
MPRI 2-27-1 November 25th, 2014

Exam: Synchronous Grammars

Duration: 3 hours
Written documents are allowed. The numbers in front of questions are indica-
tive of hardness or duration.

Synchronous grammars consist of pairs of grammars whose productions (or trees) are
synchronized through the use of variables. Various kinds of grammars can be synchro-
nised. These grammars mainly used to define syntactic translations and syntax-semantics
interfaces.

Notations. Let X be a countable infinite set of variables. For a finite alphabet Σ, we will
consider finite linear strings α over Σ]X , i.e. strings where each variable from X occurs
at most once. Similarly, given a finite ranked alphabet V , we will consider linear terms
t in T (V,X), where variables in X have rank 0, and each variable occurs at most once.

A synchronised string is a pair α, α′ that contains the same variables. We can thus
write a synchronised string as

w0x1w1 · · ·wm−1xmwm, w′0xπ(1)w′1 · · ·w′m−1xπ(m)w
′
m (†)

for some wi and w′i in Σ∗, xi in X , and π a permutation of {1, . . . ,m}. We denote by
X (α) = X (α′) = {x1, . . . , xm} the associated set of variables. Similarly, a synchronised
term is a pair t, t′ that contains the same variables X (t) = X (t′).

Exercise 1 (Synchronous Context-Free Grammars). A synchronous CFG (SCFG) is
defined as a tuple G = 〈N,Σ, P, S〉 where, as usual, N is a finite alphabet of non-terminal
symbols, Σ is a finite alphabet of terminal symbols disjoint from N , P is a finite set of
productions of the form

A→ α, α′, σ

where α, α′ is a synchronised string and σ is a substitution X (α)→ N .1

Let V
def
= (N]Σ). A sentential form of G is a triple δ, δ′, s where δ, δ′ is a synchronised

string and s is a substitution X (δ)→ N . The derivation relation ⇒ between sentential
forms is defined by

βxγ, β′xγ′, s⇒ βν(α)γ, β′ν(α′)γ′, (σ ◦ ν−1) ∪ (s \ {(x,A)})
1In the literature, people often write such productions as

A→ w0A
[1]
1 w1 · · ·A[m]

m wm, w
′
0A

[π(1)]
π(1) w

′
1 · · ·A

[π(m)]
π(m) w

′
m

where the superscripts between square brackets denote the variable underlying a nonterminal, i.e. xi is the
variable associated to a nonterminal A[i]. As in (†), we have here wi and w′i in Σ∗ and π a permutation of
{1, . . . ,m}.

MPRI 2-27-1 November 25th, 2014

where s(x) = A, A → α, α′, σ is in P , and ν:X (α) → X \ X (βγ) injectively substitutes
fresh variables instead of those found in X (α), and is lifted to a homomorphism over

(Σ] X (α))∗ by setting ν(a)
def
= a for all a in Σ. Applying ν to α and α′ ensures that the

new pair βν(α)γ, β′ν(α′)γ′ is again a synchronised string.
The string language defined by a SCFG is the set of pairs of strings2

L(G)
def
= {w,w′ ∈ Σ∗ × Σ∗ | x, x, {(x, S)} ⇒? w,w′, ∅} .

Example 1. The SCFG with rules3 S → x1x2, x1x2, {(x1, A), (x2, A)} and A → a, a, ∅ |
b, b, ∅ allows for instance the derivation

x0, x0, {(x0, S)} ⇒ x1x2, x1x2, {(x1, A), (x2, A)}
⇒ ax2, ax2, {(x2, A)}
⇒ ab, ab, ∅

Its langage is {(cd, cd) | c, d ∈ {a, b}}. In particular, the pair of strings (ab, ba) is not in
the language.

1.[1] Give a SCFG for the string language Lcross
def
= {anbm, cndm | n,m ≥ 0}.

2.[2] Let # be a fresh symbol. Justify why L#(G) = {w1#w2 ∈ (Σ]{#})∗ | x, x, {(x, S)} ⇒?

w1, w2, ∅} is a mildly context-sensitive language and more precisely a 2-MCFL (mul-
tiple context-free language), i.e. a language generated by a sRCG with predicates of
arity at most 2, or by a LCFRS with tuples of size at most 2.

3.[6] A variant of SCFGs, dubbed inverse transduction grammars (ITG), is frequently
employed. They are defined like SCFGs with an additional constraint: for all synchro-
nised strings of form (†) in P , either π is the identity permutation (π(i) = i for all
1 ≤ i ≤ m) or π is the reverse permutation (π(i) = m+ 1− i for all 1 ≤ i ≤ m).

(a) Show that ITGs can be binarised to use only synchronised strings of the forms
(T) w0, w

′
0, or (I) x1x2, x1x2, or (R) x1x2, x2x1 in its productions.

(b) Propose a CKY-like deductive system for recognising pairs of strings w,w′ using
binarised ITGs, i.e. for telling whether the pair belongs to L(G).

(c) Deduce a worst-case complexity upper bound for ITG parsing.

4.[2] As in the case of context-free grammars, we can associate a tree language to a SCFG.

To simplify matters, let us assume that our SCFG G has no ε productions, i.e. |α| > 0
and |α′| > 0 in the productions in P . Formally, we associate a kind of synchronous term
rewriting system to G. We treat for this V as a ranked alphabet, where the symbols
in Σ are nullary, and those in N have rank at least 1. We define a disjoint copy

2Using superscripts, this can be written as L(G) = {w,w′ ∈ Σ∗ × Σ∗ | S[1], S[1] ⇒? w,w′}.
3The alternate notation for the productions of this SCFG gives S → A[1]A[2], A[1]A[2] and A→ a, a|b, b.

MPRI 2-27-1 November 25th, 2014

N̄ = {Ā | A ∈ N} of N all with rank 0. The term rewriting relation ⇒G associated
to G works on triples t, t′, s where t, t′ is a synchronised term and s:X (t) → N̄ is a
substitution. We rewrite C[x], C ′[x], s where s(x) = Ā and A→ α, α′, σ is a production
in P , into a new triple

C[A(|α|)(ν(α))], C ′[A(|α′|)(ν(α′))], (σ ◦ ν−1) ∪ (s \ {(x, Ā)})

where ν is as before an injective substitution from X (α) to X \ X (C[x]). The tree
language of G is then

T (G)
def
= {t, t′ ∈ T (V)× T (V) | x, x, {(x, S̄)} ⇒?

G t, t
′, ∅} .

Show that no SCFG can induce a translation between the following French and English
structures:

S

VP

NP

Mary

V

misses

NP

John

S

VP

PP

NP

Jean

P

à

V

manque

NP

Marie

Exercise 2 (Synchronous Tree Substitution Grammars). In a similar way, we can synchro-
nise the derivations of two tree substitution grammars. To make the notations consistent
with the previous exercise, we define a synchronous TSG (STSG) S = 〈V,N↓, R, S↓〉 as
a kind of synchronous term rewriting system. It features:

• A finite ranked alphabet V , where we denote again the nullary part of V as Σ and
the remainder as N .

• A finite set of substitution variables N↓, which are all nullary symbols.

• A finite set of rules R, which consists of triples A↓ → t, t′, σ where t, t′ is a synchro-
nised term over T (V,X) and σ:X (t)→ N↓ is a substitution.

• An initial variable S↓ in N↓.

A STSG induces a synchronised derivation relation ⇒S over triples t, t′, s, where t, t′ is
a synchronised term and s:X (t) → N↓ is a substitution. This relation rewrites a triple
C[x], C ′[x], s with s(x) = A↓ into C[ν(t)], C[ν(t′)], (σ ◦ ν−1) ∪ (s \ {(x,A↓)}) whenever

MPRI 2-27-1 November 25th, 2014

A↓ → t, t′, σ is a rule in R, where ν:X (t) → X \ X (C[x]) is an injective substitution that
freshens the variables in t and t′. The derived language of S is

T (S)
def
= {t, t′ ∈ T (V)× T (V) | x, x, {(x, S↓)} ⇒?

S t, t
′, ∅} .

We want to study the expressiveness of STSGs:

1.[1] Show that, for every language of tree pairs T ⊆ T (V)×T (V) over a ranked alphabet V ,
if there exists a SCFG G with T (G) = T , then there exists a STSG S with T (S) = T .

2.[0] Show that there exists a language of tree pairs T = T (S) for some STSG S, such that
no SCFG generates T .

3.[1] Can you give an example for the previous question where additionally every tree pair
t, t′ in T is such that t = t′?

4.[5] Consider two ranked alphabets ∆ and V . A tree homomorphism from T (∆) to T (V)
is defined by a function h that maps symbols f (r) in ∆ to trees h(f (r)) = C[y1, . . . , yr]
in T (V, {y1, . . . , yr}). Such a homomorphism is lifted to trees t = f (r)(t1, . . . , tr) by

h(t)
def
= h(f (r))[y1/h(t1), . . . , yr/h(tr)]. A homomorphism is linear non-deleting if

the images h(f (r)) = C[y1, . . . , yr] are linear, i.e. every variable yi for 1 ≤ i ≤ r occurs
exactly once in C[y1, . . . , yr].

A tree bimorphism is a tuple B = 〈∆, V,D, h1, h2〉 where ∆ and V are ranked
alphabets, D is a regular tree language included in T (∆), and h1 and h2 are two tree
homomorphisms from T (∆) to T (V). The tree language defined by B is

T (B)
def
= {h1(t), h2(t) ∈ T (V)× T (V) | t ∈ D} .

A tree bimorphism is linear non-deleting if both h1 and h2 are linear non-deleting.

Show that, for any language of tree pairs T ⊆ T (V) × T (V), there exists a STSG S
with T (S) = T if and only if there exists a linear non-deleting bimorphism B with
T = T (B).

5.[1] We measure the size of a STSG as |S| def
=

∑
A↓→t,t′,σ∈R |t| + |t′|. What is the time

complexity of testing whether T (S) = ∅ for a STSG S?

Exercise 3 (Higher-Order Semantics). The purpose of this exercise is to model the syn-
tax/semantics interface of a tiny fragment of English using a STSG S. The first component
of its derived language will be a syntactic constituent analysis of a sentence, while the sec-
ond component will be a λ-term interpreted in Church’s simple theory of types.

On the syntactic side, we want our STSG to derive at least the following tree:

MPRI 2-27-1 November 25th, 2014

S

VP

NP

N

one

some

V

loves

NP

N

one

every

On the semantic side, we consider a higher-order signature with atomic types A = {ι, o},
constants C = {⊥,⊃, (∀τ)τ∈T (A), person, love}, and typing t(⊥) = o, t(⊃) = o → o → o,
t(∀τ) = (τ → o) → o, t(person) = ι → o, and t(love) = ι → ι → o. After β-reduction, we
hope to see at least the following λ-term on its semantic side

∀ιx.personx ⊃ ∃ιy.person y ∧ lovex y .

1.[5] Define a lexicalised STSG that defines a compositional syntax/semantics interface for
the example sentence “every one loves some one”. (For the semantic side, write trees
with λ-terms as leaves; write “@” on the internal nodes to denote applications.)

