TD 9: Pushdown Systems

Exercise 1 (Regular Valuations). The course notes prove the decidability of LTL model checking with *simple valuations* $\nu: P \times \Gamma^* \to 2^{AP}$ satisfying $\nu(qZ\gamma) = \nu(qZ)$ for all q in P, Z in Γ and γ in Γ^* .

A regular valuation is defined through a collection of finite complete deterministic automata $\mathcal{A}_p = \langle Q_p, \Gamma \uplus P, \delta_p, q_{0,p}, F_p \rangle$ for each p in AP, s.t.

$$\nu(qZ\gamma) = \{ p \in AP \mid \delta_p(q_{0,p}, \gamma^R Zq) \in F_p \} ,$$

i.e. each \mathcal{A}_p is run bottom-to-top on the stack and pushdown state, and p holds if we reach a final state in F_p .

Show that the LTL model-checking problem with regular valuations for PDS can be reduced to the LTL model-checking problem with simple valuations.

Exercise 2 (CTL* Model Checking). Show that CTL* model checking with regular valuations can be reduced to LTL model checking with simple valuations.

Exercise 3 (EXPTIME-Hardness for LTL with Regular Valuations). Show that the model-checking problem for PDS and LTL formulæ with regular valuations is EXPTIME-hard.

Exercise 4 (Multi-Pushdown Systems). A n-dimensional multi-pushdown system is a tuple $\mathcal{M} = \langle P, \Gamma, (\Delta_i)_{0 < i \leq n} \rangle$ where $n \geq 1$ is the number of stacks, P a finite set of states, Γ a finite stack alphabet, and each $\Delta_i \subseteq P \times \Gamma \times P \times \Gamma^*$ is a finite transition relation. A configuration of a n-MPDS is a tuple $c = (q, \gamma_1, \dots, \gamma_n)$ in $P \times (\Gamma^*)^n$. The transition relation \Rightarrow on configurations is defined as $\Rightarrow = \bigcup_{0 < i \leq n} \Rightarrow_i$, where

$$(q, \gamma_1, \dots, Z\gamma_i, \dots, \gamma_n) \Rightarrow_i (q', \gamma_1, \dots, \gamma'_i\gamma_i, \dots, \gamma_n)$$

iff $qZ \hookrightarrow_i q'\gamma'_i$ is in Δ_i .

- 1. Show that the control state reachability problem, i.e. given an initial configuration c in $P \times \Gamma^n$ and a control state $p \in P$, whether there exist $\gamma_1, \ldots, \gamma_n$ s.t. $c \Rightarrow^* (q, \gamma_1, \ldots, \gamma_n)$, is undecidable as soon as $n \geq 2$.
- 2. Let us consider a restriction on \Rightarrow^* : k-bounded runs are defined as the kth iterates $c \to^k c'$ of the relation

$$c \to c'$$
 iff $\exists i.c \Rightarrow_i^* c'$

i.e. a k-bounded run can be decomposed into k subruns where a single PDS is running.

Show that the k-bounded control-state reachability problem, i.e. given an initial configuration c in $P \times \Gamma^n$ and a control state $p \in P$, whether there exist $\gamma_1, \ldots, \gamma_n$ s.t. $c \to^k (q, \gamma_1, \ldots, \gamma_n)$, is decidable.