MPRI 1-22 Introduction to Verification October 23, 2013

TD 3: Model-Checking and Biichi Automata

1 CTL Model Checking

Exercise 1 (Fair CTL). We consider strong fairness constraints, which are conjunctions

of formulee of form
GFy1 = GFys .

We want to check whether the following Kripke structure fairly verifies
o =A.GA.Fa
under the fairness requirement e defined by

Y1 =bA—a
1o = E(bU (a A b))
e = GFy = GF s .

—(ta.b) \ﬂ )

1. Compute [¢1] and [t)2].
2. Compute [E. G T].

3. Compute [¢].

Exercise 2 (Horn Satisfiability). Given a finite total Kripke structure M = (S, T, I, AP, /)
and a “smallest fixed-point” CTL formula ¢ over AP, we want to reduce the model-
checking problem M, s = ¢ with s € S to a Horn satisfiability instance, where smallest
fixed-point CTL formulee are defined by the syntax:

eu=TIpleAe|eVe |EXp|E(@Uyp)|AFe
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1. Reduce the model-checking problem M,s |= ¢ where ¢ is a smallest fixed-point
CTL formula and s is a state in S to a Horn satisfiability instance.

2. What complexity can you obtain through to this reduction for full CTL model-
checking?

Exercise 3 (Even and Odd Positions). We saw in Exercise 2 of TD 2 that the set
({p}X)“ is not expressible in LTL({p}, X, U) over (N, <). We define two new temporal
modalities Uy and U to fill this void:

wyiEpeUpyif I3k >0, (k—i)=bmod 2 and w,kE¢Y and Vji<j<k—w,jEe
for b =0 (resp. 1), i.e. restrictions of U to even (resp. odd) choices of positions.
1. Show that ({p}X)“ can be expressed in TL({p}, Up).

2. Complete the reduction from the previous exercise to handle the new modality Ug
in CTL model-checking. What complexity can you derive on the model-checking
problem for CTL when Uy is allowed?

Exercise 4 (Model Checking a Path). Consider the time flow (N, <). We want to verify
a model which is an ultimately periodic word w = wv* with u in ¥* and v in X+, where
¥ = 24P,

Give an algorithm for checking whether w,0 = ¢ holds, where ¢ is a LTL(AP, X, U)
formula, in time bounded by O(Juv| - |¢|).

2 Bichi Automata

Recall from the course that a language L of infinite words in 3¢ is recognizable iff there
exists a Biichi automaton B with L = L(B).

Exercise 5 (Generalized Acceptance Condition). A generalized Biichi automaton B =
(Q,%,I,T, (F;)o<i<n) has a finite set of accepting sets F;. An infinite run o in Q¥
satisfies this generalized acceptance condition if

/\ Inf(o)NF;#0.

0<i<n

i.e. if each set Fj is visited infinitely often.
Show that for any generalized Biichi automaton, one can construct an equivalent
Biichi automaton.
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Exercise 6 (Basic Closure Properties of Recognizable Languages). Show that Rec(X%)
is closed under

1. finite union, and

2. finite intersection.

Exercise 7 (Prophetic Automata). A Biichi automaton B = (Q,%,I,T, F) over an
alphabet ¥ is prophetic if any infinite string w in X“ has exactly one final (but not
necessarily initial) run in 5.

1. The residual language L(B,) of a state ¢ in @ is the language accepted by B, =
(Q,%,{q}, T, F), i.e. the set of words with a final run in B that starts with state g.

Show that B is prophetic if and only if X% can be partitioned as ) o L(By).

2. An automaton B is trim if every L(B,) # 0 for every ¢ in Q. It is co-deterministic
if, for every state ¢’ in  and a in X, there is at most one state ¢ in @ such that
(q,a,q’) belongs to T. It is co-complete if, for every state ¢’ in Q and a in X, there
is at least one state ¢ in @ such that (g, a,q’) belongs to T.

Show that, if B is trim and prophetic, then B is co-deterministic and co-complete.

3. Let ¥ = {a,b}. Construct a prophetic automaton for the language (aX)“.

Exercise 8 (Ultimately Periodic Words). An witimately periodic word over ¥ is a word
of form u - v* with v in ¥* and v in 7.

Prove that any nonempty recognizable language in Rec(¥%) contains an ultimately
periodic word.

Exercise 9 (Rational Languages). A rational language L of infinite words over ¥ is a
finite union
L=Jx-y*

where X is in Rat(3X*) and Y in Rat(XT). We denote the set of rational languages of
infinite words by Rat(3%).
Show that Rec(X*) = Rat(X¥).

Exercise 10 (Deterministic Biichi Automata). A Biichi automaton is deterministic if
|I| <1, and for each state ¢ in @ and symbol a in X, [{(q,a,¢") €T | ¢ € Q}| < 1.

1. Give a nondeterministic Biichi automaton for the language in {a,b}* described by
the expression (a + b)*a®.
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2. Show that there does not exist any deterministic Biichi automaton for this lan-
guage.

3. Let A = (Q,%,q,T,F) be a finite deterministic automaton that recognizes the
language of finite words L C ¥*. We can also interpret A as a deterministic Biichi
automaton with a language L' C X¥; our goal here is to relate the languages of
finite and infinite words defined by A.

Let the limit of a language L C X* be
7= {w € ¥ | w has infinitely many prefixes in L} .

Characterize the language L’ of infinite words of A in terms of its language of finite
words L and of the limit operation.

Exercise 11 (Closure by Complementation). The purpose of this exercise is to prove
that Rec(X*) is closed under complement. We consider for this a Biichi automaton
A=(Q,%,T,I,F), and want to prove that its complement language L(A) is in Rec(2%).

We note ¢ — ¢ for ¢, ¢ in Q and u = a; ---a, in X* if there exists a sequence of
states qo, .. ., g, such that qo = ¢, ¢, = ¢ and for all 0 < i < n, (¢;,ai+1,qi+1) is in T.
We note in the same way ¢ —p ¢ if furthermore at least one of the states qo, ..., qn
belongs to F'.

We define the congruence ~4 over ¥* by

u~aviffVe,d €Q, (= d ©g=d)and (¢ =rd ©a-rd).
1. Show that ~4 has finitely many congruence classes [u], for v in X*.

2. Show that each [u] for u in ¥* is in Rec(X*), i.e. is a regular language of finite
words.

3. Consider the language K (L) for L C ¥¥
K(L) = {[u][v]” [ w,v € &%, [u][o]* N L # 0} .
Show that K (L) is in Rec(X¥) for any L C ¥¥.

4. Show that K(L(A)) C L(A) and K(L(A)) C L(A).

5. Prove that for any infinite word ¢ in X% there exist v and v in ¥* such that o
belongs to [u][v]¥. The following theorem might come in handy when applied to
couples of positions (i, j) inside o:

Theorem 1 (Ramsey, infinite version). Let X be some countably infinite set, n an
integer, and ¢ : X — {1,...,k} a k-coloring of the n-tuples of X. Then there
exists some infinite monochromatic subset M of X such that all the n-tuples of M
have the same image by c.

6. Conclude.
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