MPRI 1-22 Introduction to Verification February 8, 2011

TD 9: Petri Nets

1 Modeling Using Petri Nets

Exercise 1 (Traffic Lights). Consider again the traffic lights example from the lecture
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r— ry?

S

ry —g

“\M@\M

1. How can you modify this Petri net so that it becomes 1-safe?

2. Extend your Petri net to model two traffic lights handling a street intersection.

Exercise 2 (Producer/Consumer). A producer/consumer system gathers two types of
processes:

producers who can make the actions produce (p) or deliver (d), and
consumers with the actions receive (r) and consume (c).

All the producers and consumers communicate through a single unordered channel.

1. Model a producer/consumer system with two producers and three consumers. How
can you modify this system to enforce a maximal capacity of ten simultaneous items
in the channel?

2. An inhibitor arc between a place p and a transition ¢ makes ¢ firable only if the
current marking at p is zero. In the following example, there is such an inhibitor
arc between p; and ¢. A marking (0,2,1) allows to fire ¢ to reach (0,1,2), but
(1,1,1) does not allow to fire .



MPRI 1-22 Introduction to Verification February 8, 2011

Oh_
SO

b2

Using inhibitor arcs, enforce a priority for the first producer and the first consumer
on the channel: the other processes can use the channel only if it is not currently
used by the first producer and the first consumer.

2 Unfoldings

Exercise 3 (Adequate Partial Orders). A partial order < between events is adequate if
the three following conditions are verified:

(a) < is well-founded,
(b) Cy € Oy implies t < t', and

(¢) < is preserved by finite extensions: as in the lecture notes, if t <t and My = My,
and E and E’ are two isomorphic extensions of C; and Cy with C,, = C; @ FE and
Cyw =Cy @ FE, then u < .

As you can guess, adequate partial orders result in complete unfoldings.
1. Show that < defined by t <, ¢ iff |Cy| < |Cy| is adequate.

2. Construct the finite unfolding of the following Petri net using <,; how does the
size of this unfolding relate to the number of reachable markings?
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3. Suppose we define an arbitrary total order < on the transitions 7" of the Petri net,
i.e. they are t; < --- < t,,. Given a set S of events and conditions of Q, ¢(S) is

[\)
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the sequence till -+tin in T* where 4; is the number of events labeled by ¢; in S.
We also note < for the lexicographic order on T*.

Show that <. defined by ¢ <. ¢’ iff |Cy| < |Cy| or |Cy| = |Cyp| and ¢(Cy) < o(Cy)
is adequate. Construct the finite unfolding for the previous Petri net using <.

4. There might still be examples where <. performs poorly. One solution would be
to use a total adequate order. Give a 1-safe Petri net that shows that <. is not
total.

3 Model Checking Petri Nets

Exercise 4 (Upper Bounds). Let us fix a Petri net N' = (P, T, F, W, mg). We consider
as usual propositional LTL, with a set of atomic propositions AP equal to P the set
of places of the Petri net. We define proposition p to hold in a marking m in N? if
m(p) > 0.

The models of our LTL formulee are computations momy --- in (N¥)® such that, for
all i € N, m; —ar m;41 is a transition step of the Petri net N.

1. We want to prove that state-based LTL model checking can be performed in poly-
nomial space for 1-safe Petri nets. For this, prove that one can construct an
exponential-sized Biichi automaton By, from a 1-safe Petri net that recognizes all
the infinite computations of A/ starting in my.

2. In the general case, state-based LTL model checking is undecidable. Prove it for
Petri nets with at least two unbounded places, by a reduction from the halting
problem for 2-counter Minsky machines.

3. We consider now a different set of atomic propositions, such that ¥ = 24P and a
labeled Petri net, with a labeling homomorphism A : T" — 3. The models of our
LTL formulee are infinite words agaj - -- in X% such that mg t—0>/\/ my t—1>/\/ mo - -+
is an execution of N and \(t;) = a; for all .

Prove that action-based LTL model checking can be performed in polynomial space
for labeled 1-safe Petri nets.

Exercise 5 (Lower Bounds for 1-Safe Petri Nets). A linear bounded automaton (LBA)
M =(Q, YW {H,F},T,6,q,#,F) is a Turing machine with a left endmarker - and a
right endmarker |,

e that cannot move left from = nor right from ,
e that cannot print over - or -, and

e that starts with input 4 x I for some x in ¥*.
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A LBA is thus restricted to its initial tape contents. The membership problem for a
LBA with input - z I is PSPACE-hard.

1. Show how to simulate a LBA with input 4 x - by a 1-safe Petri net of quadratic
size.

2. Show that state-based LTL model checking is PSPACE-hard in the size of the Petri
net for 1-safe Petri nets.

3. Show that action-based LTL model checking is PSPACE-hard in the size of the
Petri net for labeled 1-safe Petri nets.

4 Coverability

The coverability problem for Petri nets is the following decision problem:
Instance: A Petri net N' = (P, T, F, W, mg) and a marking m; in N*.
Question: Does there exist mgy in Reachy(mg) such that m; < mg?

For 1-safe Petri nets, coverability coincides with reachability, and is thus PSPACE-
complete according to the previous exercises.

Exercise 6 (Inhibitor Arcs). Prove that the coverability problem is undecidable for
Petri nets having two inhibitor arcs.

(Hint: start by proving its undecidability for Petri nets with two places that are the
sources of all the inhibitor arcs.)

Exercise 7 (Rackoff’s Algorithm). Let us fix a Petri net N' = (P, T, F, W, mg). We
consider generalized markings in Z¥. A generalized computation is a sequence fi - - - fin
in (ZP)* such that, for all 1 < i < n, there is a transition ¢ in T with p;41(p) =
wi(p) —Wi(p,t)+ W (t,p) for all p € P (i.e. we do not enforce enabling conditions). For a
subset I of P, a generalized sequence is I-admissible if furthermore u;(p) > W(p,t) for
all pin I at each step 1 < i < n. For a value B in N, it is [-B-bounded if furthermore
wi(p) < B for all p in I at each step 1 <i < n. A generalized sequence is an I-covering
for my if g1 = mo and py,(p) > mi(p) for all p in 1.

Thus a computation is a P-admissible generalized computation, and a P-admissible
P-covering for m, answers the coverability problem.

For a Petri net N' = (P, T, F, W, mg) and a marking m; in N”| let £(NV,m1) be the
length of the shortest P-admissible P-covering for m; in N if one exists, and otherwise

¢(N,mq) =0. For L, k in N, define

M (k) = sup{t(N,m) | |P| =k,
max{W(p,t) | p € P,t € T} + max{mi(p) |p € P} < L}.
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1. Show that M (0) < 1.

2. We want to show that
My (k) < (L-Mp(k—1)"+ My(k—1)

for all k£ > 1. To this end, we prove that, for every marking m; in N for a Petri
net N with |P| = k,

UN,my) < (L Mp(k— 1)+ Mp(k-1). (%)
Let
B = Mp(k—1) max{W(p,t) |p€ P,t € T} + max{mi(p) | p € P} .

and suppose that there exists a P-admissible P-covering w = pq - - - pp, for my in

N.
(a) Show that, if w is P—B-bounded, then holds.

(b) Assume the contrary: we can split w as wjws such that w; is P—B-bounded
and wy starts with a marking 4; with a place p such that u;(p) > B. Show
that also holds.

3. Show that Mp(|P|) < LGP for L = 2 4+ max{W(p,t) | p € Pt € T} +
max{m1(p) | p € P}.

4. Assuming that the size n of the instance (N, m1) of the coverability problem is
more than
max{log L, |P|, max{log W (t,p) |t € T,p € P}},

deduce that we can guess a P-admissible P-covering for m of length at most
22" ™ for some constant c. Conclude that coverability can be solved in Ex-
PSPACE.

5 Vector Addition Systems

Exercise 8 (VASS). An n-dimensional vector addition system with states (VASS) is
a tuple V = (Q,0,qo) where @ is a finite set of states, qo € @ the initial state, and
d C Q xZ" x @Q the transition relation. A configuration of V is a pair (¢,v) in @ x N".
An execution of V is a sequence of configurations (qo,v0)(q1,v1) - (¢m,vm) such that
vo =0, and for 0 <i <m, (gi_1,v; — vi_1,q) is in 6.

1. Show that any VASS can be simulated by a Petri net.

2. Show that, conversely, any Petri net can be simulated by a VASS.
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Exercise 9 (VAS). An n-dimensional vector addition system (VAS) is a pair (vo, W)
where vg € N” is the initial vector and W C Z" is the set of transition vectors. An
execution of (vg, W) is a sequence wvgvy - - - vy, where v; € N for all 0 < ¢ < m and
v; —vi—1 € Wiorall 0 <i<m.

We want to show that any n-dimensional VASS V can be simulated by an (n + 3)-
dimensional VAS (vg, W).
Hint: Let & = |Q|, and define the two functions a(i) =i+ 1 and b(i) = (k + 1)(k — 7).
Encode a configuration (g;,v) of V as the vector (v(1),...,v(n),a(i),b(i),0). For every

state ¢;, 0 < i < k, we add two transition vectors to W:

i =(0,...,0,—a(i),a(k —i) — b(i),b(k — 7))
L=1(0,...,0,b(i), —a(k —i),a(i) — b(k — 7))

For every transition d = (g;,w, g;) of V, we add one transition vector to W:
ta = (’ll/‘(l), SRR ’UJ(TL), (l(/) - b(1>* b(/) _(L(D)

1. Show that any execution of V can be simulated by (vg, W) for a suitable vp.

2. Conversely, show that this VAS (vo, W) simulates V faithfully.
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