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These notes cover the second part of an introductory course on computational
linguistics, also known as MPRI 2-27-1: Logical and computational structures for
linguistic modeling. Among their prerequisites are

• classical notions of formal language theory, in particular regular and context-
free languages, and more generally the Chomsky hierarchy,

• a basic command of English and French morphology and syntax, in order to
understand the examples;

• some acquaintance with logic and proof theory also is advisable.
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Further Reading

Interested students will find a good general textbook on natural language pro-
cessing in Jurafsky and Martin (2009). The present notes have a strong bias to-
wards formal language theory—reference textbooks in this domain include (Har-
rison, 1978; Berstel, 1979; Sakarovitch, 2009; Comon et al., 2007)—, but this is
hardly representative of the general field of natural language processing and com-
putational linguistics. In particular, the overwhelming importance of statistical
approaches in the current body of research makes the textbook of Manning and
Schütze (1999) another recommended reference.

The main journal of natural language processing is Computational Linguistics.
As often in computer science, the main conferences of the field have equiva-
lent if not greater importance than journal outlets, and one will find among the
major conferences ACL (“Annual Meeting of the Association for Computational
Linguistics”), EACL (“European Chapter of the ACL”), NAACL (“North American
Chapter of the ACL”), and CoLing (“International Conference on Computational
Linguistics”). A very good point in favor of the ACL community is their early
adoption of open access; one will find all the ACL publications online at http:

//www.aclweb.org/anthology/.

Notations

We use the following notations in this document. First, as is customary in lin-
guistic texts, we prefix agrammatical or incorrect examples with an asterisk, like
∗ationhospitalmis or ∗sleep man to is the.

These notes also contain some exercises, and a difficulty appreciation is indi-
cated as a number of asterisks in the margin next to each exercise—a single aster-
isk denotes a straightforward application of the definitions.

http://www.aclweb.org/anthology/
http://www.aclweb.org/anthology/
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Relations. We only consider binary relations, i.e. subsets of A×B for some sets
A and B (although the treatment of e.g. rational relations in ?? can be generalized
to n-ary relations). The inverse of a relation R is R−1 = {(b, a) | (a, b) ∈ R}, its
domain isR−1(B) and its range isR(A). Beyond the usual union, intersection and
complement operations, we denote the composition of two relations R1 ⊆ A×B
and R2 ⊆ B × C as R1 # R2 = {(a, c) | ∃b ∈ B, (a, b) ∈ R1 ∧ (b, c) ∈ R2}. The
reflexive transitive closure of a relation is noted R? =

⋃
iR

i, where R0 = IdA =
{(a, a) | a ∈ A} is the identity over A, and Ri+1 = R #Ri.

Monoids. A monoid 〈M, ·, 1M〉 is a set of elements M along with an associative
operation · and a neutral element 1M ∈ M. We are often dealing with the free
monoid 〈Σ∗, ·, ε〉 generated by concatenation · of elements from a finite set Σ. A
monoid is commutative if a · b = b · a for all a, b in M.

We lift · to subsets of M by L1 · L2 = {m1 ·m2 | m1 ∈ L1,m2 ∈ L2}. Then for
L ⊆ M, L0 = {1M} and Li+1 = L · Li, and we define the Kleene star operator by
L∗ =

⋃
i L

i.

Semirings. A semiring 〈K,⊕,�, 0K, 1K〉 is endowed with two binary operations,
an addition ⊕ and a multiplication � such that

• 〈K,⊕, 0K〉 is a commutative monoid for addition with 0K for neutral element,

• 〈K,�, 1K〉 is a monoid for multiplication with 1K for neutral element,

• multiplication distributes over addition, i.e. a � (b ⊕ c) = (a � b) ⊕ (a � c)
and (a⊕ b)� c = (a� c)⊕ (b� c) for all a, b, c in K,

• 0K is a zero for multiplication, i.e. a� 0K = 0K � a = 0K for all a in K.

Among the semirings of interest are the

• boolean semiring 〈B,∨,∧, 0, 1〉 where B = {0, 1},

• probabilistic semiring 〈R+,+, ·, 0, 1〉 where R+ = [0,+∞) is the set of pos-
itive reals (sometimes restricted to [0, 1] when in presence of a probability
distribution),

• tropical semiring 〈R+ ] {+∞},min,+,+∞, 0〉,

• rational semiring 〈Rat(∆∗),∪, ·, ∅, {ε}〉 where Rat(∆∗) is the set of rational
sets over some alphabet ∆.

String Rewrite Systems. A string rewrite system or semi-Thue systems See also the monograph by Book
and Otto (1993).

over
an alphabet Σ is a relation R ⊆ Σ∗×Σ∗. The elements (u, v) of R are called string
rewrite rules and noted u → v. The one step derivation relation generated by
R, noted R

=⇒, is the relation over Σ∗ defined for all w,w′ in Σ∗ by w R
=⇒ w′ iff there

exist x, y in Σ∗ such that w = xuy, w′ = xvy, and u → v is in R. The derivation
relation is the reflexive transitive closure R

=⇒?.

Prefixes. The prefix ordering ≤pref over Σ∗ is defined by u ≤pref v iff there
exists v′ in Σ∗ such that v = uv′. We note Pref(v) = {u | u ≤pref v} the set of
prefixes of v, and u ∧ v the longest common prefix of u and v.
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Terms. A ranked alphabetSee Comon et al. (2007) for
missing definitions and notations.

a pair (Σ, r) where Σ is a finite alphabet and r :
Σ → N gives the arity of symbols in Σ. The subset of symbols of arity n is noted
Σn.

Let X be a set of variables, each with arity 0, assumed distinct from Σ. We write
Xn for a set of n distinct variables taken from X .

The set T (Σ,X ) of terms over Σ and X is the smallest set s.t. Σ0 ⊆ T (Σ,X ),
X ⊆ T (Σ,X ), and if n > 0, f is in Σn, and t1, . . . , tn are terms in T (Σ,X ), then
f(t1, . . . , tn) is a term in T (Σ,X ). The set of terms T (Σ, ∅) is also noted T (Σ) and
is called the set of ground terms.

A term t in T (Σ,X ) is linear if every variable of X occurs at most once in t.
A linear term in T (Σ,Xn) is called a context, and the expression C[t1, . . . , tn] for
t1, . . . , tn in T (Σ) denotes the term in T (Σ) obtained by substituting ti for xi for
each 1 ≤ i ≤ n, i.e. is a shorthand for C{x1 ← t1, . . . , xn ← tn}. We denote
Cn(Σ) the set of contexts with n variables, and C(Σ) that of contexts with a single
variable—in which case we usually write � for this unique variable.

Trees. By tree we mean a finite ordered ranked tree t over some set of labels Σ,
i.e. a partial function t : {0, . . . , k}∗ → Σ where k is the maximal rank, associating
to a finite sequence its label. The domain of t is prefix-closed, i.e. if ui ∈ dom(t)
for u in N∗ and i in N, then u ∈ dom(t), and predecessor-closed, i.e. if ui ∈ dom(t)
for u in N∗ and i in N>0, then u(i− 1) ∈ dom(t).

The set Σ can be turned into a ranked alphabet simply by building k+1 copies of
it, one for each possible rank in {0, . . . , k}; we note a(m) for the copy of a label a in
Σ with rank m. Because in linguistic applications tree node labels typically denote
syntactic categories, which have no fixed arities, it is useful to work under the
convention that a denotes the “unranked” version of a(m). This also allows us to
view trees as terms (over the ranked version of the alphabet), and conversely terms
as trees (by erasing ranking information from labels)—we will not distinguish
between the two concepts.

Term Rewriting Systems. A term rewriting system over some ranked alphabet
Σ is a set of rules R ⊆ (T (Σ,X ))2, each noted t→ t′. Given a rule r : t→ t′ (also
noted t r−→ t′), with t, t′ in T (Σ,Xn), the associated one-step rewrite relation over
T (Σ) is r

=⇒ = {(C[t{x1 ← t1, . . . , xn ← tn}], C[t′{x1 ← t1, . . . , xn ← tn}]) | C ∈
C(Σ), t1, . . . , tn ∈ T (Σ)}. We write r1r2==⇒ for r1=⇒ # r2=⇒, and R

=⇒ for
⋃
r∈R

r
=⇒.



Chapter 1

Mildly Context-Sensitive Syntax

Recall that context-sensitive languages (aka type-1 languages) are defined by
phrase structure grammars with rules of form λAρ → λαρ with A in N , λ, ρ in
V ∗, and α in V +. Their expressive power is equivalent to that of linear bounded
automata (LBA), i.e. Turing machines working in linear space. Such grammars are
not very useful from a computational viewpoint: membership is PSPACE-complete,
and emptiness is undecidable.

Still, for the purposes of constituent analysis of syntax, one would like to use
string- and tree-generating formalisms with greater expressive power than context-
free grammars. The rationale is twofold:

• some natural language constructs are not context-free, the Swiss-German
account by Shieber (1985) being the best known example. Such fragments
typically involve so-called limited cross-serial dependencies, as in the lan-
guages {anbmcndm | n,m ≥ 0} or {ww | w ∈ {a, b}∗}.

• the class of regular tree languages is not rich enough to account for the
desired linguistic analyses (e.g. Kroch and Santorini, 1991, for Dutch).

This second argument is actually the strongest: the class of tree structures and
how they are combined—which ideally should relate to how semantics compose—
in context-free grammars are not satisfactory from a linguistic modeling point of
view.

Based on his experience with tree-adjoining grammars (TAGs) and weakly
equivalent formalisms (head grammars, a version of combinatory categorial gram-
mars, and linear indexed grammars; see Joshi et al., 1991), Joshi (1985) proposed
an informal definition of which properties a class of formal languages should have
for linguistic applications: mildly context-sensitive languages (MCSLs) were
“roughly” defined as the extensions of context-free languages that accommodate

1. limited cross-serial dependencies, while preserving

2. constant growth—a requisite nowadays replaced by semilinearity, which
demands the Parikh image of the language to be a semilinear subset of N|Σ|
(Parikh, 1966), and

3. polynomial time recognition.

A possible formal definition for MCSLs is the class of languages generated by mul-
tiple context-free grammars (MCFGs, Seki et al., 1991), or equivalently linear
context-free rewrite systems (LCFRSs, Weir, 1992), multi-component tree ad-
joining grammars (MCTAGs), and quite a few more.

5
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Context-free languages

Tree-adjoining languages
(TAG, HG, CCG, LIG, . . . )

Well-nested mildly context-sensitive languages
(MCFGwn, Macro`, CCFG, ACG(2,3), . . . )

Mildly context-sensitive languages
(MCFG, LCFRS, MCTAG, ACG(2,4),. . . )

Indexed languages (IG, Macro, . . . )

Context-sensitive languages

Figure 1.1: Hierarchies between context-free and full context-sensitive languages.

We will however concentrate on two strict subclasses: tree adjoining languages
(TALs, Section 1.1) and well-nested MCSLs (wnMCSLs, Section 1.2); Figure 1.1
illustrates the relationship between these classes. As in ?? our main focus will be
on the corresponding tree languages, representing linguistic constituency analyses
and sentence composition.

1.1 Tree Adjoining Grammars

Tree-adjoining grammars are a restricted class of term rewrite systems (we will
see later that they are more precisely a subclass of the linear monadic context-
free tree grammars). They have first been defined by Joshi et al. (1975) and
subsequentely extended in various ways; see Joshi and Schabes (1997) for the
“standard” definitions.

Definition 1.1 (Tree Adjoining Grammars). A tree adjoining grammar (TAG) is
a tuple G = 〈N,Σ, Tα, Tβ, S〉 where N is a finite nonterminal alphabet, Σ a finite
terminal and N ∩ Σ = ∅, Tα and Tβ two finite sets of finite initial and auxiliary
trees, where Tα ∪ Tβ is called the set of elementary trees, and S in N a start
symbol.

Given the nonterminal alphabet N , define

• N↓ def
= {A↓ | A ∈ N} the ranked alphabet of substitution labels, all with

arity 0,

• Nna def
= {Ana | A ∈ N} the unranked alphabet of null adjunction labels,

• N?
def
= {A? | A ∈ N ∪ Nna} the ranked alphabet of foot variables, all with

arity 0.

In order to work on ranked trees, we confuse N with N>0, Σ with Σ0, and Nna

with Nna
>0 in the following. Then the set Tα∪Tβ of elementary trees is a set of trees

of height at least one. They always have a root labeled by a symbol in N ∪ Nna,
and we define accordingly rl(t) of a tree t as its unranked root label modulo na:

rl(t)
def
= A if there exists m in N>0, t(ε) = A(m) or t(ε) = Ana(m). Then
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A↓

A

α

subst−−−→
A

α

A

A
β

A?

adj−−→

A
β

A

Figure 1.2: Schematics for the substitution and adjunction operations.

• Tα ⊆ T (N ∪ N↓ ∪ Nna ∪ Σ ∪ {ε(0)}) is a finite set of finite trees α with
nonterminal or null adjunction symbols as internal node labels, and terminal
symbols or ε or substitution symbols as leaf labels;

• Tβ ⊆ T (N ∪ N↓ ∪ Nna ∪ Σ ∪ {ε(0)}, N?) trees β[A?] are defined similarly,
except for the additional condition that they should have exactly one leaf,
called the foot node, labeled by a variable A?, which has to match the root
label A = rl(β). The foot node A? acts as a hole, and the auxiliary tree is
basically a context.

The semantics of a TAG is that of a finite term rewrite system with rules (see
Figure 1.2)

RG
def
= {A↓ → α | α ∈ Tα ∧ rl(α) = A} (substitution)

∪ {A(m)(x1, . . . , xm)→ β[A(m)(x1, . . . , xm)] | m ∈ N>0, A
(m) ∈ Nm, β[A?] ∈ Tβ}

∪ {A(m)(x1, . . . , xm)→ β[Ana(m)(x1, . . . , xm)] | m ∈ N>0, A
(m) ∈ Nm, β[Ana

? ] ∈ Tβ} .
(adjunction)

A derivation starts with an initial tree in Tα and applies rules from RG until no
substitution node is left:

LT (G)
def
= {h(t) | ∃t ∈ T (N ∪ Σ ∪ {ε(0)}), ∃α ∈ Tα, rl(α) = S ∧ α RG

==⇒? t}

is the tree language of G, where the na annotations are disposed of, thanks to an

alphabetic tree homomorphism h generated by h(Ana(m))
def
= A(m) for all Ana(m) of

Nna, and h(X)
def
= X for all X in N ∪ Σ ∪ {ε(0)}. The string language of G is

L(G)
def
= yield(LT (G))

the set of yields of all its trees.

Example 1.2. Figure 1.3 presents a tree adjoining grammar with

N = {S,NP,VP,VBZ,NNP,NNS,RB} ,
Σ = {likes,Bill ,mushrooms, really} ,
Tα = {α1, α2, α3} ,
Tβ = {β1} ,
S = S .

Its sole S-rooted initial tree is α1, on which one can substitute α2 or α3 in order to
get Bill likes mushrooms or mushrooms likes mushrooms; the adjunction of β1 on the
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S

NP↓ VP

VBZ

likes

NP↓

NP

NNP

Bill

NP

NNS

mushrooms

VP

RB

really

VPna
?

(α1) (α2) (α3) (β1)

Figure 1.3: A tree adjoining grammar.

S

NP

NNP

Bill

VP

RB

really

VP

VBZ

likes

NP

NNS

mushrooms

α1[likes]

α2[Bill ] β1[really ] α3[mushrooms]

Figure 1.4: A derived tree and the corresponding derivation tree for the TAG of
Example 1.2.

VP node of α1 also yields Bill really likes mushrooms (see Figure 1.4) or mushrooms
really really really likes Bill. In the TAG literature, a tree in T (N ∪Nna∪Σ∪{ε(0)})
obtained through the substitution and adjunction operations is called a derived
tree, while a derivation tree records how the rewrites took place (see Figure 1.4
for an example; children of an elementary tree are shown in addressing order, with
plain lines for substitutions and dashed lines for adjunctions).

Example 1.3 (Copy Language). The copy language Lcopy
def
= {ww | w ∈ {a, b}∗}

is generated by the TAG of Figure 1.5 with N = {S}, Σ = {a, b}, Tα = {αε}, and
Tβ = {βa, βb}.

Exercise 1.1. Give(∗) a TAG for the language {anbmcndm | n,m ≥ 0}.

1.1.1 Linguistic Analyses Using TAGs

Starting in particular with Kroch and Joshi (1985)’s work, the body of literature on
linguistic analyses using TAGs and their variants is quite large. As significant evi-
dence of the practical interest of TAGs, the XTAG project (XTAG Research Group,
2001) has published a large TAG for English, with a few more than 1,000 ele-
mentary unanchored trees. This particular variant of TAGs, a lexicalized, feature-
based TAG, uses finite feature structures and lexical anchors. We will briefly
survey the architecture of this grammar, and give a short account of it how treats
some long-distance dependencies in English.

Lexicalized Grammar

A TAG is lexicalized if all its elementary trees have at least one terminal symbol
as a leaf. In linguistic modeling, it will actually have one distinguished termi-
nal symbol, called the anchor, plus possibly some other terminal symbols, called
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S

ε

Sna

a S

Sna
? a

Sna

b S

Sna
? b

(αε) (βa) (βb)

Figure 1.5: A TAG for Lcopy.

coanchors. An anchor serves as head word for at least a part of the elementary
tree, as likes for α1 in Figure 1.3. Coanchors serve for particles, prepositions, etc.,
whose use is mandatory in the syntactic phenomenon modeled by the elementary
tree, as by for α5 in Figure 1.6.

Subcategorization Frames A more principled organization of
the trees for subcategorization
frames and their various
instantiations can be obtained
thanks to a meta grammar
describing the set of elementary
trees (see e.g. Crabbé, 2005).

Each elementary tree then instantiates a subcate-
gorization frame for its anchor, i.e. specifications of the number and categories of
the arguments of a word. For instance, to like is a transitive verb taking a NP sub-
ject and a NP complement, as instantiated by α1 in Figure 1.3; similarly, to think
takes a clausal S complement, as instantiated by β2 in Figure 1.6. These first two
examples are canonical instantiations of the subcategorization frames of to like
and to think, but there are other possible instantiations, for instance interrogative
with α4 or passive with α5 for to like.

Example 1.4. Extend the TAG of Figure 1.3 with the trees of Figure 1.6. This new
grammar is now able to generate

mushrooms are liked by Bill
mushrooms think Bill likes Bill
who does Bill really think Bill really likes

In a feature-based grammar, both the obligatory adjunction of a single β3 on the
S node of α4, and that of a single β4 on the VP node of α5 are controlled through
the feature structures, and there is no overgeneration from this simple grammar.

Syntactic Lexicon In practice, elementary trees as the ones of Figure 1.3 are not
present as such in the XTAG grammar. It rather contains unanchored versions of
these trees, with a specific marker � for the anchor position. For instance, α2 in
Figure 1.3 would be stored as a context NP(NNP(�)) and enough information to
know that Bill anchors this tree.

The anchoring information is stored in a syntactic lexicon associating with each
lexical entry classes of trees that it anchors. The XTAG project has developed a
naming ontology for these classes based on subcategorization frame and type of
construction (e.g. canonical, passive, . . . ).

Long-Distance Dependencies

See Schabes and Shieber (1994)
for an alternative definition of
adjunction, which yields more
natural derivation trees. Among
the possible interfaces to
semantics, let us mention the use
of feature structures (Gardent
and Kallmeyer, 2003; Kallmeyer
and Romero, 2004), or better a
mapping from the derivation
structures to logical ones
(de Groote, 2001).

Let us focus on α4 in Figure 1.6. The “move” of the object NP argument of
likes into sentence-first position as a WhNP is called a long-distance dependency.
Observe that a CFG analysis would be difficult to come with, as this “move” crosses
through the VP subtree of think—see the dotted dependency in the derived tree of
Figure 1.7. We leave the question of syntax/semantics interfaces using derivation
trees to later chapters.
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S

NP↓ VP

VB

think

Sna
?

Sna

WhNP↓ S

NP↓ VP

VBZ

likes

NP

ε

S

NP↓ VP

VBD

liked

PP

IN

by

NP↓

WhNP

WP

who

Sna

VBZ

does

Sna
?

VP

VBP

are

VPna
?

(β2) (α4) (α5)

(α6) (β3) (β4)

Figure 1.6: More elementary trees for the tree adjoining grammar of Example 1.2.

1.1.2 Background: Context-Free Tree Grammars

Context-free tree languages are an extension of regular tree languages proposed
by Rounds (1970):

Definition 1.5 (Context-Free Tree Grammars).See Gécseg and Steinby (1997,
Section 15) and Comon et al.

(2007, Section 2.5). Regarding
string languages, the set
yield(L(G)) of CFTGs

characterizes the class of indexed
languages (Aho, 1968; Fischer,

1968). Context-free tree
languages are also defined

through top-down pushdown
tree automata (Guessarian,

1983).

A context-free tree grammar
(CFTG) is a tuple G = 〈N,Σ, S,R〉 consisting of a ranked nonterminal alphabet N ,
a ranked terminal alphabet Σ, an axiom S(0) in N0, and a finite set of rules R of
form A(n)(y1, . . . , yn)→ e with e ∈ T (N ∪ Σ,Yn) where Y is an infinite countable
set of parameters. The language of G is defined as

L(G)
def
= {t ∈ T (Σ) | S(0) R

=⇒? t}.

Observe that a regular tree grammar is simply a CFTG where every nontermi-
nal is of arity 0.

Example 1.6 (Squares). The CFTG with rules

S → A(a, f(a, f(a, a)))

A(y1, y2)→ A(f(y1, y2), f(y2, f(a, a))) | y2

has {an2 | n ≥ 1} for yield(L(G)): Note that

n−1∑
i=0

2i+ 1 = n+ 2

n−1∑
i=0

i = n2 (1.1)

and that if S =⇒n A(t1, t2), then yield(t1) = an
2

and yield(t2) = 2n+ 1.

Example 1.7 (Non-primes). The CFTG with rules

S → A(f(a, a))

A(y)→ A(f(y, a)) | B(y)

B(y)→ f(y,B(y)) | f(y, y)
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S

WhNP

WP

who

S

VBZ

does

S

NP

NNP

Bill

VP

VB

think

S

NP

NNP

Bill

VP

RB

really

VP

VBZ

likes

NP

ε

α4[likes]

α6[who] β2[think ]

α2[Bill ] β3[does]

α2[Bill ] β1[really ]

Figure 1.7: Derived and derivation trees for Who does Bill think Bill really likes?
using the TAG of Figures 1.3 and 1.6.

has {an | n ≥ 2 is not a prime} for yield(L(G)): in a derivation

S =⇒ A(f(a, a)) =⇒m A(t) =⇒ B(t) =⇒n C[B(t)] =⇒ t′

with t′ in T (Σ), we have yield(t) = a2+m, yield(C[B(t)]) = a(2+m)n, and finally
yield(t′) = a(2+m)(n+1).

Exercise 1.2 (Powers of 2). Give (∗)a CFTG with yield(L(G)) = {anba2n | n ≥ 1}.

Exercise 1.3 (Normal Form). Show (∗)that any CFTG can be put in a normal form
where every rule in R is either of form A(n)(y1, . . . , yn) → a(n)(y1, . . . , yn) with a
in Σn or of form A(n)(y1, . . . , yn)→ e with e in T (N,Yn).

IO and OI Derivations

If See Fischer (1968).we see derivations in a CFTG as evaluation in a recursive program with non-
terminals are functions, a natural way to define the semantics of a nonterminal
A(n) is for them to take fully derived trees in T (Σ) as parameters, i.e. to use call-
by-value semantics, or equivalently inside-out (IO) evaluation of the rewrite rules,
i.e. evaluation starting from the innermost nonterminals. The dual possibility is to
consider outside-in (OI) evaluation, which corresponds to call-by-name semantics.
Formally, for a set of rewrite rules R,

IO
=⇒ def

=
R
=⇒ ∩ {(C[A(n)(t1, . . . , tn)], C[t]) | C ∈ C(N ∪ Σ), A(n) ∈ Nn, t1, . . . , tn ∈ T (Σ)}

OI
=⇒ def

=
R
=⇒ ∩ {(C[A(n)(t1, . . . , tn), tn+1, tn+m−1], C[t, tn+1, . . . , tn+m−1])

| m ≥ 1, C ∈ Cm(Σ), A(n) ∈ Nn, t1, . . . tn+m−1 ∈ T (N ∪ Σ)} .

Example 1.8 (IO vs. OI). Consider the CFTG with rules

S → A(B) A(y)→ f(y, y)

B → g(B) B → a .
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Then OI derivations are all of form

S
OI
=⇒ A(B)

f
=⇒
OI

(B,B)
OI
=⇒n+m f(gm(a), gn(a))

for some m,n in N, whereas the IO derivations are all of form

S
IO
=⇒ A(B)

IO
=⇒n A(gn(a))

IO
=⇒ f(gn(a), gn(a)) .

The two modes of derivation give rise to two tree languages LOI(G) and LIO(G),
both obviously included in L(G).

Theorem 1.9 (Fischer, 1968). For any CFTG G, LIO(G) ⊆ LOI(G) = L(G).

As seen with Example 1.8, the case LIO(G) ( LOI(G) can occur. Theorem 1.9
shows that can assume OI derivations whenever it suits us; for instance, a basic
observation is that OI derivations on different subtrees are independent:

Lemma 1.10. Let G = 〈N,Σ, S,R〉. If t1, . . . , tn are trees in T (N ∪Σ), C is a context
in Cn(Σ), and t = C[t1, . . . , tn]

R
=⇒m t′ for some m, then there exist m1, . . . ,mn in N

and t′1, . . . , t
′
n in T (N ∪Σ) s.t. ti

R
=⇒mi t′i, m = m1 + · · ·+mn, and t′ = C[t′1, . . . , t

′
n].

Proof. Let us proceed by induction on m. For the base case, the lemma holds
immediately for m = 0 by choosing mi = 0 and t′i = ti for each 1 ≤ i ≤ n.

For the induction step, consider a derivation t = C[t1, . . . , tn]
R
=⇒m t′

R
=⇒ t′′. By

induction hypothesis, we find m1, . . . ,mn and t′1, . . . , t
′
n with ti

R
=⇒mi t′i, m =∑n

i=1mi, and t′ = C[t′1, . . . , t
′
n]

R
=⇒ t′′. Since C ∈ Cn(Σ) is a linear term devoid of

nonterminal symbols, the latter derivation step stems from a rewrite occurring in
some t′i subtree. Thus ti

R
=⇒mi+1 t′′i for some t′′i s.t. t′′ = C[t′1, . . . , t

′′
i , . . . , t

′
n].

In contrast with Theorem 1.9, if we consider the classes of tree languages that
can be described by CFTGs using IO and OI derivations, we obtain incomparable
classes (Fischer, 1968).

1.1.3 TAGs as Context-Free Tree Grammars

Tree adjoining grammars can be seen as a special case of context-free tree gram-
mars with a few restrictions on the form of its rewrite rules. This is a folklore re-
sult, which was stated (at least) by Mönnich (1997), Fujiyoshi and Kasai (2000),
and Kepser and Rogers (2011), and which is made even more obvious with the
“rewriting”-flavoured definition we gave for TAGs.

Translation from TAGs to CFTGs Given a TAG G = 〈N,Σ, Tα, Tβ, S〉, we con-
struct a CFTG G′ = 〈N ′,Σ′, S↓, R ∪R′〉 with

N ′
def
= N↓ ∪ {Ā(1) | A ∈ N}

Σ′
def
= Σ0 ∪ {ε(0)} ∪N>0

R
def
= {A↓ → τ(α) | α ∈ Tα ∧ rl(α) = A}
∪ {Ā(1)(y)→ τ(β)[Ā(1)(y)] | β[A?] ∈ Tβ}
∪ {Ā(1)(y)→ τ(β)[y] | β[Ana

? ] ∈ Tβ}

R′
def
= {Ā(1)(y)→ y | Ā(1) ∈ N̄}
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where τ : T (∆ ∪ {�})→ T (∆′ ∪ {�}) for ∆
def
= N↓ ∪Nna

>0 ∪ Σ′ and ∆′
def
= N ′ ∪ Σ′

is a tree homomorphism generated by

τ(A(m)(x1, . . . , xm))
def
= Ā(1)(A(m)(x1, . . . , xm))

τ(Ana(m))
def
= A(m)(x1, . . . , xm)

and the identity for the other cases (i.e. for symbols in N↓ ∪ Σ0 ∪ {ε,�}).

Example 1.11. Consider again the TAG of Figure 1.5 for the copy language: we
obtain G′ = 〈N ′,Σ′, S↓, R ∪R′〉 with N ′ = {S↓, S̄}, Σ′ = {S, a, b, ε}, and rules

R = {S↓ → S̄(S(ε)), (corresponding to αε)

S̄(y)→ S(a, S̄(S(y, a))), (corresponding to βa)

S̄(y)→ S(b, S̄(S(y, b)))} (corresponding to βb)

R′ = {S̄(y)→ y} .

Proposition 1.12. LT (G) = L(G′).

Proof of LT (G) ⊆ L(G′). We first prove by induction on the length of derivations:

Claim 1.12.1. For all trees t in T (∆), t
RG
==⇒? t′ implies t′ is in T (∆) and τ(t)

R
=⇒?

τ(t′).

Proof of Claim 1.12.1. That T (∆) is closed under RG is immediate. For the second
part of the claim, we only need to consider the case of a single derivation step:

For a substitution C[A↓] RG
==⇒ C[α] occurs iff α is in Tα with rl(α) = A, which

implies τ(C[A↓]) = τ(C)[τ(A↓)] = τ(C)[A↓] R
=⇒ τ(C)[τ(α)] = τ(C[α]).

For an adjunction C[A(m)(t1, . . . , tm)]
RG
==⇒ C[β[A(m)(t1, . . . , tm)]] occurs iff β[A?]

is in Tβ, implying

τ(C[A(m)(t1, . . . , tm)]) = τ(C)[Ā(1)(A(m)(τ(t1), . . . , τ(tm)))]

R
=⇒ τ(C)[τ(β)[Ā(1)(A(m)(τ(t1), . . . , τ(tm)))]]

= τ(C[β[A(m)(t1, . . . , tm)]]) .

The case of a tree β[Ana
? ] is similar. [1.12.1]

Claim 1.12.2. If t is a tree in T (Nna ∪ Σ′), then there exists a derivation τ(t)
R′
=⇒?

h(t) in G′.

Proof of Claim 1.12.2. We proceed by induction on t:

For a tree rooted by A(m):

τ(A(m)(t1, . . . , tm)) = Ā(1)(A(m)(τ(t1), . . . , τ(tm)))

R′
=⇒ A(m)(τ(t1), . . . , τ(tm))

R′
=⇒? A(m)(h(t1), . . . , h(tm)) (by ind. hyp.)

= h(A(m)(t1, . . . , tm)) .
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For a tree rooted by Ana(m):

τ(Ana(m)(t1, . . . , tm)) = A(m)(τ(t1), . . . , τ(tm))

R′
=⇒? A(m)(h(t1), . . . , h(tm)) (by ind. hyp.)

= h(Ana(m)(t1, . . . , tm)) .

The case of a tree rooted by a in Σ ∪ {ε} is trivial. [1.12.2]

For the main proof: Let t be a tree in LT (G); there exist t′ in T (Nna ∪ Σ′) and

α in Tα with rl(α) = S s.t. α
RG
==⇒? t′ and t = h(t′). Then S↓ R

=⇒ τ(α)
R
=⇒? τ(t′)

according to Claim 1.12.1, and then τ(t′)
R′
=⇒? t removes all its nonterminals

according to Claim 1.12.2.

Proof of L(G′) ⊆ LT (G). We proceed similarly for the converse proof. We first need
to restrict ourselves to well-formed trees (and contexts): we define the set L ⊆
T (∆′ ∪ {�}) as the language of all trees and contexts where every node labeled
Ā(1) in N̄ has A(m) in N as the label of its daughter—L is defined formally in the
proof of the following claim:

Claim 1.12.3. The homomorphism τ is a bijection from T (∆ ∪ {�}) to L.

Proof of Claim 1.12.3. It should be clear that τ is injective and has a range in-
cluded in L. We can define τ−1 as a deterministic top-down tree transduction
from T (∆′ ∪ {�}) into T (∆ ∪ {�}) with L for domain, thus proving surjectivity:
Let T = 〈{q} ∪ {qA | A ∈ N},∆′ ∪ {�},∆ ∪ {�}, ρ, {q}〉 with rules

ρ = {q(A(1)(x))→ qA(x) | Ā(1) ∈ N̄}
∪ {qA(A(m)(x1, . . . , xm))→ A(m)(q(x1), . . . , q(xm)) | A(m) ∈ N}

∪ {q(A(m)(x1, . . . , xm))→ Ana(m)(q(x1), . . . , q(xm)) | A(m) ∈ N}
∪ {q(a(m)(x1, . . . , xm)→ a(m)(q(x1), . . . , q(xm)) | a(m) ∈ N↓ ∪ Σ ∪ {ε(0),�(0)}} .

We see immediately that JT K(t) = τ−1(t) for all t in L. [1.12.3]

Thanks to Claim 1.12.3, we can use τ−1 in our proofs. We obtain claims mirror-
ing Claim 1.12.1 and Claim 1.12.2 using the same types of arguments:

Claim 1.12.4. For all trees t in L, t R
=⇒? t′ implies t′ in L and τ−1(t)

RG
==⇒? τ−1(t′).

Claim 1.12.5. If t is a tree in L ∩ T (N̄ ∪ Σ′), t′ a tree in T (Σ), and t R′
=⇒? t′, then

h(τ−1(t′)) = τ−1(t).

For the main proof, consider a derivation S↓ R
=⇒? t with t ∈ T (Σ′) of G. We can

reorder this derivation so that S↓ R
=⇒ τ(α)

R
=⇒? τ(t′)

R′
=⇒? t for some α in Tα with

rl(α) = S and t′ in L ∩ T (N̄ ∪ Σ′) (i.e. t′ does not contain any symbol from N↓).
By Claim 1.12.4, α

RG
==⇒? t′ and by Claim 1.12.5 h(t′) = τ−1(t). Since t belongs to

T (Σ′), τ−1(t) = t, which shows that t belongs to LT (G).
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From CFTGs to TAGs The converse direction is more involved, because TAGs as
usually defined have locality restrictions (in a sense comparable to that of CFGs
generating only local tree languages) caused by their label-based selection mech-
anisms for the substitution and adjunction rules. This prompted the definition of
non-strict definitions for TAGs, where root and foot labels of auxiliary trees do
not have to match, where tree selection for substitution and adjunction is made
through selection lists attached to each substitution node or adjunction site, and
where elementary trees can be reduced to a leaf or a foot node (which does not
make much sense for strict TAGs due to the selection mechanism); see Kepser and
Rogers (2011).

Putting these considerations aside, the essential fact to remember is that TAGs
are “almost” equivalent to linear, monadic CFTGs as far as tree languages are
concerned, and exactly for string languages: a CFTG is called

• linear if, for every rule A(n)(y1, . . . , yn) → e in R, the right-hand side e is
linear,

• monadic if the maximal rank of a non-terminal is 1.

Exercise 1.4 (Non-Strict TAGs). Definition 1.1 (∗∗∗)is a strict definition of TAGs.

1. Read the definition of non-strict TAGs given by Kepser and Rogers (2011).
Show that strict and non-strict TAGs derive the same string languages.

2. Give a non-strict TAG for the regular tree language

S((A(a,�))∗ · b, (A(�, a))∗ · b) . (1.2)

3. Can you give a strict TAG for it? There are more trivial tree languages lying
beyond the reach of strict TAGs: prove that the two following finite lan-
guages are not TAG tree languages:

{A(a), B(a)} (1.3)

{a} (1.4)

Note that allowing distinct foot and root labels in auxiliary trees is useless
for these examples.

1.2 Well-Nested MCSLs

The class of well-nested MCSLs is at the junction of different extensions of context-
free languages that still lie below full context-sensitive ones Figure 1.1. This pro-
vides characterizations both in terms of

• well-nested multiple context-free grammars (or equivalently well-nested
linear context-free rewrite systems) (Kanazawa, 2009), and in terms of

• linear macro grammars (Seki and Kato, 2008), a subclass of the macro
grammars of Fischer (1968), also characterized via linear context-free tree
grammars (Rounds, 1970) or linear macro tree transducers (Engelfriet and
Vogler, 1985).

We concentrate on this second view.
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1.2.1 Linear CFTGs

As already seen with tree adjoining grammars, the case of linear CFTGs is of
particular interest. Intuitively, the relevance of linearity for linguistic modeling is
that arguments in a subcategorization frame have a linear behaviour: they should
appear exactly the stated number of times (by contrast, modifiers can be added
freely).

Linear CFTGs enjoy a number of properties. For instance, unlike the general
case, for linear CFTGs the distinction between IO and OI derivations is irrelevant:See Kepser and Mönnich (2006).

Proposition 1.13. Let G = 〈N,Σ, S,R〉 be a linear CFTG. Then LIO(G) = LOI(G).

Proof. Consider a derivation S R
=⇒? t in a linear CFTG. Thanks to Theorem 1.9, we

can assume this derivation to be OI. Let us pick the last non-IO step within this OI
derivation:

S
OI
=⇒? C[A(n)(e1, . . . , en)]
rA=⇒ C[eA{y1 ← e1, . . . , yn ← en}]
IO
=⇒? t

using some rule rA : A(n)(y1, . . . , yn) → eA, where an ei contains a nonterminal.
By Lemma 1.10, we can “pull” all the independent rewrites occurring after this

rA=⇒
so that they occur before the

rA=⇒ rewrite, so that the next rewrite occurs within
the context C. Since everything after this

rA=⇒ is IO, this rewrite has to involve an
innermost nonterminal, thus a nonterminal that was not introduced in eA, but one
that already appeared in some ei: in the context C:

eA{y1 ← e1, . . . , yi ← C ′[B(m)(e′1, . . . , e
′
m)], . . . , yn ← en}

rB=⇒ eA{y1 ← e1, . . . , yi ← C ′[eB{x1 ← e′1, . . . , xm ← e′m}], . . . , yn ← en}

which is possible thanks to linearity: in general, there is no way to force the various
copies of ei to use the same rewrite for B(m). Now this sequence is easily swapped:
in the context C:

A(n)(e1, . . . , C
′[B(m)(e′1, . . . , e

′
m)], . . . , en)

rB=⇒ A(n)(e1, . . . , C
′[eB{x1 ← e′1, . . . , xm ← e′m}], . . . , en)

rA=⇒ eA{y1 ← e1, . . . , yi ← C ′[eB{x1 ← e′1, . . . , xm ← e′m}], . . . , yn ← en} .

Repeating this operation for every nonterminal that occurred in the ei’s yields a
derivation of the same length for S R

=⇒? t with a shorter OI prefix and a longer IO
suffix. Repeating the argument at this level yields a full IO derivation.

Proposition 1.13 allows to apply several results pertaining to IO derivations to
linear CFTGs. A simple one is an alternative semantics for IO derivations in a CFTG
G = 〈N,Σ, S,R〉: the semantics of a nonterminal A(n) can be recast as a subset of
the relation JA(n)K ⊆ (T (Σ))n+1:

JA(n)K(t1, . . . , tn)
def
=

⋃
(A(n)(y1,...,yn)→e)∈R

JeK(t1, . . . , tn)
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where JeK ⊆ (T (Σ))n+1 is defined inductively for all subterms e in rule right-hand
sides—with n variables in the corresponding full term—by

Ja(m)(e1, . . . , em)K(t1, . . . , tn)
def
= {a(m)(t′1, . . . , t

′
m) | ∀1 ≤ i ≤ m.t′i ∈ JeiK(t1, . . . , tn)}

JB(m)(e1, . . . , em)K(t1, . . . , tn)
def
= {JB(m)K(t′1, . . . , t

′
m) | ∀1 ≤ i ≤ m.t′i ∈ JeiK(t1, . . . , tn)}

JyiK(t1, . . . , tn)
def
= {ti} .

The consequence of this definition is

LIO(G) = JS(0)K .

This semantics will be easier to employ in the following proofs concerned with IO
derivations (and thus applicable to linear CFTGs).

Parsing as Intersection This section relies heavily on
Maneth et al. (2007).

Let us look into more algorithmic issues and consider
the parsing problem for linear CFTGs. In order to apply the parsing as intersection
paradigm, we need two main ingredients: the first is emptiness testing (Propo-
sition 1.14), the second is closure under intersection with regular sets (Proposi-
tion 1.15). We actually prove these results for IO derivations in CFTGs rather than
for linear CFTGs solely.

Proposition 1.14 (Emptiness). Given a CFTG G, one can decide whether LIO(G) = ∅
in O(|G|).

Proof sketch. Given G = 〈N,Σ, S,R〉, we construct a context-free grammar G′ =
〈N ′, ∅, P, S〉 s.t. LIO(G) = ∅ iff L(G′) = ∅ and |G′| = O(|G|). Since emptiness of
CFGs can be tested in linear time, this will yield the result. We define for this

N ′
def
= N ∪

⋃
A(m)(y1,...,ym)→e∈R

Sub(e) ,

i.e. we consider both nonterminals and positions inside rule right hand sides as
nonterminals of G′, and

P ′
def
= {A→ e | A(m)(y1, . . . , ym)→ e ∈ R} (rules)

∪ {a(m)(e1, . . . , em)→ e1 · · · em | a ∈ Σ ∪ Y} (Σ- or Y-labeled positions)

∪ {A(m)(e1, . . . , em)→ Ae1 · · · em} . (N -labeled positions)

We noteN -labeled positions with arity information and nonterminal symbols with-
out in order to be able to distinguish them. Note that terminal- or variable-labeled
positions with arity 0 give rise to empty rules, whereas for nonterminal-labeled
positions of arity 0 we obtain unit rules.

The constructed grammar is clearly of linear size; we leave the fixpoint induction

proof of X G′
=⇒? ε iff JXK 6= ∅ to the reader.

Proposition 1.15 (Closure under Intersection with Regular Tree Languages). Let
G be a (linear) CFTG with maximal nonterminal rank M and maximal number of
nonterminals in a right-hand side D, and A a DTA with |Q| states. Then we can con-
struct a (linear) CFTG G′ with LIO(G′) = LIO(G) ∩ L and |G′| = O(|G| · |Q|M+D+1).

Proof. Let G = 〈N,Σ, S,R〉 and A = 〈Q,Σ, δ, F 〉. We define G′ = 〈N ′,Σ, S′, R′〉
where

N ′
def
= {S′} ∪

⋃
m≤M

Nm ×Qm+1,
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i.e. we add a new axiom and otherwise consider tuples of form 〈A(m), q0, q1, . . . , qm〉
as nonterminals of rank m,

R′
def
= {S′ → 〈S, qf 〉 | qf ∈ F}

∪ {〈A, q0, . . . , qm〉(m)(y1, . . . , ym)→ e′

| A(m)(y1, . . . , ym)→ e ∈ R ∧ e′ ∈ θq0q1···qm(e)},

where each θq0q1···qm is a nondeterministic translation of right-hand sides, under
the understanding that variable yi should hold a tree recognized by state qi and
the root should be recognized by q0:

θq0q1···qm(a(m)(e1, . . . , em))
def
= {a(m)(e′1, . . . , e

′
m) | ∃(q0, a, q

′
1, . . . , q

′
m) ∈ δ,

∀1 ≤ i ≤ m, e′i ∈ θq′iq1···qm(ei)}

θq0q1···qm(B(m)(e1, . . . , em))
def
= {〈B, q0, q

′
1, . . . , q

′
m〉(e′1, . . . , e′m) | ∀1 ≤ i ≤ m,

q′i ∈ Q ∧ e′i ∈ θq′iq1···qm(ei)}

θq0q1···qm(yi)
def
= {yi} .

The intuition behind this definition is that G′ guesses that the trees passed as yi
parameters will be recognized by state qi of A, leading to a tree generated by
A(m) and recognized by q0. A computationally expensive point is the translation
of nonterminals in the right-hand side, where we actually guess an assignment of
states for its parameters.

We can already check that G′ is constructed through at most |R| · |Q|M+1 calls
to θ translations, each allowing at most |Q|D choices for the nonterminals in the
argument right-hand side. In fine, each rule of G is duplicated at most |Q|M+D+1

times.
For a tuple of states q1, . . . , qm in Qm, let us define the relation Jq1 · · · qmK ⊆

(T (Σ))m as the cartesian product of the sets JqiK
def
= {t ∈ T (Σ) | qi

RT==⇒? t}. We
can check that, for all m ≤ M , all states q0, q1, . . . , qm of Q, and all nonterminals
A(m) of N ,

J〈A, q0, q1, . . . , qm〉K(Jq1 · · · qmK) = JA(m)K ∩ Jq0K .

This last equality proves the correctness of the construction.

Note to self: D can be made
equal to max(M,K) where K is

the maximal terminal rank for
any IO grammar; could this be

improved thanks to
linearity—ideally to D = 1? No,

after a bit of thought you can’t.
Gómez-Rodríguez, Kuhlmann and

Satta propose an O(|w|2(M+2))
upper bound for wnMCSLs in

their ACL 2010 paper.

In order to use these results for string parsing, we merely need to construct,
given a string w and a ranked alphabet Σ, the universal DTA with w as yield—it
has O(|w|2) states, thus we can obtain an O(|G| · |w|2(M+D+1)) upper bound for IO
parsing with CFTGs even in the non linear case.

1.2.2 Two-Level Syntax

One of the original propositions of Chomsky’s Syntactic Structures is a distinction
between “deep” and “surface” syntactic structures, which could be related by trans-
formations. In the light of the derivation vs. derived tree distinction with TAGs,
it would be revealing to try to apply this dichotomy more widely. This paradigm
is sometimes called two-level syntax, relating two (or more!) syntactic levels
by tree transformations, for instance tree transductions (Shieber, 2006) or typed
morphisms on λ-terms (de Groote, 2001). We consider here one such class of tree
transformations that generates exactly the context-free tree languages.
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Background: Macro Tree Transducers

Definition 1.16 (Macro Tree Transducers). A macro tree transducer (MTT) is a
tuple T = 〈Q,Σ,∆, I, R〉 consisting of three finite ranked alphabets Q, Σ, and ∆
of states, input, and output symbols, a set I ⊆ Q1 of initial states, all with arity
1, and a set R of rewrite rules over T (Q ∪ Σ ∪ ∆,X ∪ Y) for X ,Y two infinite
countable sets of input variables and parameters, each rule being of form

q(n+1)(a(m)(x1, . . . , xm), y1, . . . , yn)→ t

where q(n+1) is in Qn+1, a(m) in Σm, the input variables xi in Xm, and the param-
eters yj in Yn, and t is a tree in RHS(Q,∆,m, n) defined by the abstract syntax

t ::= yj | a(r)(t, . . . , t) | q(p+1)(xi, t, . . . , t)

where yj is in Yn, a(r) in ∆r, q(p+1) in Qp+1, and xi in Xm.
The semantics JT K of a MTT is a relation in T (Σ)× T (∆) defined by

JT K def
= {(t, t′) ∈ T (Σ)× T (∆) | ∃q(1)

i ∈ I, q
(1)
i (t)

R
=⇒? t′} .
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Chapter 2

Model-Theoretic Syntax

In contrast with the generative approaches of the previous chapters, we take here
a different stance on how to formalize constituent-based syntax. Instead of a more
or less operational description using some string or term rewrite system, the trees
of our linguistic analyses are models of logical formulæ.

2.0.1 Model-Theoretic vs. Generative

The Most of this discussion is inspired
by Pullum and Scholz (2001).

connections between the classes of tree structures that can be singled out
through logical formulæ on the one hand and context-free grammars or finite tree
automata on the other hand are well-known, and we will survey some of these
bridges. Thus the interest of a model theoretic approach does not reside so much
in what can be expressed but rather in how it can be expressed.

Local vs. Global View The model-theoretic approach simplifies the specification
of global properties of syntactic analyses. Let us consider for instance the problem
of finding the head of a constituent, which was used in ?? to lexicalize PCFGs.
Remember that the solution there was to explicitly annotate each nonterminal
with the head information of its subtree—which is the only way to percolate the
head information up the trees in a context-free grammar. On the other hand, one
can write a logic formula postulating the existence of a unique head word for each
node of a tree (see (2.19) and (2.20)).

Gradience of Grammaticality Agrammatical Practical aspects of the notion of
grammaticality gradience have
been investigated in the context of
property grammars, see e.g.
Duchier et al. (2009).

sentences can vary considerably in
their degree of agrammaticality. Rather than a binary choice between grammatical
and agrammatical, one would rather have a finer classification that would give
increasing levels of agrammaticality to the following sentences:

∗In a hole in in the ground there lived a hobbit.
∗In a hole in in ground there lived a hobbit.
∗Hobbit a ground in lived there a the hole in.

One way to achieve this finer granularity with generative syntax is to employ
weights as a measure of grammaticality. Note that it is not quite what we ob-
tained through the probabilistic methods of ??, because estimated probabilities
are not grammaticality judgments per se, but merely occurrence-based. In partic-
ular, even with smoothing techniques, missing events often receive essentially the
same probability.

21
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A natural way to obtain a gradience of grammaticality using model theoretic
methods is to structure formulæ as large conjunctions

∧
i ϕi, where each conjunct

ϕi implements a specific linguistic notion. A degree of grammaticality can be
derived from (possibly weighted) counts of satisfied conjuncts.

Open Lexicon An underlying assumption of generative syntax is the presence of
a finite lexicon Σ. A specific treatment is required in automated systems in order
to handle unknown words.

This limitation is at odds with the diachronic addition of new words to lan-
guages, and with the grammaticality of sentences containing pseudo-words, as
for instance

Could you hand over the salt, please?
Could you smurf over the smurf, please?

Again, structuring formulæ in such a way that lexical information only further
constrains the linguistic trees makes it easy to handle unknown or pseudo-words,
which simply do not add any constraint.

Infinite Sentences A debatable point is whether natural language sentences
should be limited to finite ones. An example illustrating why this question is not
so clear-cut is an expression for “mutual belief” that starts with the following:

Jones believes that iron rusts, and Smith believes that iron rusts, and Jones
believes that Smith believes that iron rusts, and Smith believes that Jones
believes that iron rusts, and Jones believes that Smith believes that Jones
believes that iron rusts, and. . .

Dealing with infinite sequences and trees requires to extend the semantics of
generative devices (CFGs, PDAs, etc.) and leads to complications. By contrast,
logics are not a priori restricted to finite models, and in fact the two examples we
will see are expressive enough to force the choice of infinite models or finite ones.
Of course, for practical applications one might want to restrict oneself to finite
models.

2.0.2 Tree Structures

Before we turn to the two logical languages that we consider for model-theoretic
syntax, let us introduce the structures we will consider as possible models: these
will be labeled ordered trees. Given a set A of labels, a tree structure is a tuple
M = 〈W, ↓,→, (Pa)a∈A〉 where W is a set of nodes, ↓ and → are respectively
the child and next-sibling relations over W , and each Pa for a in A is a unary
labeling relation over W . We take W to be isomorphic to some prefix-closed and
predecessor-closed subset of N∗, where ↓ and→ can then be defined by

↓ def
= {(w,wi) | i ∈ N ∧ wi ∈W} (2.1)

→ def
= {(wi,w(i+ 1)) | i ∈ N ∧ w(i+ 1) ∈W} . (2.2)

Note that (a) we do not limit ourselves to a single label per node, i.e. we actually

work on trees labeled by Σ
def
= 2A, (b) we do not bound the rank of our trees,

and (c) we do not assume the set of labels to be finite.
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Binary Trees See Comon et al. (2007,
Section 8.3.1).

One way to deal with unranked trees is to look at their encoding
as “first child/next sibling” binary trees. Formally, given a tree structure M =
〈W, ↓,→, (Pa)a∈A〉, we construct a labeled binary tree t, which is a partial func-
tion {0, 1}∗ → Σ with a prefix-closed domain. We define for this dom(t) = fcns(W )
and t(w) = {a ∈ A | Pa(fcns−1(w))} for all w ∈ dom(t), where

fcns(ε)
def
= ε fcns(w0)

def
= fcns(w)0 fcns(w(i+ 1))

def
= fcns(wi)1 (2.3)

for all w in N∗ and i in N and the corresponding inverse mapping is

fcns−1(ε)
def
= ε fcns−1(w0)

def
= fcns−1(w)0 fcns−1(w1)

def
= fcns−1(w) + 1

(2.4)

for all w in ε ∪ 0{0, 1}∗, under the understanding that (wi) + 1 = w(i + 1) for all
w in N∗ and i ∈ N. Observe that binary trees t produced by this encoding verify
dom(t) ⊆ 0{0, 1}∗.

The tree t can be seen as a binary structure fcns(M) = 〈dom(t), ↓0, ↓1, (Pa)a∈A〉,
defined by

↓0
def
= {(w,w0) | w0 ∈ dom(t)} (2.5)

↓1
def
= {(w,w1) | w1 ∈ dom(t)} (2.6)

Pa
def
= {w ∈ dom(t) | a ∈ t(w)} . (2.7)

The domains of our constructed binary trees are not necessarily predecessor-
closed, which can be annoying. Let # be a fresh symbols not in A; given t a
labeled binary tree, its closure t̄ is the tree with domain

dom(t̄)
def
= {0w | w ∈ dom(t)} ∪ {iwj | w ∈ dom(t) ∧ i, j ∈ {0, 1}} (2.8)

and labels

t̄(w)
def
=

{
t(w′) if w = 0w′ ∧ w′ ∈ dom(t)

{#} otherwise.
(2.9)

Note that in t̄, every node is either a node not labeled by # with exactly two
children, or a #-labeled node with no children, or a #-labeled root with two
children, thus t̄ is a full (aka strict) binary tree.

2.1 Monadic Second-Order Logic

See Comon et al. (2007,
Section 8.4).

We consider the weak monadic second-order logic (wMSO), over tree structures
M = 〈W, ↓,→, (Pa)a∈A〉 and two infinite countable sets of first-order variables X1

and second-order variables X2. Its syntax is defined by

ψ ::= x = y | x ∈ X | x ↓ y | x→ y | Pa(x) | ¬ψ | ψ ∨ ψ | ∃x.ψ | ∃X.ψ

where x, y range over X1, X over X2, and a over A. We write FV(ψ) for the set of
variables free in a formula ψ; a formula without free variables is called a sentence.

First-order variables are interpreted as nodes inW , while second-order variables
are interpreted as finite subsets of W (it would otherwise be the full second-order
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logic). Let ν : X1 → W and µ : X2 → Pf (W ) be two corresponding assignments;
then the satisfaction relation is defined by

M |=ν,µ x = y if ν(x) = ν(y)

M |=ν,µ x ∈ X if ν(x) ∈ µ(X)

M |=ν,µ x ↓ y if ν(x) ↓ ν(y)

M |=ν,µ x→ y if ν(x)→ ν(y)

M |=ν,µ Pa(x) if Pa(ν(x))

M |=ν,µ ¬ψ if M 6|=ν,µ ψ

M |=ν,µ ψ ∨ ψ′ if M |=ν,µ ψ or M |=ν,µ ψ
′

M |=ν,µ ∃x.ψ if ∃w ∈W,M |=ν{x←w},µ ψ

M |=ν,µ ∃X.ψ if ∃U ⊆W,U finite ∧M |=ν,µ{X←U} ψ .

Given a wMSO formula ψ, we are interested in two algorithmic problems: the
satisfiability problem, which asks whether there exist M and ν and µ s.t. M |=ν,µ

ψ, and the model-checking problem, which given M asks whether there exist ν
and µ s.t. M |=ν,µ ψ. By modifying the vocabulary to have labels in A ] FV(ψ),
these questions can be rephrased on a wMSO sentence

∃FV(ψ).ψ ∧

 ∧
x∈X1∩FV(ψ)

Px(x) ∧ ∀y.x 6= y ⊃ ¬Px(y)


∧

 ∧
X∈X2∩FV(ψ)

∀y.y ∈ X ≡ PX(y)

 .

In practical applications of model-theoretic techniques we restrict ourselves to fi-
nite models for these questions.

Example 2.1. Here are a few useful wMSO formulæ: To allow any label in a finite
set B ⊆ A:

PB(x)
def
=
∨
a∈B

Pa(x)

PB(X)
def
= ∀x.x ∈ X ⊃ PB(x) .

To check whether we are at the root or a leaf or similar constraints:

root(x)
def
= ¬∃y.y ↓ x

leaf(x)
def
= ¬∃y.x ↓ y

internal(x)
def
= ¬leaf(x)

children(x,X)
def
= ∀y.y ∈ X ≡ x ↓ y

x ↓0 y
def
= x ↓ y ∧ ¬∃z.z → y .

To use the monadic transitive closure of a formula ψ(u, v) with u, v ∈ FV(ψ):

x [TCu,v ψ(u, v)] y
def
= ∀X.(x ∈ X ∧ ∀uv.(u ∈ X ∧ ψ(u, v) ⊃ v ∈ X) ⊃ y ∈ X)

(2.10)

x ↓? y def
= x [TCu,v u ↓ v] y

x→? y
def
= x [TCu,v u→ v] y .
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2.1.1 Linguistic Analyses in wMSO

See Rogers (1998) for a complete
analysis using wMSO. Monadic
second-order logic can also be
applied to queries in treebanks
(Kepser, 2004; Maryns and
Kepser, 2009).

Let us illustrate how we can work out a constituent-based analysis using wMSO.
Following the ideas on grammaticality expressed at the beginning of the chapter,
we define large conjunctions of formulæ expressing various linguistic constraints.

Basic Grammatical Labels Let us fix two disjoint finite sets N of grammatical
categories and Θ of part-of-speech tags and distinguish a particular category S ∈
N standing for sentences, and let N ]Θ ⊆ A (we do not assume A to be finite).

Define the formula

labelsN,Θ
def
= ∀x.root(x) ⊃ PS(x) (2.11)

forces the root label to be S;

∧ ∀x.internal(x) ⊃
∨

a∈N]Θ

Pa(x) ∧
∧

b∈N]Θ\{a}

¬Pb(x) (2.12)

checks that every internal node has exactly one label from N ]Θ (plus potentially
others from A\(N ]Θ));

∧ ∀x.leaf(x) ⊃ ¬PN]Θ(x) (2.13)

forbids grammatical labels on leaves;

∧ ∀y.leaf(y) ⊃ ∃x.x ↓ y ∧ PΘ(x) (2.14)

expresses that leaves should have POS-labeled parents;

∧ ∀x.∃y0y1y2.x ↓? y0 ∧ y0 ↓ y1 ∧ y1 ↓ y2 ∧ leaf(y2) ⊃ PN (x) (2.15)

verifies that internal nodes at distance at least two from some leaf should have
labels drawn from N , and are thus not POS-labeled by (2.12), and thus cannot
have a leaf as a child by (2.13);

∧ ∀x.PΘ(x) ⊃ ¬∃yz.y 6= z ∧ x ↓ y ∧ x ↓ z (2.16)

discards trees where POS-labeled nodes have more than one child. The purpose
of labelsN,Θ is to restrict the possible models to trees with the particular shape we
use in constituent-based analyses.

Open Lexicon Let us assume that some finite part of the lexicon is known, as
well as possible POS tags for each known word. One way to express this in an
open manner is to define a finite set L ⊆ A disjoint from N and Θ, and a relation
pos ⊆ L×Θ. Then the formula

lexiconL,pos
def
= ∀x.

∨
`∈L

P`(x) ⊃ leaf(x) ∧
∧

`′∈L\{`}

¬P`′(x) ∧ ∀y.y ↓ x ⊃ Ppos(`)(y)


(2.17)

makes sure that only leaves can be labeled by words, and that when a word is
known (i.e. if it appears in L), it should have one of its allowed POS tag as imme-
diate parent. If the current POS tagging information of our lexicon is incomplete,
then this particular constraint will not be satisfied. For an unknown word however,
any POS tag can be used.
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Context-Free Constraints It is of course easy to enforce some local constraints
in trees. For instance, assume we are given a CFG G = 〈N,Θ, P, S〉 describing the
“usual” local constraints between grammatical categories and POS tags. Assume ε
belongs to A; then the formula

grammarG
def
= ∀x.(Pε(x) ⊃ ¬PN]Θ]L(x)) ∧

∨
B∈N

PB(x) ⊃
∨

B→β∈P
∃y.x ↓0 y ∧ ruleβ(y)

(2.18)

forces the tree to comply with the rules of the grammar, where

ruleXβ(x)
def
= PX(x) ∧ ∃y.x→ y ∧ ruleβ(y) (for β 6= ε and X ∈ N ]Θ)

ruleX(x)
def
= PX(x) ∧ ¬∃y.x→ y (for X ∈ N ]Θ)

ruleε(x)
def
= Pε(x) ∧ leaf(x) .

Again, the idea is to provide a rather permissive set of local constraints, and to be
able to spot the cases where these constraints are not satisfied.

Non-Local Dependencies Implementing local constraints as provided by a CFG
is however far from ideal. A much more interesting approach would be to take
advantage of the ability to use long-distance constraints, and to model subcatego-
rization frames (recall Section 1.1.1) and modifiers.

Head Percolation. The first step is to provide find which child is the head among
its sisters; several heuristics have been developed to this end, and a simple way to
describe such heuristics is to use a head percolation function h : N → {l, r}×(N]
Θ)∗ that describes for a given parent label A a list of potential labels X1, . . . , Xn

in N ] Θ in order of priority and a direction d ∈ {l, r} standing for “leftmost” or
“rightmost”: such a value means that the leftmost (resp. rightmost) occurrence of
X1 is the head, and unless X1 is not among the children, in which case we should
try X2 and so on, and if Xn also fails simply choose the leftmost (resp. rightmost)
child (see e.g. Collins, 1999, Appendix A). For instance, the function

h(S) = (r,TO IN VP S SBAR · · · )
h(VP) = (l,VBD VBN VBZ VB VBG VP · · · )
h(NP) = (r,NN NNP NNS NNPS JJR CD · · · )
h(PP) = (l, IN TO VBG VBN · · · )

would result in the correct head annotations in Figure 2.1.
Given such a head percolation function h, we can express the fact that a given

node is a head:

head(x)
def
= leaf(x) ∨

∨
B∈N
∃yY.y ↓ x ∧ children(y, Y ) ∧ PB(y) ∧ headh(B)(x, Y )

(2.19)

headd,Xβ(x, Y )
def
= ¬priorityd,X(x, Y ) ⊃ (headd,β(x, Y ) ∧ ¬PX(Y ))

headl,ε(x, Y )
def
= ∀y.y ∈ Y ⊃ x→? y

headr,ε(x, Y )
def
= ∀y.y ∈ Y ⊃ y →? x

priorityl,X(x, Y )
def
= PX(x) ∧ ∀y.y ∈ Y ∧ y →? x ⊃ ¬PX(y)

priorityr,X(x, Y )
def
= PX(x) ∧ ∀y.y ∈ Y ∧ x→? y ⊃ ¬PX(y) .
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where β is a sequence in (N ]Θ)∗ and X a symbol in N ]Θ.

S
[>,hurled ,VBD]

NP
[S,he,PRP]

PRP
[NP,he,PRP]

He

VP
[S,hurled ,VBD]

VP
[VP,hurled ,VBD]

VBD
[VP,hurled ,VBD]

hurled

NP
[VP,ball ,NN]

DT
[NP,the,DT]

the

NN
[NP,ball ,NN]

ball

PP
[VP,into,IN]

IN
[VP,into,IN]

into

NP
[PP,basket ,NN]

DT
[NP,the,DT]

the

NN
[NP,basket ,NN]

basket

Figure 2.1: A derivation tree refined with lexical and parent information.

Lexicalization. Using head information, we can also recover lexicalization in-
formation:

lexicalize(x, y)
def
= leaf(y) ∧ [TCu,v u ↓ v ∧ head(v)] . (2.20)

This formula recovers the lexical information in Figure 2.1.

Modifiers. Here is a first use of wMSO to extract information about a proposed
constituent tree: try to find which word is modified by another word. For instance,
for an adverb we could write something like

modify(x, y)
def
= ∃x′y′z.z ↓ x ∧ PRB(z) ∧ lexicalize(x′, x) ∧ y′ ↓ x′

∧ ¬lexicalize(y′, x) ∧ lexicalize(y′, y) (2.21)

that finds a maximal head x′ and the lexical projection of its parent y′. This for-
mula finds for instance that really modifies likes in Figure 1.7.

Exercise 2.1. Modify (∗)(2.21) to make sure that any leaf with a parent tagged by
the POS RB modifies either a verb or an adjective.

2.1.2 wS2S

See (Doner, 1970; Thatcher and
Wright, 1968; Rabin, 1969;
Meyer, 1975) for classical results
on wS2S, and more recently
(Rogers, 1996, 2003) for
linguistic applications.

The classical logics for trees do not use the vocabulary of tree structures M,
but rather that of binary structures 〈dom(t), ↓0, ↓1, (Pa)a∈A〉. The weak monadic
second-order logic over this vocabulary is called the weak monadic second-order
logic of two successors (wS2S). The semantics of wS2S should be clear.

The interest of considering wS2S at this point is that it is well-known to have a
decidable satisfiability problem, and that for any wS2S sentence ψ one can con-
struct a tree automaton Aψ—of size non-elementary in that of ψ—that recognizes
all the finite models of ψ. More precisely, when working with finite binary trees
and closed formulæ ψ, See Comon et al. (2007,

Section 3.3)—their construction
is easily extended to handle
labeled trees. Using automata
over infinite trees, these can also
be handled (Rabin, 1969; Weyer,
2002).

L(Aψ) = {t̄ ∈ T (Σ ] {{#}}) | t finite ∧ t |= ψ} . (2.22)

Now, it is easy to translate any wMSO sentence ψ into a wS2S sentence ψ′ s.t.
M |= ψ iff fcns(M) |= ψ′. This formula simply has to interpret the ↓ and →
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relations into their binary encodings: let

ψ′
def
= ψ ∧ ∃x.¬(∃z.z ↓0 x ∨ z ↓1 x) ∧ ¬(∃y.x ↓1 y) (2.23)

where the conditions on x ensure it is at the root and does not have any right
child, and where ψ uses the macros

x ↓ y def
= ∃X.∃x0.x ↓0 x0 ∧ x0 ∈ X ∧ y ∈ X

∧ ∀z.(z ∈ X ∧ z 6= y ⊃ ∃z′.z′ ∈ X ∧ z ↓1 z′) (2.24)

x→ y
def
= x ↓1 y . (2.25)

The conclusion of this construction is

Theorem 2.2. Satisfiability and model-checking for wMSO are decidable.

Exercise 2.2 (ω Successors). Show(∗) that the weak second-order logic of ω suc-

cessors (wSωS), i.e. with ↓i
def
= {(w,wi) | wi ∈ W} defined for every i ∈ N, has

decidable satisfiability and model-checking problems.

2.2 Propositional Dynamic Logic

An alternative take on model-theoretic syntax is to employ modal logics on tree
structures. Several properties of modal logics make them interesting to this end:
their decision problems are usually considerably simpler, and they allow to express
rather naturally how to hop from one point of interest to another.

Propositional dynamic logic on
ordered trees was first defined by

Kracht (1995). The name of PDL
on trees is due to Afanasiev et al.

(2005); this logic is also known
as Regular XPath in the XML

processing community Marx
(2005). Various fragments have

been considered through the
years; see for instance Blackburn

et al. (1993, 1996); Palm
(1999); Marx and de Rijke

(2005).

Propositional dynamic logic (Fischer and Ladner, 1979) is a two-sorted modal
logic where the basic relations can be composed using regular operations: on tree
structures M = 〈W, ↓,→, (Pa)a∈A〉, its terms follow the abstract syntax

π ::= ↓ | → | π−1 | π;π | π + π | π∗ | ϕ? (path formulæ)

ϕ ::= a | > | ¬ϕ | ϕ ∨ ϕ | 〈π〉ϕ (node formulæ)

where a ranges over A.
The semantics of a node formula on a tree structure M = 〈W, ↓,→, (Pa)a∈A〉

is a set of tree nodes JϕK = {w ∈ W | M, w |= ϕ}, while the semantics of a path
formula is a binary relation over W :

JaK def
= {w ∈W | Pa(w)} J↓K def

= ↓

J>K def
= W J→K def

= →

J¬ϕK def
= W\JϕK Jπ−1K def

= JπK−1

Jϕ1 ∨ ϕ2K
def
= Jϕ1K ∪ Jϕ2K Jπ1;π2K

def
= Jπ1K # Jπ2K

J〈π〉ϕK def
= JπK−1(JϕK) Jπ1 + π2K

def
= Jπ1K ∪ Jπ2K

Jπ∗K def
= JπK?

Jϕ?K def
= IdJϕK .

Finally, a tree M is a model for a PDL formula ϕ if its root is in JϕK, written
M, root |= ϕ.
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We define the classical dual operators

⊥ def
= ¬> ϕ1 ∧ ϕ2

def
= ¬(¬ϕ1 ∨ ¬ϕ2) [π]ϕ

def
= ¬〈π〉¬ϕ . (2.26)

We also define

↑ def
= ↓−1 ← def

= →−1

root
def
= [↑]⊥ leaf

def
= [↓]⊥

first
def
= [←]⊥ last

def
= [→]⊥ .

Exercise 2.3 (Converses). (∗)Prove the following equivalences:

(π1;π2)−1 ≡ π−1
2 ;π−1

1 (2.27)

(π1 + π2)−1 ≡ π−1
1 + π−1

2 (2.28)

(π∗)−1 ≡ (π−1)∗ (2.29)

(ϕ?)−1 ≡ ϕ? . (2.30)

Exercise 2.4 (Reductions). (∗)Prove the following equivalences:

〈π1;π2〉ϕ ≡ 〈π1〉〈π2〉ϕ (2.31)

〈π1 + π2〉ϕ ≡ (〈π1〉ϕ) ∨ (〈π2〉ϕ) (2.32)

〈π∗〉ϕ ≡ ϕ ∨ 〈π;π∗〉ϕ (2.33)

〈ϕ1?〉ϕ2 ≡ ϕ1 ∧ ϕ2 . (2.34)

2.2.1 Model-Checking

As with MSO, the main
application of PDL on trees is to
query treebanks (see e.g. Lai and
Bird, 2010).

The model-checking problem for PDL is rather easy to decide. Given a model
M = 〈W, ↓,→, (Pp)p∈A〉, we can compute inductively the satisfaction sets and
relations using standard algorithms. This is a PTIME algorithm.

2.2.2 Satisfiability

See also (Blackburn et al., 2001,
Section 6.8) for a reduction from
a tiling problem and (Harel
et al., 2000, Chapter 8) for a
reduction from alternating Turing
machines.

Unlike the model-checking problem, the satisfiability problem for PDL is rather
demanding: it is EXPTIME-complete.

Theorem 2.3 (Fischer and Ladner, 1979). Satisfiability for PDL is EXPTIME-hard.

As with wMSO, it is more convenient to work on binary trees t = 〈dom(t), ↓0, ↓1, (Pa)a∈A〉
that encode our tree structures. The syntax of PDL over such models simply re-
places ↓ and→ by ↓0 and ↓1; as with wMSO in Section 2.1.2 we can interpret these
relations in PDL by

↓ def
= ↓0; ↓∗1 → def

= ↓1 (2.35)

and translate any PDL formula ϕ into a formula

ϕ′
def
= ϕ ∧ [↑∗; root?; ↓1]⊥ (2.36)

that checks that ϕ holds and verifies M, w |= ϕ iff fcns(M), fcns(w) |= ϕ′. The
conditions in (2.36) ensure that the tree we are considering is the image of some
tree structure by fcns: we first go back to the root by the path ↑∗; root?, and then
verify that the root does not have a right child.
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Normal Form. Let us write

↑0
def
= ↓−1

0 ↑1
def
=↓−1

1 ;

then using the equivalences of Exercise 2.3 we can reason on PDL with a restricted
path syntax

α ::= ↓0 | ↑0 | ↓1 | ↑1 (atomic relations)

π ::= α | π;π | π + π | π∗ | ϕ? (path formulæ)

and using the dualities of (2.26), we can restrict node formulæ to be of form

ϕ ::= a | ¬a | > | ⊥ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈π〉ϕ | [π]ϕ . (node formulæ)

Lemma 2.4. For any PDL formula ϕ, we can construct an equivalent formula ϕ′ in
normal form with |ϕ′| = O(|ϕ|).

Proof sketch. The normal form is obtained by “pushing” negations and converses
as far towards the leaves as possible, and can only result in doubling the size of ϕ
due to the extra ¬ and −1 at the leaves.

Fisher-Ladner Closure

The equivalences found in Exercise 2.4 and their duals allow to simplify PDL for-
mulæ into a reduced normal form we will see soon, which is a form of disjunctive
normal form with atomic propositions and atomic modalities for literals. In order
to obtain algorithmic complexity results, it will be important to be able to bound
the number of possible such literals, which we do now.

The Fisher-Ladner closure of a PDL formula in normal form ϕ is the smallest
set S of formulæ in normal form s.t.

1. ϕ ∈ S,

2. if ϕ1 ∨ ϕ2 ∈ S or ϕ1 ∧ ϕ2 ∈ S then ϕ1 ∈ S and ϕ2 ∈ S,

3. if 〈π〉ϕ′ ∈ S or [π]ϕ′ ∈ S then ϕ′ ∈ S,

4. if 〈π1;π2〉ϕ′ ∈ S then 〈π1〉〈π2〉ϕ′ ∈ S,

5. if [π1;π2]ϕ′ ∈ S then [π1][π2]ϕ′ ∈ S,

6. if 〈π1 + π2〉ϕ′ ∈ S then 〈π1〉ϕ′ ∈ S and 〈π2〉ϕ′ ∈ S,

7. if [π1 + π2]ϕ′ ∈ S then [π1]ϕ′ ∈ S and [π2]ϕ′ ∈ S,

8. if 〈π∗〉ϕ′ ∈ S then 〈π〉〈π∗〉ϕ′ ∈ S,

9. if [π∗]ϕ′ ∈ S then [π][π∗]ϕ′ ∈ S,

10. if 〈ϕ1?〉ϕ2 ∈ S or [ϕ1?]ϕ2 ∈ S then ϕ1 ∈ S.

We write FL(ϕ) for the Fisher-Ladner closure of ϕ.

Lemma 2.5. Let ϕ be a PDL formula in normal form. Its Fisher-Ladner closure is of
size |FL(ϕ)| ≤ |ϕ|.

Proof. We construct a surjection σ between positions p in the term ϕ and the for-
mulæ in S:
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;
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ϕ1
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π2

ϕ2

[ϕ1?;π∗
1 ;π2]ϕ2

ϕ2

[π2]ϕ2

[π∗
1 ][π2]ϕ2

[π1][π∗
1 ][π2]ϕ2
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1 ][π2]ϕ2
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Figure 2.2: The surjection σ from positions in ϕ
def
= [ϕ1?;π∗1;π2]ϕ2 to FL(ϕ)

(dashed), and the rules used to construct FL(ϕ) (dotted).

• for positions p spanning a node subformula span(p) = ϕ1, we can map to ϕ1

(this corresponds to cases 1—3 and 10 on subformulæ of ϕ′);

• for positions p spanning a path subformula span(p) = π, we find the closest
ancestor spanning a node subformula (thus of form 〈π′〉ϕ1 or [π′]ϕ1). If π =
π′ we map p to the same 〈π′〉ϕ1 or [π′]ϕ1. Otherwise we consider the parent
position p′ of p, which is mapped to some formula σ(p′), and distinguish
several cases:

– for σ(p′) = 〈π1;π2〉ϕ2 we map p to 〈π1〉〈π2〉ϕ2 if span(p) = π1 and to
〈π2〉ϕ2 if span(p) = π2 (this matches case 4 and the further application
of 3);

– for σ(p′) = [π1;π2]ϕ2 we map p to [π1][π2]ϕ2 if span(p) = π1 and to
[π2]ϕ2 if span(p) = π2 (this matches case 5 and the further application
of 3);

– for σ(p′) = 〈π1 + π2〉ϕ2 and span(p) = πi with i ∈ {1, 2}, we map p to
〈πi〉ϕ2 (this matches case 6);

– for σ(p′) = [π1 + π2]ϕ and span(p) = πi with i ∈ {1, 2}, we map p to
[πi]ϕ2 (this matches case 7);

– for σ(p′) = 〈π∗〉ϕ2, span(p) = π and we map p to 〈π〉〈π∗〉ϕ2 (this
matches case 8);

– for σ(p′) = [π∗]ϕ2, span(p) = π and we map p to [π][π∗]ϕ2 (this matches
case 9).

The function σ we just defined is indeed surjective: we have covered every formula
produced by every rule. Figure 2.2 presents an example term and its mapping.

Reduced Formulæ

Reduced Normal Form. We try now to reduce formulæ into a form where any
modal subformula is under the scope of some atomic modality 〈α〉 or [α]. Given a
formula ϕ in normal form, this is obtained by using the equivalences of Exercise 2.4
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and their duals, and by putting the formula into disjunctive normal form, i.e.

ϕ ≡
∨
i

∧
j

χi,j (2.37)

where each χi,j is of form

χ ::= a | ¬a | 〈α〉ϕ′ | [α]ϕ′ . (reduced formulæ)

Observe that all the equivalences we used can be found among the rules of the
Fisher-Ladner closure of ϕ:

Lemma 2.6. Given a PDL formula ϕ in normal form, we can construct an equivalent
formula

∨
i

∧
j χi,j where each χi,j is a reduced formula in FL(ϕ).

Two-Way Alternating Tree Automaton

The presentation follows mostly
Calvanese et al. (2009).

We finally turn to the construction of a tree automaton that recognizes the models
of a normal form formula ϕ. To simplify matters, we use a powerful model for this
automaton: a two-way alternating tree automaton (2ATA) over finite ranked
trees.

Definition 2.7. A two-way alternating tree automaton (2ATA) is a tuple A =
〈Q,Σ, qi, F, δ〉whereQ is a finite set of states, Σ is a ranked alphabet with maximal
rank k, qi ∈ Q is the initial state, and δ is a transition function from pairs of states
and symbols (q, a) in Q×Σ to positive boolean formulæ f in B+({−1, . . . , k} ×Q),
defined by the abstract syntax

f ::= (d, q) | f ∨ f | f ∧ f | > | ⊥ ,

where d ranges over {−1, . . . , k} and q over Q. For a set J ⊆ {−1, . . . , k} × Q
and a formula f , we say that J satisfies f if assigning > to elements of J and ⊥ to
those in {−1, . . . , k}×Q\J makes f true. A 2ATA is able to send copies of itself to
a parent node (using the direction −1), to the same node (using direction 0), or
to a child (using directions in {1, . . . , k}).

Given a labeled ranked ordered tree t over Σ, a run of A is a tree ρ labeled by
dom(t)×Q satisfying

1. ε is in dom(ρ) with ρ(ε) = (ε, qi),

2. if w is in dom(ρ), ρ(w) = (u, q) and δ(q, t(u)) = f , then there exists J ⊆
{−1, . . . , k} × Q of form J = {(d1, q1), . . . , (dn, qn)} s.t. J |= f and for all
1 ≤ i ≤ n we have

w(i− 1) ∈ dom(ρ) u′ =


u(di − 1) if di > 0

u if di = 0

u′ where u = u′j otherwise

u′ ∈ dom(t) and ρ(wi) = (u′, qi).

A tree is accepted if there exists a run for it.

Theorem 2.8 (Vardi, 1998). Given a 2ATA A = 〈Q,Σ, qi, F, δ〉, deciding the empti-
ness of L(A) can be done in deterministic time |Σ| · 2O(k|Q|3).
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Automaton of a Formula Let ϕ be a formula in normal form. We want to con-
struct a 2ATA Aϕ = 〈Q,Σ, qi, δ〉 that recognizes exactly the closed models of ϕ,
so that we can test the satisfiability of ϕ by Theorem 2.8. We assume wlog. that
A ⊆ Sub(ϕ). We define

Q
def
= FL(ϕ) ] {qi, qϕ, q0, q1, q#, q>}

Σ
def
= {#(0),#(2)} ∪ {a(2) | a ⊆ A} .

The transitions of Aϕ are based on formula reductions. Let ϕ′ be a formula in
FL(ϕ) which is not reduced: then we can find an equivalent formula

∨
i

∧
j χi,j

where each χi,j is reduced. We define accordingly

δ(ϕ′, a)
def
=
∨
i

∧
j

(0, χi,j)

for all such ϕ′ and all a ⊆ A, thereby staying in place and checking the various
χi,j . For a reduced formula χ in FL(ϕ), we set for all a ⊆ A

δ(p, a)
def
=

{
> if p ∈ a
⊥ otherwise

δ(¬p, a)
def
=

{
⊥ if p ∈ a
> otherwise

δ(〈↓0〉ϕ′, a)
def
= (1, ϕ′) δ([↓0]ϕ′, a)

def
= (1, ϕ′) ∨ (1, q#)

δ(〈↓1〉ϕ′, a)
def
= (2, ϕ′) δ([↓1]ϕ′, a)

def
= (2, ϕ′) ∨ (2, q#)

δ(〈↑0〉ϕ′, a)
def
= (−1, ϕ′) ∧ (−1, q1) δ([↑0]ϕ′, a)

def
= ((−1, ϕ′) ∧ (−1, q1)) ∨ (−1, q#)

δ(〈↑1〉ϕ′, a)
def
= (−1, ϕ′) ∧ (−1, q0) δ([↑1]ϕ′, a)

def
= ((−1, ϕ′) ∧ (−1, q0)) ∨ (−1, q#)

where the states q0 and q1 are used to check that the node we are coming from
was a right or a left son:

δ(q0, a)
def
= (1, q>) ∨ (1, q#) δ(q1, a)

def
= (2, q>) ∨ (2, q#)

and q# checks that the node label is #:

δ(q#,#)
def
= > δ(q#, a)

def
= ⊥

while q> does not enforce any condition besides being labeled by a ⊆ A:

δ(q>, a)
def
= > .

The initial state qi checks that the root is labeled # and has ϕ for left son and
another # for right son:

δ(qi,#)
def
= (1, qϕ) ∧ (2, q#) δ(qi, a)

def
= ⊥

δ(qϕ, a)
def
= δ(ϕ, a) ∧ (2, q#) .

For any state q beside qi and q#

δ(q,#)
def
= ⊥ .

Corollary 2.9. Satisfiability of PDL can be decided in EXPTIME.

Proof sketch. Given a PDL formula ϕ, by Lemma 2.4 construct an equivalent for-
mula in normal form ϕ′ with |ϕ′| = O(|ϕ|). We then construct Aϕ′ with O(|ϕ|)
states by Lemma 2.5 and an alphabet of size at most |ϕ|, s.t. t̄ is accepted by Aϕ′
iff t, root |= ϕ. By Theorem 2.8 we can decide the existence of such a tree t̄ in time
2O(|ϕ|3). The proof carries to satisfiability on tree structures rather than binary
trees.
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2.2.3 Expressiveness

A few quick notes:
PDL can be expressed in FO[TC1] the first-order logic with monadic transitive

closure.See Cate and Segoufin (2010). Translation into FO[TC1]:

STx(a)
def
= Pa(x)

STx(>)
def
= (x = x)

STx(¬ϕ)
def
= ¬STx(ϕ)

STx(ϕ1 ∨ ϕ2)
def
= STx(ϕ1) ∨ STx(ϕ2)

STx(〈π〉ϕ)
def
= ∃y.STx,y(π) ∧ STy(ϕ)

STx,y(↓)
def
= x ↓ y

STx,y(→)
def
= x→ y

STx,y(π
−1)

def
= STy,x(π)

STx,y(π1;π2)
def
= ∃z.STx,z(π1) ∧ STz,y(π2)

STx,y(π1 + π2)
def
= STx,y(π1) ∨ STx,y(π2)

STx,y(π
∗)

def
= [TCu,v STu,v(π)](x, y)

STx,y(ϕ?)
def
= (x = y) ∧ STx(ϕ) .

It is known that wMSO is strictly more expressive than FO[TC1] (Cate and Segoufin,
2010, Theorem 2). Cate and Segoufin also provide an extension of PDL with a
“within” modality that extracts the subtree at the current node; they show that
this extension is exactly as expressive as FO[TC1]. It is open whether FO[TC1] is
strictly more expressive than PDL without this extension.

A particular fragment called conditional PDL is equivalent to FO[↓?,→?]:See Marx (2005).

π ::= α | α∗ | π;π | π + π | (α;ϕ?)∗ | ϕ? (conditional paths)

The translation to FO[↓?,→?] is as above, with

STx,y(↓∗)
def
= x ↓?

STx,y(↑∗)
def
= y ↓? x

STx,y(→∗)
def
= x→? y

STx,y(←∗)
def
= y →? x

STx,y((α;ϕ?)∗)
def
= ∀z.(STx,z(α

∗) ∧ STz,y(α
∗)) ⊃ STz(ϕ) .



Chapter 3

Model-Theoretic Semantics

See Chapter 17 of Jurafsky and
Martin (2009) for more examples
of meaning representations.

In this chapter and the next, we survey a few aspects of computational semantics.
Many formalisms can be used to define meaning representations of linguistic
expressions; however we focus on first-order representations along with a few
related ones.

3.1 First-Order Semantics

Concrete applications of computational semantics include for instance weeding
out syntactic representations that map to unsatisfiable sentences, checking whether
some form of entailment holds between two sentences (for instance for summa-
rization tasks), or querying databases with natural language interfaces (think
airline reservation or weather forecasts), etc. The algorithmic aspects of these ap-
plications turn around the usual decision problems in model-theoretic aspects of
logic: satisfiability, model-checking (i.e. satisfiability in presence of a database),
and querying (an existing database).

Here by “database” we simply mean a (not necessarily finite) relational structure
M = 〈D, (Ri)i〉 where D is a domain of the various possible entities, and (R

(ki)
i )i

is a vocabulary, where each R(ki)
i is interpreted as a ki-ary relation Ri over D. The

first-order language thus allows to reason about truths regarding entities and their
relations.

Example 3.1. For instance, assume our vocabulary includes John(0) as a constant
denoting John, along with apple(1), red (1), and eat (2), we can associate the sen-
tence

∃x.apple(1)(x) ∧ red (1)(x) ∧ eat (2)(John(0), x) (3.1)

to the sentence John eats a red apple. Our interpretation might be s.t.

a, j ∈ D a ∈ red a ∈ apple

j = John (j, a) ∈ eat ,

in which case the sentence is satisfiable using the assignment {x 7→ a}. An in-
teresting consequence of this analysis is that paraphrases are typically associated
with the same semantics: (3.1) could for instance be the formalization of

John eats a red apple.
A red apple is eaten by John.
An apple that John eats is red.

35
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3.1.1 Event Semantics

The kind of modelling that underlies Example 3.1 is a rather straightforward one:
named entities (e.g. John, or the President) are interpreted as constants, properties
(e.g. red, apple) as unary relations, and verbs as relations with an arity equal to
the number of arguments present in their subcategorization frames.

This however leads to some issues when determining the number of arguments
for a particular instance of a verb, and drawing the appropriate inferences from
our representations. Consider for instance the sentences

John eats.
John eats a red apple.
John eats an apple in a park.
John eats in a park.
John slowly eats a red apple in a park.

Using the approach of Example 3.1, we need to introduce several relations eat (i)

largely beyond the simple choice between the intransitive eat
(1)
1 and transitive

eat
(2)
2 forms of eat:

eat
(1)
1 (John(0)) (3.2)

∃x.eat
(2)
2 (John(0), x) ∧ red (1)(x) ∧ apple(1)(x) (3.3)

∃xy.eat
(3)
3 (John(0), x, y) ∧ apple(1)(x) ∧ park (1)(y) (3.4)

∃y.eat
(2)
4 (John(0), y) ∧ park (1)(y) (3.5)

∃xy.eat
(4)
5 (John(0), x, y, slowly(0)) ∧ red (1)(x) ∧ apple(1)(x) ∧ park (1)(y) (3.6)

where basically any extra modifier also necessitates a new variant of eat.
How can we relate all the variations of eat so that e.g. (3.6) entails each of

(3.2–3.5)? One possibility is to add explicit meaning postulates like

∀jxy.eat
(3)
3 (j, x, y) ⊃ eat

(2)
2 (j, x) (3.7)

∀jx.eat
(2)
2 (j, x, y) ⊃ eat

(1)
1 (j) (3.8)

. . . (3.9)

Similarly, we could treat slowly and the locative in as modal operators and rewrite
(3.6) as

∃xy.location(2)(slowly(1)(eat
(2)
2 (John(0), x), y) ∧ red (1)(x) ∧ apple(1)(x) ∧ park (1)(y)

(3.10)
along with the schemata

∀Py.in(2)(P, y) ⊃ P (3.11)

∀P.slowly(1)(P ) ⊃ P (3.12)
where P ranges over formulæ. Of course there is no particular reason not to
choose

∃xy.slowly(1)(location(2)(eat
(2)
2 (John(0), x), y) ∧ red (1)(x) ∧ apple(1)(x) ∧ park (1)(y)

(3.13)

instead, and proving the equivalence of (3.10) and (3.13) would require yet more
machinery. (We will however return to modal operators later in Section 3.4.)
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As we can see, this solution scales rather poorly. Another possibility is to pick
a very general version of eat, like eat5, and express the simpler versions with
existentially quantified arguments:

eat
(1)
1 (j)

def
= ∃xya.eat

(4)
5 (j, x, y, a) (3.14)

eat
(2)
2 (j, x)

def
= ∃ya.eat

(4)
5 (j, x, y, a) (3.15)

eat
(3)
3 (j, x, y)

def
= ∃a.eat

(4)
5 (j, x, y, a) (3.16)

eat
(2)
4 (j, y)

def
= ∃ya.eat

(4)
5 (j, x, y, a) . (3.17)

However, while it seems reasonable that the event denoted by John eats has an
implicit object and location, there is no particular reason for it to be performed
slowly or quickly, and it could also occur at noon or at dawn, necessitating yet
another argument slot.

A solution is to use a two-sorted domain that differentiates between events and
entities, and to add an explicit event argument to verbs:

∃e.eat
(2)
1 (e, John(0)) (3.18)

∃ex.eat
(3)
2 (e, John(0), x) ∧ red (1)(x) ∧ apple(1)(x) (3.19)

∃exy.eat
(3)
2 (e, John(0), x) ∧ apple(1)(x) ∧ park (1)(y) ∧ location(2)(e, y) (3.20)

∃ey.eat
(2)
1 (e, John(0)) ∧ park (1)(y) ∧ location(2)(e, y) (3.21)

∃exy.eat
(3)
2 (e, John(0), x) ∧ red (1)(x) ∧ apple(1)(x) ∧ park (1)(y) ∧ location(2)(e, y)

∧ slowly(1)(e) (3.22)

See Davidson (1967).This Davidsonian analysis succeeds in reducing the variations to the two main
forms of eat. It also yields a rather more natural way of handling time and aspects
modifiers like slowly. Note that the distinction between intransitive and transitive
forms of verbs are better motivated than the ones between say (3.2) and (3.5):
contrast for instance

I sank the Bismark.
I sank.

where the transitive usage does not imply the intransitive one.

3.1.2 Thematic Roles

This is known as a
neo-Davidsonian analysis
(Parsons, 1990).

The Davidsonian analysis can be further refined by employing thematic roles:

instead of seeing the intransitive form eat
(2)
1 and the transitive one eat

(3)
2 as two

wholly different relations, we can further refine them using a fixed set of thematic
relations between events and entities:

∃e.eat (1)(e) ∧ agent (2)(e, John(0)) (3.23)

∃ex.eat (1)(e) ∧ agent (2)(e, John(0)) ∧ patient (2)(e, x) ∧ apple(1)(x) (3.24)

correspond to the two sentences John eats and John eats an apple respectively. The
earlier issue with sank is avoided by changing the nature of the relation between
the subject and the verb:

∃e.sink (1)(e) ∧ agent (2)(e, I (0)) ∧ patient (2)(e,Bismark (0)) (3.25)

∃e.sink (1)(e) ∧ patient (2)(e, I (0)) (3.26)
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Role Typical use
agent John eats
patient John eats an apple.
experiencer John regrets his actions.

The crisis worries John.
cause The crisis worries John.

John regrets his behaviour.
theme John asks a question.

John gives Mary a kiss.
beneficiary John gives Mary a kiss.

Table 3.1: A basic set of thematic roles.

The definition of a fixed set of thematic roles and how to classify the different
uses are of course problematic; Table 3.1 proposes a very simple account.

3.2 Syntax/Semantics Interface

We have presented several possible first-order analyses for simple sentences in the
previous section, but we have not touched yet the subject of how to obtain such
semantic representations from syntactic analyses. A key concept in this regard is
that of compositionalitySee Janssen (1997) and the

compositionality article of the
Stanford Encyclopedia of

Philosophy for extensive
discussions of compositionality.

:

The meaning of a compound expression is a function of the meanings
of its parts and of the syntactic rule by which they are combined.

(Partee et al., Chapter 13)

Let us illustrate this principle on Example 3.1: by associating a semantic represen-
tation to each meaningful word in the sentence, i.e. if we define JJohnK, JeatsK and
so on, then the semantics of each intermediate structure like a red apple or John
eats a red apple can be systematically computed as a function of its parts, based on
the syntactic process (otherwise John loves Mary and Mary loves John would not
be distinguishable).

You are probably familiar with this principle from programming language se-
mantics. Typical arguments in favour of this principle for natural language hinge
on productivity and systematicity of semantic construction: we are able to un-
derstand new linguistic expressions, and to understand similar expressions built
from the same blocks and syntactic processes.

Leaving these questions aside and adopting a modelling viewpoint, composition-
ality is a rather strenuous requirement: for instance, assuming JJohnK = John(0)

and Ja red appleK = ∃x.apple(1)(x) ∧ red (1)(x), it is not so clear how one should
combine everything and obtain (3.1) or more involved representations like (3.24).
Moreover any solution will be dependent on the specific syntactic analysis.

3.2.1 Background: Simply Typed Lambda Calculus

See e.g. Hindley (1997). One of the best-studied ways to implement compositional semantics for natural
languages is to use lambda expressions as semantic values associated with each
component (Montague, 1970, 1973). As Church’s simple theory of types provides
an elegant setting for model-theoretic higher-order semantics (see Section 3.5),

http://plato.stanford.edu/entries/compositionality/
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we favour a presentation that uses the simply typed λ-calculus over the untyped
one.

Lambda Terms Given an infinite countable set X of variables, and C a countable
set of constants, the set Λ(C) of λ-terms is defined by

L ::= c | x | LL | λx.L

where c is a constant in C and x a variable in X .
The λ operator is a binding with the usual associated notion of free variables. A

λ-term L is a λI-term if in every subterm λx.M , x ∈ FV(M). If furthermore x
appears free in M exactly once, and each free variable y of L has at most one free
occurrence in L, then L is a linear λ-term; we let Λ`(C) denote the set of linear
λ-terms over C. We write by convention λxy.L for λx.λy.L and LMN for (LM)N
(i.e. we treat application as left associative).

We assume the usual definitions for α, β, and η reductions:

λx.L→α λy.(L{x← y})
(λx.L)M →β L{x← N}
λx.Lx→η L

(where substitutions have to avoid name clashes), and recall that βη-reductions
are Church-Rosser: if L⇒?

βη M and L⇒?
βη N , then there exists L′ s.t. M ⇒?

βη L
′

and N ⇒?
βη L

′, which implies that βη reductions define unique normal forms.

Types Assume we are provided with some non-empty countable set of atomic
types A; then types in TA are terms defined inductively by

τ ::= a | τ → τ

where a ranges over A. By convention we consider → to be right-associative, i.e.
we write ρ→ σ → τ for ρ→ (σ → τ). The order of a type τ is defined inductively
as

ord(a) = 1 ord(σ → τ) = max(ord(σ) + 1, ord(τ)) .

A higher-order signature is a triple Σ = 〈A,C, t〉 where A is a set of atomic
types, C a countable set of constants and t : C → TA a typing of the constants.
Given a higher-order signature, each λI-term of Λ(C) can be assigned a type in TA
by the deduction rules

t(c) = τ

`Σ c : τ
(Cons)

x : τ `Σ x : τ
(Var)

Γ, x : σ `Σ L : τ

Γ `Σ λx.L : σ → τ
(→I)

Γ `Σ L : σ → τ ∆ `Σ M : σ Γ,∆ compatible

Γ,∆ `Σ LM
(→E)

where the type contexts Γ,∆ are type assignments from free variables to TA; in
(→E) the two assignments have to be compatible, i.e. to assign the same types
to common variables. For linear lambda terms, this compatibility requirement is
useless as FV(L) ∩ FV(M) = ∅. We can extend the typing system to any λ-term
instead of λI-terms if we allow (→I) on the premise Γ `Σ L : τ where x 6∈ FV(L)
(nor in the domain of Γ).
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Encoding Trees For C a ranked alphabet, we can encode terms c(n)(t1, . . . , tn)
in T (C) as typed λ-terms c(n)t1 · · · tn in Λ(C): let o ∈ A denote the type of trees in

T (C), then we define the type of c(n) as
n times︷ ︸︸ ︷

o→ · · · → o→ o = on → o; this way only
ground λ-terms encoding trees in T (C) can be typed.

We write ΣC = 〈{o}, C, c(n) 7→ on → o〉 for the tree signature over the ranked
alphabet C, and `C for the bijection between T (C) and ground λ-terms in Λ(C)
with type o.

Exercise 3.1 (Types for Tree Languages).(∗)

1. Given a deterministic local tree language L—i.e. the language of a deter-
ministic bottom-up tree automaton A = 〈Q,C, δ, F 〉 where for each c(n) in
Cn, |{q ∈ Q | ∃q1, . . . , qn.(q, c

(n), q1, . . . , qn) ∈ δ}| ≤ 1—, define a signature
Σ = 〈A,C, t〉 and a subset F of A such that a ground λ-term can be typed in
F iff it encodes a tree in L.

2. Show that any regular tree language is the image of a deterministic local tree
language by an alphabetic tree homomorphism.

Properties Let us end this quick survey with a few important properties of simply
typed λ calculus: The first two show that types are preserved by reductions:See e.g. (Hindley, 1997,

Chapter 2).
Proposition 3.2 (Subject Reduction). If Γ `Σ L : τ and L⇒?

βη M then Γ `Σ M : τ .

The converse holds for linear terms (and even for reductions that do not exercise
non linear variables):

Proposition 3.3 (Subject Expansion). If τ is a linear λ-term, Γ `Σ L : τ , and
M ⇒?

β L, then Γ `Σ M .

The second main result about typed λ-terms is that reduction is strongly nor-
malizing: every sequence of rewrites eventually terminates to a term in normal
form.The length of βη reductions can

be non elementary in the size of
the starting term (see Statman,
1979; Schwichtenberg, 1991).

Theorem 3.4 (Strong Normalization). If L is a typable λ-term, then every βη-
reduction starting at L is finite.

It is worth mentioning that every linear λ-term is typable.

3.2.2 Higher-Order Homomorphisms

One of the main legacies of Richard Montague’s work is the idea that semantic
representations can be obtained through the application of a homomorphism on
the syntactic structure. However tree homomorphisms are clearly too weak for the
kind of tree transductions we want to define; following Montague we use instead
higher-order homomorphisms.This idea is now pretty common,

and lies at the heart of
(second-order) abstract

categorial grammars (ACG
de Groote, 2001); see also the

context-free λ-term grammar
(CFLG) formulation of Kanazawa

(2007) or the simple
presentation of Blackburn and

Bos (2005, Chapter 2).

The idea of these homomorphisms is to translate
a syntactic tree representation (e.g. a derivation tree or a dependency tree), seen
as a typed λ-term over the input signature into a λ-term over the output signature
and then to βη-reduce it to a λ-term in normal form.

Definition 3.5 (Higher-Order Homomorphism). A higher-order homomorphism
from a set of constants C to a set of constants C ′ is generated by a function J.K
mapping constants in C to closed λ-terms in Λ(C ′). We lift J.K to a homomorphism
from Λ(C) to Λ(C ′) by JxK = x, JLMK = JLKJMK, and Jλx.LK = λx.JLK.
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Figure 3.1: Constituent and dependency analyses for John eats a red apple.

Example 3.6. Continuing with Example 3.1, Figure 3.1 presents two syntactic
analyses (the dependency one could for instance be obtained from the constituent
one through head percolation analysis or as the derivation tree of a TAG). For the
constituent analysis of Figure 3.1, we have

C = {John(0), apple(0), . . . ,AP(2),NP(2), JJ(1), . . . ,S(2)}
and

C ′ = {John(0),∧(2),∃(2), . . . } .

We assign the semantics

JJohn(0)K = λx.x John(0)

Japple(0)K = λx.apple(1) x

Jred(0)K = λx.red (1) x

JAP(2)K = λx1x2x.(x1 x) ∧ (x2 x)

Ja(0)K = λxy.∃u.(xu) ∧ (y u)

JNP(2)K = λx1x2x.x1 x2 x

Jeats(0)K = λxy.∃e.(eat (1) e) ∧ x(λa.agent (2) e a)

∧ y(λp.patient (2) e p)

JVP(2)K = λx1x2x.x1 xx2

JS(2)K = λx1x2.x2 x1

(ignoring tree nodes with a single child, for which we set e.g. JNN(1)K = λx1.x1).
The first-order variables u and e could be considered as constants of arity 0 in ∆,
but this causes some naming issues; an alternative is to treat ∃x.ϕ as ∃λx.ϕ. This
definition results successively in

JAP red appleK⇒?
β λx.(red (1) x) ∧ (apple(1) x)

JNP a AP red appleK⇒?
β λx.∃u.(red (1) u) ∧ (apple(1) u) ∧ (xu)

JVP eats NP a AP red appleK⇒?
β λx.∃e.(eat (1) e) ∧ x(λa.agent (2) e a)

∧ ∃u.(red (1) u) ∧ (apple(1) u) ∧ (patient (2) e u)

JS. . . K⇒?
β ∃e.(eat (1) e) ∧ (agent (2) e John(0))

∧ ∃u.(red (1) u) ∧ (apple(1) u) ∧ (patient (2) e u) ,

which is the λ-term encoding of (3.24).
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3.2.3 Tree Transductions

The definition we provided for higher-order homomorphisms does not use types
explicitly; this is easy to remedy:

Definition 3.7 (Typed Homomorphism). A typed homomorphism between two
signatures Σ = 〈A,C, t〉 and Σ′ = 〈A′, C ′, t′〉 extends a higher-order homomor-
phism J.K between C and C ′ by mapping each atomic type of A into a type of TA′
s.t. `Σ′ JcK : Jt(c)K is a valid typing judgement for all c in C.

This makes it easier to focus on trees:

Definition 3.8 (Higher-Order Tree Functions). Let Σ = 〈A,C, t〉 and Σ′C′ be two
signatures where C and C ′ are two ranked alphabets, J.K be a typed homomor-
phism between Σ and Σ′, and s ∈ A a distinguished input atomic type with JsK = o.
We define the corresponding (partial) higher-order tree function T : T (C) →
T (C ′) by

T (t1) = t2 iff `Σ `C(t1) : s ∧ J`C(t1)K⇒?
βη `C′(t2) . (3.27)

Because `−1
C′ is only defined on ground λ-terms, we see in particular that `C′(t2)

must be in βη-normal form.

Example 3.9. The semantic construction of Example 3.6 is a higher-order tree
function when setting ΣC and ΣC′ as input and output types and if we consider e
and v as nullary constants in C ′.

Linear Higher-Order Tree Functions As often in linguistic applications, a case
of particular interest is the linear one: a higher-order homomorphism between C
and C ′ is linear if JcK is linear for every c in C.

Definition 3.10 (Abstract Categorial Grammar).See de Groote (2001). An abstract categorial gram-
mar (ACG) is a tuple G = 〈Σ,Σ′, J.K, s〉 where Σ = 〈A,C, t〉 and Σ′ = 〈A′, C ′, t′〉
are two signatures, J.K is a linear typed homomorphism, and s in A is a distin-
guished type. The abstract language A (G) of G is

A (G) = {L ∈ Λ`(C) | `Σ L : s}
the set of linear λ-terms typed by s in the input signature, while its object lan-
guage O(G) is

O(G) = JA (G)K

the set of linear λ-terms obtained through the application of the homomorphism
J.K to abstract terms.

A second-order ACG with output signature ΣC′ defines a linear higher-order tree
function from its abstract language to its object language. The expressiveness of
such tree functions has been studied by Kanazawa (2010): the object languages of
such ACGs correspond to the tree languages of context-free hyperedge replace-
ment grammars, which are also equivalent to attributed context-free grammars
(Engelfriet and Heyker, 1992) and outputs of restricted forms of MTTs (Engelfriet
and Maneth, 2000). Thus we could also implement such transformations as more
classical tree transductions, although that would be at the expense of the ability
to view the translation as one into higher-order semantics as in Section 3.5.



A Short Introduction to Formal Linguistics 43

3.3 Scope Ambiguities

An pervasive issue in semantic representations is related to scope ambiguities.
Linguistic expressions are often semantically ambiguous (i.e. they have several
possible readings that are mapped to different meaning representations) but fail
to reflect this ambiguity syntactically (e.g. they have a single syntactic analysis).
For instance, the sentence Every man loves a woman accepts two readings

∃y.woman(y) ∧ ∀x.man(x) ⊃ ∃e.love(e) ∧ agent(e, x) ∧ patient(e, y) (3.28)

∀x.man(x) ⊃ ∃y.woman(y) ∧ ∃e.love(e) ∧ agent(e, x) ∧ patient(e, y) . (3.29)

depending on whether we are talking about one single woman or not; there is no
clear reason why we should provide the sentence with different syntactic analyses.

If we make the choice of compositional semantics and implement composition-
ality through homomorphisms, then we are facing a serious issue: how can we
map a single syntactic representation to several semantic ones? Scope ambigui-
ties are however a more general issue: even if we view meaning construction as
a relation from one syntactic representation to several semantic ones, the number
of readings can grow exponentially with the number of scope-bearing operators
(quantifiers, modal operators, etc.), and simply enumerating the possible readings
quickly turns impossible.

For instance, the sentence

A politician can fool most voters on most issues most of the time, but
no politician can fool every voter on every issue all of the time.

(Poesio, 1994)

is reputed as having several thousand readings. Arguably, not all these readings
are born equal: some might be implied by others (just like (3.28) implies (3.29)),
and some downright impossible. However there can still remain a considerable
number of incomparable readings. A naive approach to counting the number of
possible readings is to consider all the permutations of quantifiers in a sentence:
for a sentence with n quantifiers this will yield n! different readings. Hobbs and
Shieber (1987) for instance refine this approach and show how the sentence

Every representative of a company saw most samples.

has actually 5 distinct readings instead of 3! = 6: they argue that the reading
where “for each representative there is a group of most samples which he saw, and
furthermore, for each sample he saw, there was a company he was a representative
of” is impossible.

A broadly adopted solution to the problems raised by scope ambiguities is to
employ underspecified representations for semantics, which allow to represent
several readings with a single representation. One might think such a trick, while
computationally useful, defeats the very purpose of compositionality, but it does
not if we view the underspecified representation as the actual meaning of the sen-
tence. . .

There exist several such formalisms (e.g. Bos, 1996; Egg et al., 2001; Althaus
et al., 2003; Copestake et al., 2005) but we will focus on one in particular: the
hole semantics of Bos.
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3.3.1 Background: Conjunctive Queries over Trees

The idea of hole semantics is to take as a semantic representation language (SRL)
the logic we use for semantic representation (in our case FO) and build on top
of it an underspecified representation language (URL), which describes the set of
desired SRLs. As the latter are terms, the URL can be a formula s.t. the SRLs are
its tree models, i.e. we can reuse the model-theoretic methods of Chapter 2.

A URL formula is essentially a set of constraints describing admissible formulæ.
Our constraints will be expressed in existential conjunctive FO (ECFO) over the
vocabulary 〈(↓i)i<k, ↓∗, (Pa)a∈A〉 where A is the finite ranked alphabet used to
write terms in the SRL and k is the maximal arity in A. Let X be an infinite
countable set of variables, then we consider formulæ ϕ defined bySee Koller et al. (2001) for an

early proof of
NPTIME-completeness of

ECFO((↓i)i<k, ↓∗, (Pa)a∈A) over
trees, and Hidders (2004);
Björklund et al. (2007) for

related results on XPath
fragments.

α ::= x = y | x ↓i y | x ↓∗ y | Pa(x) | ¬α (atoms)

ϕ ::= α | ϕ ∧ ϕ | ∃x.ϕ , (formulæ)

where x, y are in X , i < k, and a is in A. We interpret formulæ over ranked trees
t which are prefix-closed and predecessor-closed partial maps {0, . . . , k− 1}∗ → A
s.t. if t(u) = a(i) then u(i − 1) is in dom(t) but ui is not. Such a tree defines a
relational structure M = 〈dom(t), (↓i)i<k, ↓∗, (Pa)a∈A〉 where

↓i
def
= {(u, ui) ∈ dom(t)2}

↓∗ def
=

(⋃
i<k

↓i

)?
Pa

def
= {u ∈ dom(t) | t(u) = a} .

Any ECFO formula ϕ can be put in prenex conjunctive normal form

ϕ ≡ ∃x1 . . . xn.
∧
p

αp .

Theorem 3.11 (Koller et al., 2001). Satisfiability of closed ECFO((↓i)i<k, ↓∗, (Pa)a∈A)
formulæ is NPTIME-complete.

3.3.2 Hole Semantics

Our ECFO presentation of hole
semantics follows Blackburn and

Bos (2005, Chapter 3) rather
than the original definition of Bos

(1996).

The syntax of hole formulæ is a restricted fragment of ECFO((↓i)i<k, ↓∗, (Pa)a∈A).
We distinguish between two sorts of variables: labels l in L and holes h in H
so that dominance relations ↓∗ can only go from holes to labels, and holes can
only appear as unlabeled leaves; furthermore, immediate children relations and
labelling predicates Pa are combined in a construct l : a(r)(x1, . . . , xr) that enforces
the correct arity of a:

γ ::= l : a(r)(x1, . . . , xr) | h ↓∗ l | γ ∧ γ | ∃x.γ (hole formulæ)

where l ranges over L, a(r) over Ar, x, x1, . . . , xr over L ] H, and h over H. As
with ECFO formulæ, hole formulæ γ can be put in prenex normal form

γ ≡ ∃l1 . . . lnh1 . . . hm.
∧
p

γp . (3.30)
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Hole formulæ γ are interpreted in ECFO((↓i)i<k, ↓∗, (Pa)a∈A) by associating a for-
mula [γ]

[γ] = ∃l1 . . . lnh1 . . . hm.
∧

1≤i<j≤n
li 6= lj ∧

∧
p

γp (3.31)

where we interpret

l : a(r)(x1, . . . , xr)
def
= Pa(l) ∧

r∧
i=1

l ↓i−1 xi . (3.32)

A variable x in a hole formula is a root if there does not exist x0, . . . , xr and
a(r) s.t. x0 : a(r)(x1, . . . , xr) is a subformula of γ where x = xr. A hole formula is
normal if

1. in every h ↓∗ l subformula, l is a root of γ,

2. every hole appears exactly once as a child of a l : a(r)(x1, . . . , xr) subformula,
and thus cannot be a root,

3. every label should appear at most once as a parent and at most once as
a child in a l : a(r)(x1, . . . , xr) subformula. This excludes for instance l′ :
f (2)(l, l), l : f (2)(l1, l2) ∧ l : f (2)(l′1, l

′
2), or l1 : g(1)(l) ∧ l2 : g(1)(l).

Normal hole formulæ with this interpretation into ECFO give rise to normal dom-
inance constraints, which are known to be efficiently testable for satisfiability:

Theorem 3.12 (Althaus et al., 2003). Satisfiability of normal hole formulæ is in
PTIME.

Constructive Satisfiability

The issue with our interpretation of hole formulæ into ECFO is that not every
model M over A is suitable as a SRL formula. For instance, there could be extra
points in the model not constrained by γ, or conversely several labels could be
mapped to a single node. An alternative notion of model is needed in practice.

Consider a hole formula in prenex conjunctive normal form as in (3.30). Then a
plugging P is an injective function from holes {h1, . . . , hm} to labels {l1, . . . , ln}.
A model M = 〈dom(t), (↓i)i<k, ↓∗, (Pa)a∈A〉 of γ is a plugged model for a plugging
P if its domain is in bijection with the set of labels (we write dom(t) = {l̂1, . . . , l̂n})
and M |=ν γ where the valuation ν is defined by

ν(x)
def
=

{
x̂ if x ∈ L
P̂ (x) if x ∈ H .

(3.33)

The structure M is a constructive model for γ if there exists a plugging P s.t. it is
a plugged model for P .

Example 3.13. Let us extend the syntax of hole formulæ by allowing larger tree
segments:

γ ::= l : a(r)(θ1, . . . , θr) | h ↓∗ l | γ ∧ γ | ∃x.γ (hole formulæ)

θ ::= a(r)(θ1, . . . , θr) | h (tree formulæ)
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Figure 3.2: Underspecified formula for (3.28) and (3.29). Dominance relations
are indicated through dotted arrows and holes by boxes.

and translating back into hole formulæ by defining

xθ
def
=

{
h if θ = h

lθ ∈ L a fresh label for each θ otherwise

l : a(r)(θ1, . . . , θr)
def
= l : a(r)(xθ1 , . . . , xθr)

a(r)(θ1, . . . , θr)
def
= ∃lθ.lθ : a(r)(xθ1 , . . . , xθr) .

A hole semantic formula that models the two readings (3.28) and (3.29) is the
following (see also Figure 3.2):

∃l1l2l3h1h2.l1:(∀(2)x(0).man(1)(x(0)) ⊃(2) h1) ∧ l2:(∃(2)y(0).woman(1)(y(0)) ∧(2) h2)

∧l3:(∃(2)e(0).love(1)(e(0)) ∧(2) agent (2)(e(0), x(0)) ∧(2) patient (1)(e(0), x(0)))

∧h1 ↓∗ l3 ∧ h2 ↓∗ l3 .

Polynomial-time processing can
be recovered if we further restrict

hole formulæ; see Koller et al.
(2003).

Constructive satisfiability puts a higher toll on computations than basic satisfia-
bility:

Theorem 3.14. Constructive satisfiability of normal hole formulæ is NPTIME-complete.

Proof. For the NPTIME upper bound, deciding whether a formula γ has a construc-
tive model can be checked by

1. guessing a plugging P and constructing the corresponding model

M = 〈{l̂1, . . . , l̂n}, (↓i)i<k, (Pa)a∈A〉 ; (3.34)

this model is of polynomial size in |γ|,

2. computing the dominance relation (
⋃
i<k ↓i)? over M (this is in PTIME) to

obtain a model

M′ = 〈{l̂1, . . . , l̂n}, (↓i)i<k, ↓∗, (Pa)a∈A〉 (3.35)

still of polynomial size, and
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3. verifying that M′ is a model of the existentially conjunctive formula [γ] for
the assignment ν defined in (3.33) (this is in PTIME).

For the NPTIME lower bound, we exhibit a reduction from the 3-partition prob-
lem: TODO This lower bound was given in

(Althaus et al., 2003,
Theorem 10.1).Exercise 3.2 (Tree Automata for Hole Formulæ). (∗∗∗)The set of constructive models of

a constraint is clearly a regular tree language. Provide a construction for a regular
tree automaton Aγ that recognizes exactly the constructive models of a normal
hole formula γ.
Hint: I would use 2{l1,...,ln} × {l1, . . . , ln} × 2{h1,...,hm} as state set, although there
certainly are better ways; see for instance Koller et al. (2008).

The size of the automaton constructed in Exercise 3.2 is exponential in the size
of the formula. This is unavoidable, as there exist normal formulæ γn of size O(n)
s.t. any automaton recognizing the set of plugged models of γn requires at least 2n

states: let

An
def
= {a(0), g

(1)
1 , . . . , g(1)

n } (3.36)

γn
def
= ∃ll1 . . . lnh1 . . . hn.l : a(0) ∧

n∧
i=1

li : g
(1)
i (hi) ∧ hi ↓∗ l . (3.37)

The normal formula γn has n! different models, corresponding to the possible
orderings of its n components gi(�): its set of plugged models is

Ln = {gπ(1)(�) · gπ(2)(�) · · · gπ(n)(a) | π a permutation of {1, . . . , n}} . (3.38)

Lemma 3.15. Any finite tree automaton for Ln requires at least 2n states.

Proof. Define for every subset K = {i1, . . . , i|K|} of {1, . . . , n} (where ij < ij+1)
the context

CK
def
= gi1(�) · · · gi|K|(�) (3.39)

and let K̄ = {1, . . . , n}\K. Then the tree

tK
def
= CK̄ · CK · a (3.40)

is in Ln.
Let QK be the set of states q of an automaton An for Ln s.t.

CK̄ · CK · a =⇒? CK̄ · q =⇒? qf (3.41)

for some final state qf . Since tK is in Ln, QK 6= ∅. Suppose there exist K 6= K ′ s.t.
QK ∩QK′ 6= ∅, i.e. there exists i in K\K ′ and q ∈ QK ∩QK′ . Then i belongs to K̄ ′

and
CK̄′ · CK · a =⇒? CK̄′ · q =⇒? qf (3.42)

recognizes a tree not in Ln (the pattern gi(�) appears twice). Hence the non-
empty sets QK must be disjoint for different sets K, thus An has at least 2n states.

Note that the tree automaton 〈2{1,...,n}, A, δ, {∅}〉 with δ = {(q\{i}, gi, q) | i ∈
q} ∪ {({1, . . . , n}, b)} recognizes Ln, so this bound is optimal.

Lemma 3.15 shows that there might be exponential succinctness gains from the
use of hole formulæ rather than tree automata for the description of semantic
representations. One might object that the classes of tree languages obtained at
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the output of the linear higher-order tree functions of Section 3.2.3 are context-
free tree languages and not necessarily regular ones, with potential exponential
gains in succinctness. However, note that Ln is basically a string language, and
the exponential lower bounds on the size of any context-free string grammar for
permutation languages (see e.g. Filmus, 2011) also apply to CFTGs for Ln.

3.4 Modal Semantics

Modalities are a means of qualifying truth judgements. Modal operators capture
the linguistic concepts of tense, mood, and aspect, and more generally modifiers:
in

John is happy.

we can insert instead of the blank any of necessarily, possibly, known by me to be,
now, then,. . . Modal logic offer a unified framework to study such modifiers.

3.4.1 Background: Modal Logic

See (Blackburn et al., 2001). A frame is a couple F = 〈W,R〉 where W is a non-empty set of worlds and R a
binary relation over W . A model is a couple M = 〈F, V 〉 = 〈W,R, V 〉 where F is a
frame and V is a valuation from a set of atomic propositions P to subsets of W .

Basic Modal Language Given a set A of atomic propositions, a (basic) modal
formula ϕ is defined by the syntax

ϕ ::= p | > | ¬ϕ | ϕ ∨ ϕ | ♦ϕ

where p ranges over A. The � modality is defined as the dual of ♦:

�ϕ
def
= ¬♦¬ϕ .

A formula satisfies a model M in a world w of W , written M, w |= ϕ, in the
following inductive cases:

M, w |= > always

M, w |= p iff w ∈ V (p)

M, w |= ¬ϕ iff M, w 6|= ϕ

M, w |= ϕ ∨ ϕ′ iff M, w |= ϕ or M, w |= ϕ′

M, w |= ♦ϕ iff ∃w′, w R w′ and M,w′ |= ϕ .

Logics The diamond ♦ and box � modalities can take many different interpreta-
tions. For instance,

• in alethic logic, we reason about possible truths: ♦ϕ denotes that “possibly
ϕ” and �ϕ “necessarily ϕ”. If we follow Leibniz and imagine multiple “pos-
sible worlds” W , something “possible” is one holding in at least one possible
world, and something “necessary” holds in all possible worlds. In order to
obtain such semantics, we should work on total frames where wRw′ for all
w,w′ in W .
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• In epistemic logic, we reason about knowledge of agents (mind the differ-
ence with beliefs): instead of writing �ϕ to denote the fact that “the agent
knows ϕ”, we write Kϕ. Epistemic logic is typically interpreted over transi-
tive, symmetric, and reflexive frames, i.e. whereR is an equivalence relation.
If the knowledge of several agents is to be modeled, we can introduce mul-
tiple relations Ra and modalities Ka, one for each agent a.

• In branching frames, the ♦
modality becomes similar to the
EF modality of CTL (thus � is
similar to AG). A similar
distinction between linear past
and branching past can be made
(Kupfermana et al.).

In the basic temporal logic, ♦ϕ denotes that “at some future point, ϕ holds”,
written Fϕ. Its dualGϕmeans that in all future points, ϕ holds. Its converse
P allows to reason about the past, and is defined by M, w |= Pϕ iff there
exists w′ R w s.t. M, w′ |= ϕ, with dual H. One expects R to be a transitive,
irreflexive relation. An important distinction arises between linear time and
branching time frames: in the first case, there is a unique possible future,
while in the second case there exist multiple different futures.

Exercise 3.3 (Basic Axiom). (∗)Show that K : �(ϕ ⊃ ψ) ⊃ (�ϕ ⊃ �ψ) is valid, i.e.
for any model M and any world w of W , M, w |= K.

Exercise 3.4 (Transitive Frames). (∗)Show that, if R is transitive, then 4 : ♦♦ϕ ⊃ ♦ϕ
is valid.

Exercise 3.5 (Epistemic Frames). (∗)Prove the following implications for all modal
formulæ ϕ when R is an equivalence relation:

T : �ϕ ⊃ ϕ—in epistemic logic, if indeed an agent really knows something,
then it must be true—,

4 : �ϕ ⊃ ��ϕ—in epistemic logic again, an agent has introspection about its
own knowledge—,

B : ϕ ⊃ �♦ϕ—in epistemic logic again, a truth is known by the agent as
possibility compatible with her knowledge.

Modal Languages As seen with our examples, the basic modal language can
be extended to multiple modalities and underlying relations; in particular PDL
defined in Section 2.2 is a modal language with an unbounded number of binary
relations. A modal similarity type O is a ranked alphabet of modal operators 4
of arity r(4). A modal formula is then defined as

ϕ ::= p | > | ¬ϕ | ϕ ∨ ϕ | 4(ϕ1, . . . , ϕr(4))

where p ranges over A and 4 over O. Its semantics are defined over O-frames
F = 〈W, (R4)4∈O〉 where each R4 relation is of arity r(4) + 1, by

M, w |= 4(ϕ1, . . . , ϕr(4)) iff ∃w1, . . . , wr(4) ∈W.(w,w1, . . . , wr(4)) ∈ R4
and ∀1 ≤ i ≤ r(4).M, wi |= ϕi .
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Standard Translation Modal languages have a standard translation into first-
order logic over the vocabulary 〈(R4)4∈O, (Pp)p∈A〉 where Pp = V (p):

STx(p)
def
= Pp(x)

STx(>)
def
= (x = x)

STx(¬ϕ)
def
= ¬STx(ϕ)

STx(ϕ ∨ ϕ′) def
= STx(ϕ) ∨ STx(ϕ′)

STx(4(ϕ1, . . . , ϕr(4)))
def
= ∃x1 . . . xr(4).R4(x, x1, . . . , xr(4)) ∧

r(4)∧
i=1

STxi(ϕi)

is a FO formula with a free variable x equivalent to ϕ: M, w |= ϕ iff M |=x 7→w
STx(ϕ). By reusing variables in the standard translation, we can use only (n + 1)
first-order variables if max4∈O(r(4)) = n.

Bisimulations and Modal InvarianceSee Blackburn et al. (2001,
Chapter 2).

Definition 3.16 (Bisimulations). Let O be a modal similarity type and let M =
〈W, (R4)4∈O, V 〉 and M′ = 〈W, (R′4)4∈O, V

′〉 be two O-models. A non-empty
relation Z ⊆ W × W ′ is a bisimulation between M and M′ if for all w,w′ s.t.
w Z w′,

1. {p ∈ A | w ∈ V (p)} = {p′ ∈ A | w′ ∈ V ′(p′)},

2. if (w,w1, . . . , wr(4)) ∈ R4, then there are w′1, . . . , w
′
r(4) in W ′ s.t. wiZ w′i for

all 1 ≤ i ≤ r(4) and (w′, w′1, . . . , w
′
r(4)) ∈ R

′
4, and

3. if (w′, w′1, . . . , w
′
r(4)) ∈ R

′
4, then there are w1, . . . , wr(4) in W s.t. wiZ w′i for

all 1 ≤ i ≤ r(4) and (w,w1, . . . , wr(4)) ∈ R4.

We say that w and w′ are bisimilar, noted w ↔ w′, if there exists a bisimulation Z
s.t. w Z w′.

Proposition 3.17 (Invariance for Bisimulation). Let O be a modal similarity type,
and M and M′ be O-models. Then, for every w in W and w′ in W ′ with w ↔ w′,
and every modal formula ϕ, M, w |= ϕ iff M, w′ |= ϕ.

Proof. The proof proceeds by induction on ϕ. The case where ϕ is an atomic
proposition is a consequence of (1) in Definition 3.16, the case where ϕ is > is
trivial, and the cases of boolean connectives follow from the induction hypothesis.
For a formula of form 4(ϕ1, . . . , ϕr(4)):

M, w |= 4(ϕ1, . . . , ϕr(4))

implies ∃w1, . . . , wr(4) ∈W.(w,w1, . . . , wr(4)) ∈ R4 ∧ ∀1 ≤ i ≤ r(4).M, wi |= ϕi

implies ∃w′1, . . . , w′r(4) ∈W
′.∀1 ≤ i ≤ r(4).M′, w′i |= ϕi (by ind. hyp. and (2))

implies M′, w′ |= 4(ϕ1, . . . , ϕr(4)) ,

and the converse implication holds symmetrically thanks to (3) and the induction
hypothesis.
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It is worth mentionning that the converse does not hold in general: there
exist models which are undistinguishable by modal formulæ but not bisimilar.
In the case of models with finite image however, where for every R4 and w
{(w1, . . . , wr(4)) | (w,w1, . . . , wr(4)) ∈ R4} is finite, the converse holds: let us
define the modal equivalence relation w! w′ as holding iff w and w′ are indis-
tinguishable, i.e. {ϕ |M, w |= ϕ} = {ϕ′ |M′, w′ |= ϕ′}.

Theorem 3.18 (Hennessy-Milner Theorem). Let O be a modal similarity type, and
M and M′ be O-models with finite image. If w! w′, then w ↔ w′.

Proof. Let us prove that modal equivalence is a bisimulation relation. Condi-
tion (1) holds since a difference in labelling would be witnessed by propositional
formulæ. For condition (2), assume w ! w′ and (w,w1, . . . , wr(4)) ∈ R4,
and assume that there do not exist w′1, . . . , w

′
r(4) satisfying (2). The image set

S′ = {(w′1, . . . , w′r(4)) | (w′, w′1, . . . , w
′
r(4)) ∈ R

′
4} is finite, and non empty since

otherwise M, w |= 4(>, . . . ,>) but M′, w′ 6|= 4(>, . . . ,>). Thus S′ is a finite
set {(w′1,1, . . . , w′1,r(4)), . . . , (w

′
n,1, . . . , w

′
n,r(4))} where, by assumption, for every

1 ≤ j ≤ n, there exists 1 ≤ i ≤ r(4) s.t. wi 6! w′j,i, i.e. there exists a formula ϕj,i
s.t. M, wi |= ϕj,i but M′, w′j,i 6|= ϕj,i. But then

M, w |= 4

 ∧
1≤j≤n

ϕj,1, . . . ,
∧

1≤j≤n
ϕj,r(4)


M′, w′ 6|= 4

 ∧
1≤j≤n

ϕj,1, . . . ,
∧

1≤j≤n
ϕj,r(4)

 ,

in contradiction with w! w′. The argument for condition (3) is symmetric.

The van Benthem Characterization Theorem We saw earlier that any modal
formula has a standard translation into first-order. A converse statement holds for
a semantically restricted class of first-order formulæ.

Let us say that a first-order formula ψ(x) in FO((R4)4∈O, (Pp)p∈A) with one
free variable x is invariant for bisimulation if for all models M and M′, all states
w in M and w′ in M′ in bisimulation, we have M |=x 7→w ψ(x) iff M |=x 7→w′ ψ(x).

Theorem 3.19 (van Benthem Characterization Theorem). Let ψ(x) be a first-order
formula in FO((R4)4∈O, (Pp)p∈A) with one free variable x. Then ψ(x) is invariant
for bisimulation iff it is equivalent to the standard translation of a modal formula.

Decision Problems See Blackburn et al. (2001,
Chapter 6).

Many classes of frames yield modal logics with decidable
satisfiability and model-checking problems, even when the corresponding first-
order theory is undecidable, or suffers from much larger decision complexities.
Many logics have NPTIME-complete satisfaction problems, while the basic modal
language is PSPACE-complete. Model-checking of finite models is usually PTIME-
complete.

3.4.2 First-Order Modal Logic

In order to work with both modal operators and first-order semantics as in Sec-
tion 3.1, we introduce a mixed logic, first-order modal logic (FOML). For simplic-
ity we give the definitions for the basic modal operator and not the fully general
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modal logic. The syntax of the logic over a vocabulary 〈(Ri)i〉 of ki-ary symbols is

ϕ ::= x = y | Ri(x1, . . . , xki) | ¬ϕ | ϕ ∧ ϕ | ♦ϕ | ∃x.ϕ

with x, x1, . . . , xki , y ranging over an infinite countable set of variables X .
We consider structures M = 〈W,R,DO, I〉 where 〈W,R〉 is a frame, DO is a

domain function from W to non-empty sets, and I is an interpretation function
mapping each Ri and world w from W into a ki-ary relation I(Ri)(w) over D(w).
The domain of the model is D =

⋃
w∈W DO(w). A valuation is a partial mapping

from variables in X to the domain D. The satisfaction of a formula by a model M
at a world w for a valuation ν is defined inductively by

M, w |=ν x = y iff ν(x) = ν(y)

M, w |=ν Ri(x1, . . . , xki) iff (ν(x1), . . . , ν(xn)) ∈ I(Ri)(w)

M, w |=ν ¬ϕ iff M, w 6|=ν ϕ

M, w |=ν ϕ ∧ ϕ′ iff M, w |=ν ϕ and M, w |=ν ϕ
′

M, w |=ν ♦ϕ iff ∃w′ ∈W.w R w′ and M, w′ |=ν ϕ

M, w |=ν ∃x.ϕ iff ∃e ∈ DO(w).M, w |=ν[x←e] ϕ .

See also the entry on actualism in
the Stanford Encyclopedia of

Philosophy.

The domainD(w) denotes the set of objects in the world w; this set is allowed to
vary from world to world, i.e. the semantics allows a varying domain. Because we
restrict the domain of quantified variables to the current domain, we take an actu-
alist quantification. A constant domain semantics instead considers DO(w) = D
for all w in W ; the resulting semantics is also called possibilist quantification.

Unlike the domain, valuations are rigid in this semantics: the value of a variable
does not depend on the current world. In the case of varying domains, it can
potentially refer to an object from another world but not existing in the current
one (but cannot do much with it). In the following we will use constant domains.

Example 3.20 (First-order temporal logic). Let us consider some very simple ex-
amples in the temporal extension of first-order logic: we can model the meaning
of the following sentence

John will eat an apple.

as

∃a.apple(1)(a) ∧ P (∃e.eat (1)(e) ∧ agent (2)(e, John(0)) ∧ patient (2)(e, a)) . (3.43)

Observe however that, in an actualist view, this reading implies the existence of
the apple John will eventually eat in the current instant; the formula might not be
satisfied by the model if no appropriate object a on which apple(a) holds can be
found. Another reading would be

P (∃a.apple(1)(a) ∧ ∃e.eat (1)(e) ∧ agent (2)(e, John(0)) ∧ patient (2)(e, a)) . (3.44)

Recall that we can deal with such scope ambiguities as in Section 3.3 and associate
a unique hole formula to the sentence.

This section is based on (Fitting,
2004) and the entry on

intensional logic in the Stanford
Encyclopedia of Philosophy.

http://plato.stanford.edu/entries/actualism/
http://plato.stanford.edu/entries/logic-intensional/
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3.4.3 Intensionality

Intensional Phenomena deal with the difference between a meaning and its de-
notation. A classical example given by Frege is concerned about equality in math-
ematics: if a and b designate the same object, and equality is about objects and
not about their names, then there is no difference between “a = b” and “a = a”.
There is however a difference in informational content: the truth of these asser-
tions depends on the context, and there exist contexts that differentiate between
the two, namely those where a and b do not denote the same object.

Considering an example with more linguistic content, the sentence John knows
that the morning star is the evening star might have different truth values depend-
ing on the extent of the knowledge of John, but if morning star and evening star
are always mapped to the same object, namely Venus, we cannot model the case
where John is not aware of their identity. Similar intensional phenomena can oc-
cur in relation with temporal modalities instead of epistemic ones: The King of
England was the head of the Church of England holds true after King Henry VIII
separated the Church from Rome in 1534, thus in worlds after 1534 where the
King of England denotes Henry VIII or one of his successors; again an intensional
reading should be preferred. A last classical example of Montague contrasts John
finds a unicorn with John seeks a unicorn. These are structurally similar, but the
first one implies that there exists a unicorn, while the second allows both readings:
the so-called de dicto reading which does not imply the existence of unicorns, and
the de re reading from which existence of unicorns follows. These two readings
could be modelled using different scopes for the modal seeks.

Intensional Logic This reveals an issue with FOML: there is no way to map
variables to different objects depending on the world under consideration. The
solution adopted in first-order intensional logic (FOIL) is to use two sorts of
variables, intensional and extensional ones. Intensions might denote different
objects in different worlds: for instance if f is an intension and w is a world,
then f(w) would be the extension of f in w.

There is an issue with this account of intensionality. If f is an intension and P
a unary predicate, then P (f) could mean that the extension of f verifies P (de re
reading), or that the intension f itself verifies P (de dicto reading). For instance,
The morning star is the evening star would use a de re reading, but The morning
star is the last star seen in the morning would be true regardless of the actual object
denoted by the morning star. If we consider alethic modalities, ♦P (f) might either
mean that in some possible world w, P (f(w)) holds, or that in some possible
world w′, P (f) holds. In order to distinguish between these alternatives, the de re
reading is noted [λx.♦P (x)](f) and the de dicto one ♦[λx.P (x)](f).

Given an infinite countable set of object variables O and an infinite countable
set of intension variables I, FOIL formulæ follow the syntax

ϕ ::= x = x′ | Ri(y1, . . . , yki) | [λx.ϕ](f) | ¬ϕ | ϕ ∧ ϕ | ♦ϕ | ∃y.ϕ

where x, x′ range overO, f over I, y, y1, . . . , yki over I]O, Ri is a ki-ary relational
symbol, and ϕ is a formula with a free object variable x, so that [λx.ϕ](f) denotes
ϕ{x← f}. We write [λxx′.ϕ](f, f ′) for [λx.[λx′.ϕ](g)](f). This last construction is
a form of abstraction limited to first-order. Fitting (2004) also adds a typing

discipline to the relations Ri to
better differentiate between
intensional and extensional
arguments.

Intensional models for FOIL are of form M = 〈W,R,DO, DI , I〉 where a dis-
tinction is drawn between the object domain DO, which is a non-empty set in our
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constant semantics, and the intension domain DI , which is a non-empty set of
functions from W to DO, and I maps a relational symbols Ri with arity ki to a
mapping I(Ri) from W to relations over (DO ∪DI)ki . A valuation is now a map-
ping assigning members of DO to object variables and members of DI to intension
variables. The satisfiability relation is similar to that of FOML, with

M, w |=ν ∃f.ϕ iff ∃i ∈ DI(w).M, w |=ν[f←i] ϕ

M, w |=ν [λx.ϕ](f) iff M, w |=ν[x←ν(f)(w)] ϕ .

Example 3.21 (Morning Star). Let us consider again the sentence The morning
star is the evening star and associate f to the intension the morning star and g to
the intension the evening star. Then [λxx′.x = x′](f, g) is correct in the real wordw,
where f and g are associated to the same object ν(f)(w) = ν(g)(w) in DO, namely
Venus. In an epistemic setting, the de dicto reading K[λxx′.x = x′](f, g) can be
falsified if we find another state of knowledge w′ compatible with the real world
w where this information is missing, i.e. where ν(f)(w′) 6= ν(g)(w′)—this could be
the case in the sentence John knows that the morning star is the evening star if John
is unaware of their both being Venus. By contrast, the de re reading [λxx′.K(x =
x′)](f, g) is always satisfied in w because in any state of knowledge compatible
with the real world, f and g have received the same extension ν(f)(w) = ν(g)(w).

Example 3.22 (King of England). The treatment of the sentence The King of Eng-
land was the head of the Church of England is similar: consider the intensions f
for the King of England, g for the head of the Church of England, and a point in
time w. Then P [λxx′.x = x′](f, g) could be invalidated if there is no past time
w′ < w where the denotations ν(f)(w′) and ν(g)(w′) were the same—i.e. before
the 1538 secession from the Roman Church—, but is valid in time points w after
the secession. The de re reading does not make any sense: [λxx′.P (x = x′)](f, g)
holds iff ν(f)(w) = ν(g)(w) at the time of interest, regardless of past times where
equality is evaluated.

Total Intensionality Let D(f, x) stand for [λx′.x = x′](f) where x and x′ are
distinct object variables. Then M, w |=ν D(f, x) holds iff ν(f)(w) = ν(x).

The formula ∀f∃x.D(f, x) is valid in intensional models as defined so far, since
ν(f) is a total function from W to DO. There is however no requirement for every
object to be designated by some intension, i.e. for

∀x.∃f.D(f, x) (3.45)

to hold. This is however a reasonable restriction; let us check for instance the
following equivalence under the hypothesis of (3.45):

∃x.ϕ ≡ ∃f.[λx.ϕ](f) . (3.46)

Indeed, for all M, w, ν and ϕ,

M, w |=ν ∃f.[λx.ϕ](f)

iff ∃i ∈ DI .M, w |=ν[f←i] [λx.ϕ](f)

iff ∃i ∈ DI .M, w |=ν[f←i,x←i(w)] ϕ

iff ∃e ∈ DO.M, w |=ν[x←e] ϕ (by (3.45) when choosing i(w) = e)

iff M, w |=ν ∃x.ϕ .
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Exercise 3.6. (∗)Show the following equivalence when (3.45) holds:

∃f.♦[λx.ϕ](f) ≡ ♦(∃x.ϕ) . (3.47)

Example 3.23 (Unicorn). The sentence John finds a unicorn could be associated
with the semantics

∃ex.find (1)(e) ∧ agent (2)(e, John(0)) ∧ patient (2)(e, x) ∧ unicorn(1)(x) (3.48)

but it is better to treat unicorn as an intension in the formula

∃u.[λx.∃e.find (1)(e) ∧ agent (2)(e, John(0)) ∧ patient (2)(e, x) ∧ unicorn(1)(x)](u) ,
(3.49)

equivalent to (3.48) in totally intensional models according to (3.46). Then we
better see the connection with the sentence John seeks a unicorn: its de dicto
semantics would be

∃u.TRY(John(0), [λx.∃e.find (1)(e) ∧ patient (2)(e, x) ∧ unicorn(1)(x)](u)) (3.50)

≡TRY(John(0), ∃ex.find (1)(e) ∧ patient (2)(e, x) ∧ unicorn(1)(x)) (by (3.47))

and its de re semantics

∃u.[λx.TRY(John(0), ∃e.find (1)(e) ∧ patient (2)(e, x) ∧ unicorn(1)(x)](u) (3.51)

≡ ∃x.TRY(John(0), ∃e.find (1)(e) ∧ patient (2)(e, x) ∧ unicorn(1)(x)) (by (3.46))

and if the interpretation of unicorn(1) is the same in all worlds accessible through
the TRY modality,

≡ ∃x.unicorn(1)(x) ∧ TRY(John(0),∃e.find (1)(e) ∧ patient (2)(e, x)) .

3.5 Higher-Order Semantics

Most of the discussion on semantic representations can be recast in the framework
of higher-order logic. This allows in particular to view the higher-order operations
of Section 3.2 not as a technical means to generate trees, but as the true semantics
of the sentences under consideration.

3.5.1 Background: Church’s Simple Theory of Types

See Church (1940) and the entry
in the Stanford Encyclopedia of
Philosophy.

Higher-order semantics are typically expressed in simply typed lambda calculus as
defined in Section 3.2.1. As we want not just to manipulate typed λ-terms, but
also to be able to infer truths, we need to introduce a set of logical constants and
the associated logical rules.

Higher-Order Signature In Church’s simple theory of types, we use a signature
Σ = 〈A,C, t〉 where A = {ι, o} is set of atomic types, where ι denotes entities and
o truths. The logical constants are C = {⊥,⊃, (∀τ )τ∈T (A)} with types t(⊥) = o,
t(⊃) = o→ o→ o, and (∀τ ) = (τ → o)→ o for each type τ in T (A).

We write as usual L ⊃ M for ⊃ LM and ∀τx.L for ∀τ (λx.L). The other logical

connectives are defined classically: ¬L def
= L ⊃ ⊥, L ∨M def

= (¬L) ⊃M , L ∧M def
=

¬((¬L) ∨ (¬M)), etc. Equality is defined in the Leibnizian way as L = M
def
=

∀x.xL ⊃ xM , i.e. equality is defined as having L and M agree on all possible
properties x.

http://plato.stanford.edu/entries/type-theory-church/
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Logical and Conversion Rules The formal system needs two types of rules: log-
ical rules for the logical constants, and conversion rules for the λ-terms. In natural
deduction sequent style,

Γ, L 
 L
(Ax)

Γ,¬L 
 ⊥
Γ 
 L

(⊥E)

Γ, L 
M

Γ 
 L ⊃M
(⊃I)

Γ 
 L ⊃M Γ 
 L

Γ 
M
(⊃E)

Γ 
 L x 6∈ FV(Γ)

Γ 
 ∀τx.L
(∀I)

Γ 
 ∀τL ∆ `Σ M : τ

Γ 
 LM
(∀E)

Γ 
 L L =β M

Γ 
M
(β)

The deduction system also often includes the extensionality axioms:

Γ 
 (∀τx.Lx = M x) ⊃ (L = M)
(λX)

Γ 
 (L ≡M) ⊃ (L = M)
(≡X)

More axioms are used in the
simple theory of types; see Church

(1940).

As their name indicates, the extensionality axioms make the simple theory of types
unable to deal with intensional phenomena directly; a solution we will see in
Section 3.5.2 will be to introduce an new atomic type s ranging over worlds.

Higher-order logic can express a form of set theory: view the set comprehension
{x | P} as λx.P , or e ∈ E as E e. In fact, Church (1940) shows how to imple-
ment Peano’s arithmetic in the simple theory of types, from which we can deduce
incompleteness of higher-order logic.

Standard ModelsSee also Henkin (1950). Higher-order logic comes with a very natural model theory.
For each τ in T (A), letDτ be the domain of expressions of type τ . LetDo = {>,⊥}
and Dι be some set of entities; then Dτ→ρ denotes the set of functions from Dτ to
Dρ, so that e.g. Dι→o is the type of first-order predicates.

3.5.2 Type-Logical Semantics

We follow Muskens (2011) for
this section, itself based on Gallin

(1975). See also the entry on
Montague semantics in the
Stanford Encyclopedia of

Philosophy.

Many classical modellings of natural language semantics in higher-order logic
posit an additional type s of worlds in order to account for modalities and in-
tensionality phenomena. The idea is to always treat truth values (of type o) as
relativized with respect to a possible world of evaluation. Thus we will consider a
higher-order signature Σ = 〈A, {⊥,⊃, (∀τ )τ∈T (A)} ∪ C, t〉 as in the simple theory
of types, where A = {s, ι, o} and C denotes additional non-logical constants. To
simplify matters, we avoid explicit events from Section 3.1.2.

Due to the relativization wrt. worlds, a simple sentence like John walks is ex-
pected to be of type s→ o and to be associated to a logical representation like

walks John . (3.52)

Observe that we introduced an
explicit type for worlds in the

logic: this can be avoided if we
use intensional models as in
(Muskens, 2007). Recall that

Church’s simple type theory
verifies the extensionality axioms!

In order to obtain the appropriate type, a possibility is to set t(walks) = ι→ s→ o
and t(John) = ι. Looking at more complex examples (for instance Example 3.6),
we arrive at the types of Table 3.2. The semantics of a sentence can then be

http://plato.stanford.edu/entries/montague-semantics/
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syntactic category examples type
intransitive verbs walk, talk, eat1, . . . ι→ s→ o
transitive verbs eat2, love, . . . ι→ ι→ s→ o
common nouns apple, man, woman, . . . ι→ s→ o
adjectives red, . . . ι→ s→ o
determiners every, a, the, no, . . . (ι→ s→ o)→ (ι→ s→ o)→ s→ o
proper nouns John, Mary, . . . ι
modal adverbs necessarily, possibly, . . . (s→ o)→ s→ o
modal verbs know, believe, . . . (s→ o)→ ι→ s→ o
negation not (s→ o)→ s→ o

Table 3.2: Some constants and their possible types.

JwalkK = walk ι→s→o

Jeat2K = eat2ι→ι→s→o

JappleK = appleι→s→o

JredK = λPι→s→oxιws.red ι→s→o xw ∧ P xw
JeveryK = λPι→s→oP

′
ι→s→ows.∀ιx.(P xw ⊃ P ′ xw)

JaK = λPι→s→oP
′
ι→s→ows.∃ιx.(P xw ∧ P ′ xw)

JnoK = λPι→s→oP
′
ι→s→ows.∀ιx.(P xw ⊃ ¬P ′ xw)

JtheK = λPι→s→oP
′
ι→s→ows.∃ιx.(P ′ xw ∧ ∀ιy.(P xw ≡ x = y))

JJohnK = Johnι

JnecessarilyK = λps→ows.∀sw′.(Rs→s→oww′) ⊃ pw′

JpossiblyK = λps→ows.∃sw′.(Rs→s→oww′) ∧ pw′

JknowK = λps→oxιws.∀sw′.(Kι→s→s→o xww
′) ⊃ pw′

JbelieveK = λps→oxιws.∀sw′.(Bι→s→s→o xww′) ⊃ pw′

JnotK = λps→ows.¬ pw

Table 3.3: Examples of semantics associated with lexical elements.

computed by a higher-order homomorphism as in Section 3.2, but there will be no
need to translate back from λ-terms to first-order terms in order to reason about
the semantics: the λ-term is a meaning representation with full-fledged model
theory. See Table 3.3 for some examples of semantic values.

In this table, the semantics of alethic and epistemic modal logics have been
implemented directly using the R, K, and B constants with types s → s → o,
ι → s → s → o, and ι → s → s → o respectively. The desired properties of these
relations can also be enforced; for instance ∀sww′. R ww′ forces R to be total.
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