MPRI 2-27-1 November 25th, 2014

Exam: Synchronous Grammars

Duration: 3 hours
Written documents are allowed. The numbers in front of questions are indica-
tive of hardness or duration.

Synchronous grammars consist of pairs of grammars whose productions (or trees) are
synchronized through the use of variables. Various kinds of grammars can be synchro-
nised. These grammars mainly used to define syntactic translations and syntax-semantics
interfaces.

Notations. Let X be a countable infinite set of variables. For a finite alphabet ¥, we will
consider finite linear strings o over X W X, i.e. strings where each variable from X occurs
at most once. Similarly, given a finite ranked alphabet V', we will consider linear terms
t in T(V, X), where variables in X have rank 0, and each variable occurs at most once.

A synchronised string is a pair «, o’ that contains the same variables. We can thus
write a synchronised string as

/ / / !/
WoX1W7 * * * Wi 1TmWm, WoLr(1)Wy * Wy, 1Ly (m) Wy, (T)
for some w; and w} in ¥* x; in X, and 7 a permutation of {1,...,m}. We denote by
X(a) = X() = {x1,...,x,} the associated set of variables. Similarly, a synchronised

term is a pair ¢, ¢’ that contains the same variables X (t) = X'(t').

Exercise 1 (Synchronous Context-Free Grammars). A synchronous CFG (SCFG) is
defined as a tuple G = (N, X, P, S) where, as usual, N is a finite alphabet of non-terminal
symbols, ¥ is a finite alphabet of terminal symbols disjoint from N, P is a finite set of
productions of the form

A—a, d, o

where «, o is a synchronised string and o is a substitution X' (a) — N

Let V& (NWY). A sentential form of G is a triple §, ', s where §, §’ is a synchronised

string and s is a substitution X'(6) — N. The derivation relation = between sentential
forms is defined by

By, Bay,s = Bu(a)y, Bv(a')y, (o ov) U (s \ {(z, A)})

'In the literature, people often write such productions as

A— woA[ll]wl .- 'ALT] Wip, wéAKr((ll))]wll cee AZ%)]w;n

where the superscripts between square brackets denote the variable underlying a nonterminal, i.e. x; is the
variable associated to a nonterminal Al As in (f]), we have here w; and w} in ©* and 7 a permutation of

{1,...,m}.

1]
2]

MPRI 2-27-1 November 25th, 2014

where s(z) = A, A — «a,d/,0 is in P, and v: X(a) — X \ X(B7) injectively substitutes
fresh variables instead of those found in X(«), and is lifted to a homomorphism over

(XWX ()" by setting v(a) & ¢ for all @ in ©. Applying v to o and o/ ensures that the
new pair Sv(a)y, f'v(a’)y is again a synchronised string.
The string language defined by a SCFG is the set of pairs of strings]

L(G) def {w,w" € ¥* x ¥ | z,x,{(x,9)} =" w,w, 0} .

Example 1. The SCFG with ruleﬂ S — x1mg, w129, { (21, A), (22, A)} and A — a,a,(|
b, b, allows for instance the derivation

Lo, Lo, {(flfo, S)} = T1%2, T1T3, {(131, A)? (x% A)}
= a.l’g,awz,{(.fg,A)}
= ab, ab, ()

Its langage is {(cd, cd) | ¢,d € {a,b}}. In particular, the pair of strings (ab,ba) is not in
the language.

1. Give a SCFG for the string language L ;oss def {a™™, c"d™ | n,m > 0}.

2. Let # be a fresh symbol. Justify why Ly (G) = {wi#w, € (XW{#})* | z,z,{(x,5)} =~
wi, wq, B} is a mildly context-sensitive language and more precisely a 2-MCFL (mul-
tiple context-free language), i.e. a language generated by a sRCG with predicates of
arity at most 2, or by a LCFRS with tuples of size at most 2.

3. A variant of SCFGs, dubbed inverse transduction grammars (ITG), is frequently
employed. They are defined like SCFGs with an additional constraint: for all synchro-
nised strings of form in P, either 7 is the identity permutation (7w (i) = i for all
1 <i<m) or 7 is the reverse permutation (7(i) = m+ 1 —i for all 1 <i < m).

(a) Show that ITGs can be binarised to use only synchronised strings of the forms
(T) wo, wy, or (I) x1xq, x129, Or (R) T129, X921 in its productions.

(b) Propose a CKY-like deductive system for recognising pairs of strings w, w’ using
binarised ITGs, i.e. for telling whether the pair belongs to L(G).

(c¢) Deduce a worst-case complexity upper bound for ITG parsing.

4. As in the case of context-free grammars, we can associate a tree language to a SCFG.

To simplify matters, let us assume that our SCFG G has no ¢ productions, i.e. |a| > 0
and |o/| > 0 in the productions in P. Formally, we associate a kind of synchronous term
rewriting system to G. We treat for this V' as a ranked alphabet, where the symbols
in ¥ are nullary, and those in N have rank at least 1. We define a disjoint copy

2Using superscripts, this can be written as L(G) = {w,w’ € ¥* x ¥* | S S = 4 '},
3The alternate notation for the productions of this SCFG gives S — AN AR AN AR and A — a, alb, b.

MPRI 2-27-1 November 25th, 2014

N ={A| A€ N} of N all with rank 0. The term rewriting relation =-¢ associated
to G works on triples t,t', s where ¢, is a synchronised term and s: X(t) — N is a
substitution. We rewrite C[z], C'[x], s where s(z) = A and A — «, o/, 0 is a production
in P, into a new triple

ClAD (@), CTANP ()], (gov) U (s\ {(z,A)})

where v is as before an injective substitution from X(a) to X \ X(Clz]). The tree
language of G is then

T(G) € {t,t' e T(V) X T(V) | &, 2, {(x,5)} =4 t, 1,0} .

Show that no SCFG can induce a translation between the following French and English

structures:
S S
A /\
NP VP NP VP
| N | N
John Vv NP Marie Vv PP
| | | N
misses Mary manque P NP
|
a Jean

Exercise 2 (Synchronous Tree Substitution Grammars). In a similar way, we can synchro-
nise the derivations of two tree substitution grammars. To make the notations consistent
with the previous exercise, we define a synchronous TSG (STSG) S = (V, N+, R, S¥) as
a kind of synchronous term rewriting system. It features:

e A finite ranked alphabet V', where we denote again the nullary part of V' as ¥ and
the remainder as N.

o A finite set of substitution variables N+, which are all nullary symbols.

e A finite set of rules R, which consists of triples A* — ¢,#, o where ¢, is a synchro-
nised term over T'(V, X) and o: X (t) — N*t is a substitution.

e An initial variable S* in N*t.

A STSG induces a synchronised derivation relation =g over triples t,t', s, where ¢,t is
a synchronised term and s: X(t) — NV is a substitution. This relation rewrites a triple
Clz],C"[z], s with s(z) = A* into Clv(t)],Clv(t)],(c o v 1) U (s \ {(z, A*)}) whenever

MPRI 2-27-1 November 25th, 2014

AY — t,#' 0 is arule in R, where v: X(t) — X \ X(C|[z]) is an injective substitution that
freshens the variables in ¢ and ¢’. The derived language of S is

T(S) L {t,t' e T(V) x T(V) | z,z, {(x,5)} =% t, ¢, 0} .
We want to study the expressiveness of STSGs:

1. Show that, for every language of tree pairs ' C T'(V') x T'(V') over a ranked alphabet V|
if there exists a SCFG G with T(G) = T, then there exists a STSG S with T'(S) =T.

2. Show that there exists a language of tree pairs T' = T'(S) for some STSG S, such that
no SCFG generates T'.

3. Can you give an example for the previous question where additionally every tree pair
t,t" in T is such that ¢t = ¢'?

4. Consider two ranked alphabets A and V. A tree homomorphism from 7'(A) to T'(V)
is defined by a function h that maps symbols f) in A to trees h(f™) = Cly1, ..., v,
in T(V,{y1,...,%}). Such a homomorphism is lifted to trees ¢t = f)(t;,...,t,) by
h(t) o R(fNy/h(t1),...,y./h(t,)]. A homomorphism is linear non-deleting if
the images h(f™) = C[yi,...,v,] are linear, i.e. every variable y; for 1 <i < r occurs
exactly once in Clyy, ..., y,].

A tree bimorphism is a tuple B = (A, V, D, hy, hy) where A and V are ranked
alphabets, D is a regular tree language included in T'(A), and h; and hy are two tree
homomorphisms from T'(A) to T'(V'). The tree language defined by B is

T(B) & {hi(t), ha(t) € T(V) x T(V) | t € D} .

A tree bimorphism is linear non-deleting if both h; and hy are linear non-deleting.

Show that, for any language of tree pairs ' C T'(V) x T'(V), there exists a STSG S
with T'(S) = T if and only if there exists a linear non-deleting bimorphism B with
T =T(B).

5. We measure the size of a STSG as |S] oo Y otsivoer |t + ¢ What is the time
complexity of testing whether T'(S) =) for a STSG S?

Exercise 3 (Higher-Order Semantics). The purpose of this exercise is to model the syn-
tax/semantics interface of a tiny fragment of English using a STSG S. The first component
of its derived language will be a syntactic constituent analysis of a sentence, while the sec-
ond component will be a A-term interpreted in Church’s simple theory of types.

On the syntactic side, we want our STSG to derive at least the following tree:

MPRI 2-27-1 November 25th, 2014

S
/\
NP VP
/\ N
every N \Y% NP

N

one loves some N

one

On the semantic side, we consider a higher-order signature with atomic types A = {¢, o},
constants C' = {L, D, (V;)-e7(a), person, love}, and typing (L) = o, t(D) = 0 — 0 — o,
t(V,) = (1 — 0) — o, t(person) = ¢ — o, and t(love) = ¢ — ¢ — o. After S-reduction, we
hope to see at least the following A-term on its semantic side

V,x.personx D 3,y.persony Alovexy .

[5] 1. Define a lexicalised STSG that defines a compositional syntax/semantics interface for
the example sentence “every one loves some one”. (For the semantic side, write trees
with A-terms as leaves; write “@Q” on the internal nodes to denote applications.)

