
MPRI 2-27-1 December 1, 2011

Exam: Thematic Role Labeling

Duration: 3 hours.
Written documents are allowed. The numbers in front of questions
are indicative of hardness or duration. The exam is clearly too long,
but offers a variety of subjects, with independent exercises. You
should pick your favorite questions and skip the rest.

The problem we address in this exam is that of semantic role labeling. It is com-
monplace in linguistic description to split the sentence analysis into two subparts:

syntax which provides the tree structure of a sentence, and

semantic analysis, which is here reduced to the (shallow) task of identifying thematic
roles in the trees.

We consider here a very restricted setting inspired by Gildea and Jurafsky (2002). A
constituent syntax analysis is provided (left-hand side tree) along with a target word
wt labeling one of its leaves (marked by # and underlined in the tree) and a thematic
frame telling which thematic roles we intend to identify in this tree (in the example,
this would be Θ = {Agt,Thm, Ins} standing for agent, theme, and instrument resp.).
The output of the task is the tree annotated with thematic labels (right-hand side tree,
with underlined nodes for better readability).

S

NP

NNP

John

VP

VP

VBZ

eats-#

NP

DT

an

NN

apple

PP

IN

with

NP

DT

a

NN

knife

S

NP-Agt

NNP

John

VP

VP

VBZ

eats-#

NP-Thm

DT

an

NN

apple

PP-Ins

IN

with

NP

DT

a

NN

knife

Formally, given a ranked alphabet Σ with such symbols as S(2), NP(1), John(0) and
maximal rank 2, we want to obtain a tree labeled by Σ×R where the additional set of
labels R is defined as Θ] {#,⊥}, where # is the marker for the target word, and ⊥ is
a dummy role. The alphabet Σ ×R is ranked using the arities of Σ, i.e. (NP,Thm) is
of arity 2 corresponding to the arity 2 of NP.

An R-labeled Σ-tree is then a tree in T (Σ×R) such that:

1. each thematic role in Θ appears exactly once in the tree, and

2. the target leaf is labeled (wt,#) and no other node is labeled by #.

1

MPRI 2-27-1 December 1, 2011

A marked tree is a tree t in T (Σ× {#,⊥}) with a single leaf marked by #, which has
to be labeled (wt,#). The left-hand side tree is a marked tree.

Given a marked tree t, a R-labeling of t is an R-labeled Σ-tree t′ s.t. dom(t) =
dom(t′) and for the position u in dom(t) s.t. t(u) = (wt,#), t′(u) = (wt,#), i.e. the
labeling preserves the marked target leaf. For instance, the right-hand side tree is an
R-labeling of the left-hand side tree (with ⊥ labels omitted in both cases).

In order to perform the thematic role labeling task, we intend to train a weighted
tree transducer that inputs a marked tree and outputs every R-labeling of it along
with some weight in R (representing its confidence in the added labels). One way of
learning this transformation is to use a fixed set of features Φ. Assume for now that
you know which nodes need to be labelled. For a given node, the semantic role labeller
will assign a label r to that node from the set of thematic roles Θ by voting for each
label.

The vote for a label r is the inner product Vr
def
= λr ·Φ. The predicted label is the

label with the highest score

r
def
= argmax

r∈Θ
Vr = argmax

r∈Θ
λr ·Φ . (∗)

The vector Φ is a vector of boolean valued features φ1 · · ·φn where each φi is associated

to a weight λr,i in R. The vote for a full R-labeled tree t is the sum Vt
def
=

∑
r∈Θ Vr of

the votes for each (unique by definition) r-labeled node in the tree t, and the predicted
tree is

t′
def
= argmax

t′ R-labeling of t
Vt′ . (†)

A feature is thus a mapping from positions in input trees to boolean values, telling
if the position exhibits a particular characteristic that will help in predicting the correct
label. We implement each feature φi using a PDL formula ϕi holding (or not) at the
tested position. We consider two kinds of features in this exam:

head word information: given a node in the tree, recover the label (in Σ0) of its head.
For instance, NP-Agt verifies the feature h = John, NP-Thm verifies h = apple,
and PP-Ins verifies h = knife. Observe that this lexical information is very helpful
in our example: it is unlikely for an apple to be either an agent or an instrument
in an eating action.

path information: given a node in the tree, recover the shortest path to the target
marked word wt. Concretely, a path feature p = π is defined by the syntax
π ::= πu ↑ a ↓ πd where πu ∈ Σ+, πd ∈ Σ∗, and a ∈ Σ, denoting that the upward
path to the least common ancestor (LCA) of the node and wt is reached by reading
πu (the node label included), that this LCA is labeled a, and that we can then go
downwards to wt by reading πd (the leaf labeled wt excluded). For instance, for
NP-Agt, p = NP ↑ S ↓ VP VP VBZ, for NP-Thm, p = NP ↑ VP ↓ VBZ, and for
PP-Ins, p = PP ↑ VP ↓ VP VBZ. Again, this information is quite helpful: the
path from the PP node is rather unlikely for an agent.

2

MPRI 2-27-1 December 1, 2011

Exercise 1 (PDL Implementation). It is more convenient to work in PDL with a set
of atomic propositions A = Σ] {#} allowing to have several label simultaneously on a
single node. (We will later restrict ourselves to R-labeled Σ-trees.)

1. Given a feature p = π, construct a PDL formula ϕπ that holds at a tree node iff[2]

the shortest path from that node to the #-labeled node matches π.

Let π = πu ↑ a ↓ πd. We define inductively

ϕbπ′ = b ∧ 〈↑〉ϕπ′ (upward path)

ϕ↑a↓πd = (〈→〉ϕπd ∨ 〈←〉ϕπd) ∧ 〈↑〉a (upon reaching the LCA)

ϕbπ′
d

= b ∧ 〈↓〉ϕπ′
d

(downward path)

ϕε = # . (checking the # mark)

As a quick justification: because we work with at most binary arities, the LCA of
the node and of the target leaf is necessarily a binary node, and we merely need
to go to the left or right sibling just before reaching it.

Beware that a naive implementation like

ϕ↑a↓πd = 〈↑〉(a ∧ 〈↓〉ϕπd)

does not work because we could go down using the same child of the a-labeled
node as we came from, but then the a-labeled node is not the LCA.

An alternative is to check at each upward step that we have not reached the LCA
yet:

ϕbπ′ = b ∧ ¬〈↓∗〉# ∧ 〈↑〉ϕπ′

ϕ↑a↓πd = ¬〈↓∗〉# ∧ 〈↑〉(a ∧ 〈↓〉ϕπd) .

2. Given a feature h = ` with ` ∈ Σ0 a leaf label, construct a PDL formula ϕ` that[5]

holds at a tree node iff its lexical head is `.

This is meant as an open question, though you are encouraged to reuse the head
percolation functions described in class. Your formula should of course work
on the example.

Exercise 2 (PDL and Bisimulations). We consider here the restriction of PDL to
the vertical axis: only the ↓ atomic relation is permitted. Let us consider two tree
structures M = 〈W, ↓, (Pa)a∈A〉 and M′ = 〈W ′, ↓, (Pa)a∈A〉. A non-empty relation
Z ⊆ W ×W ′ is a bisimulation (with converses) between M and M′ if for all nodes
w ∈W and w′ ∈W ′ s.t. w Z w′:

(i) {a ∈ A | Pa(w)} = {a′ ∈ A | Pa(w′)},

3

MPRI 2-27-1 December 1, 2011

(ii) if w ↓ w1, then there exists w′1 s.t. w′ ↓ w′1 and w1 Z w
′
1,

(iii) if w′ ↓ w′1, then there exists w1 s.t. w ↓ w1 and w1 Z w
′
1,

(iv) if w ↑ w1, then there exists w′1 s.t. w′ ↑ w′1 and w1 Z w
′
1,

(v) if w′ ↑ w′1, then there exists w1 s.t. w ↑ w1 and w1 Z w
′
1,

where ↑ denotes the converse of ↓. We say that w and w′ are bisimilar, noted w ↔ w′,
if there exists a bisimulation Z s.t. w Z w′.

1. Show that the left node w1 labeled g in the tree f(g(a), g(a)) and the unique node[1]

w′1 labeled g in f(g(a)) are bisimilar:

f
w0

g
w1

a
w2

g
w3

a
w4

f
w′

0

g
w′

1

a
w′

2

The relation Z defined by

Z = {(w0, w
′
0), (w1, w

′
1), (w3, w

′
1), (w2, w

′
2), (w4, w

′
2)}

is a bisimulation between the two trees.

2. Show that, if w ↔ w′ and ϕ is a PDL formula using only the vertical axis, then[4]

w ∈ JϕKM iff w′ ∈ JϕKM′ .

Without loss of generality, we assume converse operators to be “pushed to the
leaves” using the converse equivalences seen in class, so that the syntax of vertical
PDL path formulæ is

π ::= ↓ | ↑ | π;π | π + π | π∗ | ϕ?

where ϕ ranges over vertical PDL formulæ.

Let us fix a bisimulation relation Z between M and M′. The proof proceeds by
induction over PDL formulæ ϕ:

For a an atomic proposition in A, we have w ∈ JaKM iff w′ ∈ JaKM′ by (i).

For > we have w ∈ J>KM = W iff w′ ∈ J>KM′ = W ′.

For ¬ϕ we have w ∈ J¬ϕKM iff w 6∈ JϕKM, by ind. hyp. iff w′ 6∈ JϕKM′ , iff w′ ∈
J¬ϕKM′ .

For ϕ∨ϕ′ similarly by ind. hyp.

4

MPRI 2-27-1 December 1, 2011

For 〈π〉ϕ we have w ∈ J〈π〉ϕKM iff there exists w1 s.t. w1 ∈ JϕKM and (w,w1) ∈
JπKM. Let us show using the ind. hyp. along with (ii) and (iv) that

w Z w′ and (w,w1) ∈ JπKM imply ∃w′1 ∈W ′, w1 Z w
′
1 and (w′, w′1) ∈ JπKM′

(‡)
By ind. hyp. we deduce from (‡) that w′ ∈ J〈π〉ϕKM′ , and symmetrically using
(iii) and (v) we can show the equivalence.

Let us prove (‡) by induction on PDL path formulæ π:

For ↓ by (ii).

For ↑ by (iv).

For π;π′ we have (w,w1) ∈ Jπ;π′KM iff there exists w2 s.t. (w,w2) ∈ JπKM
and (w2, w1) ∈ Jπ′KM. By ind. hyp. on π, the first implies the existence
of w′2 s.t. w2 Z w

′
2 and (w′, w′2) ∈ JπKM′ . Using the ind. hyp. on π′, there

exists w′1 s.t. w1Zw
′
1 and (w′2, w

′
1) ∈ Jπ′KM′ . But then (w′, w′1) ∈ Jπ;π′KM′ .

For π+ π′ by ind. hyp.

For π∗ by ind. hyp. (similar to the π;π′ case, only longer. . .)

For ϕ? by ind. hyp. on ϕ.

Exercise 3 (Translation to Automata). Recall that, for any PDL formula ϕ, one can
construct an equivalent tree automaton that recognizes a tree M iff M, root |= ϕ, i.e.
ϕ holds at the root of M. We apply this construction to formulæ 〈↓∗〉(r ∧ ϕi) where r
is a role in Θ and ϕi a formula implementing some feature φi, thereby obtaining a tree
automaton Ar,i, which can be assumed wlog. to be bottom-up deterministic.

1. An issue is that we need to restrict ourselves to R-labeled trees. We can do this[2]

by intersecting with a tree automaton. Give a deterministic bottom-up automaton
AR = 〈QR,Σ×R, δR, FR〉 that recognizes the set of R-labeled Σ-trees with wt as
target leaf.

Set QR = 2Θ]{#}, FR = {Θ] {#}}, and

δR = {(q1, . . . , qn, (a, r)
(n), q) | r ∈ Θ, a ∈ Σ and q1] · · ·] qn] {r} = q}

∪ {(q1, . . . , qn, (a,⊥)(n), q) | a ∈ Σ, q1] · · ·] qn = q}
∪ {((wt, t)(0), {#})} .

2. The translation from PDL to tree automata is however a computationally expensive[3]

procedure, and there is ample room for improvement when we know the formula
in question is of a restricted form.

Let π = πu ↑ a ↓ πd be a path feature value, r a thematic role in Θ, and wt a
target word. Give a construction for a deterministic bottom-up tree automaton

5

MPRI 2-27-1 December 1, 2011

Ar,π = 〈Qr,π,Σ × R, δr,π, Fr,π〉 s.t. the intersection automaton AR ∩ Ar,π accepts
only R-labeled Σ-trees with π denoting the shortest path between the node labeled
(b, r) for some b and the leaf labeled (wt,#). We wish Ar,π to be of size linear in
|π| (defined as |πu|+ |πd|+ 1).

Set Qr,π = {i, f}]Suff+(πu)]Pref(πd) (i.e. we distinguish between proper suffixes
of πu and prefixes of πd, even if they are the same strings), Fr,π = {f}, and

δr,π = {(q1, . . . , qn, (b, r
′)(n), q) | b ∈ Σ, r′ 6= r, r′ 6= #, q1 = · · · = qn = q = i}

∪ {((wt,#)(0), πd)}
∪ {(q1, . . . , qn, (b, r

′)(n), q) | r′ 6= r, r′ 6= #, ∃j, qj = qb ∈ Pref(πd) and ∀k 6= j, qk = i}
∪ {(q1, . . . , qn, (b, r)

(n), q) | πu = bq and ∀j, qj = i}
∪ {(q1, . . . , qn, (b, r

′)(n), q) | r′ 6= r, r′ 6= #, ∃j, qj = bq ∈ Suff+(πu) and ∀k 6= j, qk = i}
∪ {(ε, ε, (a, r′)(2), f) | r′ 6= r, r′ 6= #}
∪ {(q1, . . . , qn, (b, r

′)(n), f) | r′ 6= r, r′ 6= #, b ∈ Σ, ∃j, qj = f and ∀k 6= j, qk = i} ,

n ranging over {0, 1, 2} since we consider trees with maximal arity 2.

The automaton has

|δr,π| = 3|Σ|(|Θ| − 1) + 1 + 3|πd|(|Θ| − 1) + 3 + 3(|πu| − 1)(|Θ| − 1) + |Θ| − 1 + 3|Σ|(|Θ| − 1)

= O(|Θ||p|+ |Σ||Θ|)

transitions.

Definition 1 (Weighted Tree Transducers). A weighted bottom-up tree trans-
ducer (wBUTT) over a commutative semiring K = 〈K,⊕,�, 0K, 1K〉 is a tuple T =
〈Q,Σ,∆, R, F 〉 where Q is a finite set of states, Σ a ranked input alphabet, ∆ a ranked
output alphabet, F ⊆ Q a set of final states, and R a finite set of rules of form

a(n)(q1(x1), . . . , qn(xn))→κ q(t)

where a is an input symbol from Σ, q1, . . . , qn, q states in Q, x1, . . . , xn variables in X , κ
a weight in K, and t a term in T (∆,X). A wBUTT is alphabetic (an awBUTT) if in
every rule t is of form b(n)(x1, . . . , xn) with b in ∆, i.e. if the rules only relabel the tree
without further change.

In order to account for weights, the usual rewrite semantics⇒ are refined to compute
the current weight during a derivation. Write C[t{x1 ← t1, . . . , xn ← tn}]⇒κ C[t′{x1 ←
t1, . . . , xn ← tn}] if ρ = t →κ t′ is a rule in R. We write t ⇒ρ

κ t′ if there exists m
intermediate steps t⇒ρ1

κ1 t1 · · · tm−1 ⇒ρm
κm t′, ρ = ρ1 · · · ρm, and κ =

⊙m
i=1 κi (thus ρ = ε

and κ = 1K if m = 0), so that the weight of a run ρ is the product of its individual
weights.

6

MPRI 2-27-1 December 1, 2011

The weighted transduction in T (Σ)×K× T (∆) defined by a wBUTT is

JT K def
= {(t,

⊕
ρ|∃q∈F.t⇒ρ

κρq(t
′)

κρ, t
′) | t ∈ T (Σ), t′ ∈ T (∆)}

i.e. we sum the weights of all the possible transductions from t to t′. Thus a transduction
from t to t′ with no possible run gets a weight of 0K.

A BUTT T is unambiguous if, for every pair of trees (t, t′) in T (Σ)× T (∆), there
is at most one run for it, i.e.

∀(t, t′) ∈ T (Σ)× T (∆), |{ρ ∈ R∗ | ∃κ 6= 0K.∃q ∈ F.t⇒ρ
κ q(t

′)}| ≤ 1 .

Abusing notations, we write

JT K = {(t, κ, t′) | t ∈ T (Σ), t′ ∈ T (∆), ∃ρ ∈ R∗.∃q ∈ F.t⇒ρ
κ q(t

′)} ,

for an unambiguous BUTT, so that the pairs (t, t′) ∈ T (Σ)×T (∆) missing in semT are
implicitly with κ = 0K.

Exercise 4 (Weigthed Tree Transducers). In order to implement (∗) using weighted
tree transducers, we work in the max-plus semiring M = 〈R,max,+,−∞, 0〉.

1. Give an unambiguous awBUTT TR that translates marked trees into their R-[2]

labelings:

JTRK = {(t, 0, t′) | t marked and t′ an R-labeling of t} .

(Recall that 0 is 1M.)

This is quite similar to Exercise 3.1. Let TR = 〈2Θ]{#},Σ×{⊥,#},Σ×R, RR, {Θ]
{#}〉 where

RR = {(a,⊥)(n)(q1(x1), . . . , qn(xn))→0 q((a, r)
(n)(x1, . . . , xn) | r ∈ Θ, a ∈ Σ, q1] · · ·] qn] {r} = q}

∪ {(a,⊥)(n)(q1(x1), . . . , qn(xn))→0 q((a,⊥)(n)(x1, . . . , xn) | a ∈ Σ, q1] · · ·] qn = q}
∪ {(wt,#)(0)()→0 {#}(wt,#)(0)()} .

This wBUTT is visibly alphabetic, and unambiguous since there is a single run for
each different output tree.

2. Show that alphabetic weighted bottom-up tree transductions are closed under[2]

Hadamard product over arbitrary commutative semirings: given two awBUTTs
T1 and T2, construct an awBUTT T1 � T2 s.t.

JT1 � T2K = {(t, κ1 � κ2, t
′) | (t, κ1, t

′) ∈ JT1K, (t, κ2, t
′) ∈ JT2K}

and T1 � T2 is unambiguous if T1 and T2 are unambiguous.

7

MPRI 2-27-1 December 1, 2011

Let T1 = 〈Q1,Σ,∆, R1, F1〉 and T2 = 〈Q2,Σ,∆, R2, F2〉 and construct T1 � T2 =
〈Q1 ×Q2,Σ,∆, R, F1 × F2〉 where

R = {a(n)((q1, q
′
1)(x1), . . . , (qn, q

′
n)(xn))→κ1�κ2 (q, q′)(b(n)(x1, . . . , xn))

| a(n)(q1(x1), . . . , qn(xn))→κ1 q(b
(n)(x1, . . . , xn)) ∈ R1

and a(n)(q′1(x1), . . . , q′n(xn))→κ2 q
′(b(n)(x1, . . . , xn)) ∈ R2} .

3. Assume you are provided with a deterministic bottom-up tree automaton Ar,i for[2]

the role r and the feature φi. Give an unambiguous awBUTT Tr,i s.t. Tr,i � TR
maps marked trees into their R-labelings that satisfy φi at the node labeled r with
weight λr,i: more formally, if we define r(t) as the (unique) node labeled r in the
R-labeled tree t,

JTr,i � TRK = {(t, λr,i, t′) | t marked, t′ an R-labeling of t, and t′, r(t′) |= ϕi} .

Let Ar,i = 〈Qr,i,Σ×R, δr,i, Fr,i〉 and define Tr,i = 〈Qr,i,Σ×{⊥,#},Σ×R, Rr,i, Fr,i〉
with

Rr,i = {(a,⊥)(n)(q1(x1), . . . , qn(xn))→0 q((a, r
′)(n)(x1, . . . , xn))

| r′ 6= r, r′ 6= # and (q1, . . . , qn, (a, r
′)(n), q) ∈ δr,i}

∪ {(a,⊥)(n)(q1(x1), . . . , qn(xn))→λr,i q((a, r)
(n)(x1, . . . , xn))

| (q1, . . . , qn, (a, r)
(n), q) ∈ δr,i}

∪ {(wt,#)(0)()→0 q((wt,#)(0)) | ((wt,#)(0), q) ∈ δr,i} .

Since Ar,i is deterministic, there is a single run depending on the output tree (we
basically simulate Ar,i on the output tree). The value of the run is λr,i since there
is exactly one r-labeled node and thus we have to trigger the rule with weight λr,i
exactly once.

4. Give the full awBUTT T that performs the labeling task, i.e. that computes[1]

JT K = {(t, Vt′ , t′) | t marked and t′ an R-labeling of t} .

Define

T = TR �
⊙
r∈Θ

n⊙
i=1

Tr,i .

Exercise 5 (Parsing with Thematic Roles). Assume that you have an unweighted ε-free
context-free grammar G = 〈N,T, P, S〉 with N = Σ>0 and T = Σ0, and the awBUTT T
as above. We want to define a weighted Cocke Kasami Younger (Cky) parsing algorithm
that will be able to return the semantically labeled parse with the highest weight in a
sentence with a marked element.

8

MPRI 2-27-1 December 1, 2011

1. First extend (give the inference rules for) the classical, unweighted Cky algorithm[2]

to be able to handle context-free rules of form A→ X and A→ XY where A is a
nonterminal and X,Y symbols in N ∪ T .

It suffices to allow items of form 〈i,X, j〉 with 0 ≤ i < j ≤ n and X ∈ N ∪ T :

a = ai

〈i− 1, a, i〉
(Scan)

A→ X1 · · ·Xm 〈i0, X1, i1 − 1〉 · · · 〈im−1, Xm, im〉
〈i0, A, im〉

(Complete)

with objective 〈0, S, n〉 as usual.

2. Design (give the inference rules for) a weighted Cky parsing algorithm that returns[4]

the R-labeled parse tree with the highest weight output by T for a given sentence
w = a1 · · · am with a marked terminal symbol (i.e. ai = (wt,#) for some i). You
can modify the input context-free grammar in any way you see fit.

Let G = 〈N,T, P, S〉 with N = Σ>0 and T = Σ0, and T = 〈Q,Σ × {⊥,#},Σ ×
R, R, F 〉.
There are (at least) two ways of treating this question:

(a) either process the CFG with T and obtain a weighted tree automaton as
output, which can be processed using a variation over weighted Cky,

(b) or give a new set of deduction rules that work on G and T synchronously.

For the first technique, define the tree automaton A = 〈(N∪T)×Q,Σ×R, δ, {S}×
F 〉 with weighted transitions

δ = {((X1, q1), . . . , (Xm, qm), (a, r)(m), (A, q), κ) | n > 0, A→ X1 · · ·Xn ∈ P
and (A,⊥)(m)(q1(x1), . . . , qm(xm))→κ q((a, r)

(m)(x1, . . . , xm)) ∈ R}
∪ {((a, r)(0), (b, q), κ) | b ∈ T and (b,⊥)(0)()→κ q((a, r)

(0)()) ∈ R}
∪ {((wt,#)(0), (wt, q), κ) | (wt,#)(0)()→κ q((wt,#)(0)()) ∈ R} .

We define the deduction rules for a weighted tree automaton A = 〈Q,Σ, δ, F 〉
(over M) and an input word w = a1 · · · an where items are of form 〈i, q, κ, j〉 where
0 ≤ i < j ≤ n, q ∈ Q and κ ∈ R:

(a(0), q, κ) ∈ δ ai = a

〈i− 1, q, κ, i〉
(Scan)

(q1, . . . , qm, a
(m), q, κ) ∈ δ 〈i0, q1, κ1, i1 − 1〉 · · · 〈im−1, qm, κm, im〉

〈i0, q, κ+
∑m

i=1 κi, im〉
(Complete)

9

MPRI 2-27-1 December 1, 2011

with a best first chart management policy: if two items 〈i, q, κ, j〉 and 〈i, q, κ′, j〉
are added to the chart, keep the one with maximal weight. The objective is any
item 〈0, q, κ, n〉 with q ∈ F ; κ will be the weight of its derivation.

For the second technique, we start directly with (more complex) derivation rules,
where items are of form 〈i,X, q, κ, j〉 with 0 ≤ i < j ≤ n, X ∈ N ∪ T , q ∈ Q, and
κ ∈ R:

ai = a (a,⊥)(0)()→κ q((b, r)
(0)()) ∈ R

〈i− 1, a, q, κ, i〉
(Scan)

ai = (wt,#) (wt,#)(0)()→κ q((wt,#)(0)()) ∈ R
〈i− 1, wt, q, κ, i〉

(#)

A→ X1 · · ·Xm ∈ P (A,⊥)(m)(q1(x1), . . . , qm(xm))→κ q((a, r)
(m)(x1, . . . , xm)) ∈ R

〈i0, X1, q1, κ1, i1 − 1〉 · · · 〈im−1, Xm, qm, κm, im〉
〈i0, A, q, κ+

∑m
i=1 κi〉

(Complete)

again with a best first chart management policy: if two items 〈i,X, q, κ, j〉 and
〈i,X, q, κ′, j〉 are added to the chart, then only the one with maximal weight is
kept. The objective is any item 〈0, S, q, κ, n〉 with q ∈ F .

3. Bonus question: we mentioned in class that we could reformulate the Viterbi[4]

algorithm as the search of a shortest path in a graph as performed by Dijkstra’s
algorithm. Can you think about a scheme for ordering the processing of items
produced by your parser such that it will make it find the best parse as quickly as
possible by expressing the weighted parsing problem as a shortest path problem?

References

Gildea, D. and Jurafsky, D., 2002. Automatic labelling of semantic roles. Computational
Linguistics, 28(3):245–288. doi:10.1162/089120102760275983.

10

http://aclweb.org/anthology/J02-3001.pdf

