
MPRI 1-22 Introduction to Verification February 27, 2013

TD 10: Partial Order Reductions

1 Ample Sets

Exercise 1 (Ample Sets). Consider the following transition system with state set S =
{s0, . . . , s7} and transition alphabet ∆ = {a, b, c, d}:

s0

{p}
s1

{q}
s2

{p}

s3

{q}

s4
∅

s5

∅
s6

∅
s7

∅

d

b

c

a

a

d
c

b

b

c
d

a

c

a

b

d

1. Compute the independence set I ⊆ ∆2.

2. What is the set of invisible actions U ⊆ ∆?

3. Propose an assignment red : S → 2∆ of ample sets satisfying conditions C0–C3 of
the lecture notes.

4. Propose a stutter-equivalent system with a reduced set of states.

Exercise 2 (Alternate conditions).

1. Consider the alternate condition C ′1: for any s with red(s) 6= en(s), any a in red(s)
is independent from every b in en(s)\red(s). Show that C1 implies C ′1. Does the
converse implication hold? Hint: consider the following system with red: s0 7→ {a},
s2 7→ {b}, and s3 7→ {d}.

1

MPRI 1-22 Introduction to Verification February 27, 2013

s4{p} s1

∅

s0 ∅

s3∅ s2 ∅

b

aa

c

b

d

d

2. Consider the alternate condition C ′3: any cycle in K′ contains at least one state
s with red(s) = en(s). Show that C0–C2 and C ′3 together imply C3. Do C0–C3

together imply C ′3?

2 CTL(U) Model Checking

Exercise 3 (C0–C3 are not Sufficient). Consider the following system with ∆ = {a, b, c, d}:

s0

∅

s1

∅

s2

∅

s3∅ s4
∅

s5 ∅

s6

{p}

s7

{p}

s8

{p}

s9∅ s10 {q}

b
c

aa a

d

b
c

d d

d b
c d

d d

1. Let red(s0) = {b, c} and red(s) = en(s) for s 6= s0; show that this ample set
assignment is compatible with C0–C3.

2. Exhibit a CTL(U) formula that distinguishes between the original system and its
reduction.

3. Can you propose an assignment that also complies with C4: if red(s) 6= en(s), then
|red(s)| = 1?

3 Nested DFS

Partial order reduction using ample sets is especially suited for on-the-fly algorithms for
the emptiness of Büchi automata. The usual, linear-time algorithm for this task uses a

2

MPRI 1-22 Introduction to Verification February 27, 2013

nested depth-first search.
Recall a DFS-based algorithm for cycle detection from a given state s ∈ S in a finite

directed graph (Q,T), with a global variable V ⊆ Q for the set of already visited vertices:

found ← false; /* no cycle found yet */1

P ← s; /* a stack P ∈ Q∗ of vertices to process */2

V ← V ∪ {s}; /* the set of visited vertices */3

repeat4

s′ ← top(P);5

if s ∈ T (s′) then6

found ← true7

else8

if T (s′) \ V 6= ∅ then9

s′′ ← some(T (s′) \ V); /* some vertice accessible from s′ */10

push(s′′, P);11

V ← V ∪ {s′′}12

else13

pop(P)14

until P = ε ∨ found ;15

return found16

Algorithm 1: Cycle(s)

One way to use this algorithm for Büchi automata emptiness is to first find the
accepting states s in F of the automaton B = 〈Q,Σ, δ, I, F 〉 that are reachable from I
(also by an external DFS), and then call Cycle(s) with V = ∅ for each such state—a
quadratic time algorithm. The next exercise refines this approach:

Exercise 4 (Nested DFS). The idea of the nested DFS algorithm is to avoid states from
previous cycle searches in later searches—hence the global V in Cycle. Consider the
following external DFS ACycle that uses a set of visited states U , and calls Cycle on
reachable accepting states s′ of B once their reachable states have been processed (see
line 12).

1. Consider a call to ACycle(s0) with empty initial U and V . Assume there exists
a call to Cycle(s) performed by ACycle such that, before the call,

there is a cycle q0q1 · · · qk, q0 = s = qk ∧ ∃i, qi ∈ V ; (†)

without loss of generality assume that s is the first state s.t. (†) occurs. Note that
there has to be s′ ∈ Q s.t. Cycle(s′) was invoked before Cycle(s) and qi was
visited and added to V during this call to Cycle(s′).

(a) Consider the two cases: s was visited (i.e. pushed on P ′) before or after s′ in
the run of ACycle, and derive a contradiction in both cases.

3

MPRI 1-22 Introduction to Verification February 27, 2013

P ′ ← s; /* a stack P ′ ∈ Q∗ of vertices to process */1

U ← U ∪ {s}; /* the set of visited vertices */2

repeat3

s′ ← top(P ′);4

if T (s′) \ U 6= ∅ then5

s′′ ← some(T (s′) \ U); /* some vertice accessible from s′ */6

push(s′′, P ′);7

U ← U ∪ {s′′}8

else9

pop(P ′); /* all the successors of s′ have been processed */10

if s′ ∈ F then11

found ←Cycle(s′); /* call Cycle on s′ */12

until P ′ = ε ∨ found ;13

Algorithm 2: ACycle(s)

(b) Why does ACycle succeeds in finding acceptance cycles from s0?

2. Provide the missing invocation context for ACycle to solve Büchi automata
emptiness.

3. Show that the algorithm works in linear time.

Exercise 5 (Ample Sets in Nested DFS).

1. Assume you are given ample sets for each reachable state (i.e. you can call red(s)
for any reachable state s and obtain the ample set for s). Adapt the nested DFS
algorithm to only explore the reduced system.

2. Assume now that you are only provided with a red ′(s) function that provides ample
sets verifying C0–C2, but not necessarily C3. Adapt your algorithm to enforce C ′3
on the fly.

4

	Ample Sets
	CTL(U) Model Checking
	Nested DFS

