ) is a sequence v0v1 ⋅ ⋅ ⋅ vm where vi ∈ ℕ for all 0 ≤ i ≤ m and
vi − vi−1 ∈W for all 0 < i ≤ m.

We want to show that any n-dimensional VASS V can be simulated by an (n + 3)-
dimensional VAS (v0,W ).
Hint: Let k = ∣Q∣, and define the two functions a(i) = i + 1 and b(i) = (k + 1)(k − i).
Encode a configuration (qi, v) of V as the vector (v(1), . . . , v(n), a(i), b(i), 0). For every
state qi, 0 ≤ i < k, we add two transition vectors to W :

ti = (0, . . . , 0,−a(i), a(k − i)− b(i), b(k − i))
t′i = (0, . . . , 0, b(i),−a(k − i), a(i)− b(k − i))

For every transition d = (qi, w, qj) of V, we add one transition vector to W :

td = (w(1), . . . , w(n), a(j)− b(i), b(j),−a(i))

1. Show that any execution of V can be simulated by (v0,W ) for a suitable v0.

2. Conversely, show that this VAS (v0,W ) simulates V faithfully.
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