
MPRI course 2-27-1, year 2014–2015

Logical and Computational Structures for
Linguistic Modelling

Sylvain Schmitz
LSV, ENS Cachan & CNRS & INRIA
April 8, 2015 (r5867M)

These notes cover the contents of an introductory course on computational lin-
guistics, also known as MPRI 2-27-1: Logical and computational structures for
linguistic modelling. The course is subdivided into two parts: the first, taught this
year by Éric Villemonte de la Clergerie, covers grammars and automata for syn-
tax modelling, while the second part focuses on logical approaches to syntax and
semantics. Among the prerequisites to the course are

• classical notions of formal language theory, in particular regular and context-
free languages, and more generally the Chomsky hierarchy,

• a basic command of English and French morphology and syntax, in order to
understand the examples;

• some acquaintance with logic and proof theory is also advisable.

These notes are based on numerous articles—and I have tried my best to pro-
vide stable hyperlinks to online versions in the references—, and on the excellent
material of Benoît Crabbé, Éric Villemonte de la Clergerie, and Philippe de Groote
who taught this course with me.

Several courses at MPRI provide an in-depth treatment of subjects we can only
hint at. The interested student should consider attending

MPRI 1-18: Tree automata and applications: tree languages and term rewriting
systems will be our basic tools in many models;

MPRI 2-16: Finite automata modelisation: only the basic theory of weighted au-
tomata is used in our course;

MPRI 2-26-1: Web data management: you might be surprised at how many con-
cepts are similar, from automata and logics on trees for syntax to description
logics for semantics.

MPRI 2-1: Linear logic.

Contents

1 Introduction 7
1.1 Levels of Description . 7

1.1.1 From Text to Meaning . 7
1.1.2 Ambiguity at Every Turn . 9
1.1.3 Romantics and Revolutionaries 10

1.2 Models of Syntax . 10
1.2.1 Constituent Syntax . 10
1.2.2 Dependency Syntax . 11

1.3 Further Reading . 13

https://wikimpri.dptinfo.ens-cachan.fr/doku.php?id=cours:c-2-27-1
https://wikimpri.dptinfo.ens-cachan.fr/doku.php?id=cours:c-2-27-1
https://wikimpri.dptinfo.ens-cachan.fr/doku.php?id=cours:c-1-18
https://wikimpri.dptinfo.ens-cachan.fr/doku.php?id=cours:c-2-16
https://wikimpri.dptinfo.ens-cachan.fr/doku.php?id=cours:c-2-26-2
https://wikimpri.dptinfo.ens-cachan.fr/doku.php?id=cours:c-2-1

Logic and Linguistic Modelling 2

2 Morphology 15
2.0.1 A Bit of English Morphology 16
2.0.2 Part-of-Speech Tags . 17

2.1 Finite-State Morphology . 18
2.1.1 Background: Rational Transductions 18
2.1.2 Morphological Analysis . 21
2.1.3 Phonological Rules . 23

2.2 Part-of-Speech Tagging . 26
2.2.1 Rule-Based Tagging . 26

Learning Contextual Rules 27
Contextual Rules as Sequential Functions 28

2.2.2 HMM Tagging . 31
Constructing HMMs from N -Grams 33
HMM Decoding . 34

3 Context-Free Syntax 39
3.1 Grammars . 39

3.1.1 The Parsing Problem . 40
3.1.2 Background: Tree Automata 41

3.2 Tabular Parsing . 43
3.2.1 Parsing as Intersection . 43
3.2.2 Parsing as Deduction . 44

4 Model-Theoretic Syntax 47
4.0.1 Model-Theoretic vs. Generative 47
4.0.2 Tree Structures . 48

4.1 Monadic Second-Order Logic . 49
4.1.1 Linguistic Analyses in wMSO 51
4.1.2 wS2S . 54

4.2 Propositional Dynamic Logic . 55
4.2.1 Model-Checking . 56
4.2.2 Satisfiability . 56

Fisher-Ladner Closure . 57
Reduced Formulæ . 58
Two-Way Alternating Tree Automaton 58

4.2.3 Expressiveness . 60
4.3 Parsing as Intersection . 62

5 Mildly Context-Sensitive Syntax 63
5.1 Tree Adjoining Grammars . 64

5.1.1 Linguistic Analyses Using TAGs 66
Lexicalized Grammar . 66
Long-Distance Dependencies 67

5.1.2 Background: Context-Free Tree Grammars 68
IO and OI Derivations . 69

5.1.3 TAGs as Context-Free Tree Grammars 70
5.2 Well-Nested MCSLs . 73

5.2.1 Linear CFTGs . 74
5.2.2 Parsing as Intersection . 75

Logic and Linguistic Modelling 3

6 Probabilistic Syntax 77
6.1 Weighted and Probabilistic CFGs 78

6.1.1 Background: Semirings and Formal Power Series 78
Semirings . 78
Weighted Automata . 78

6.1.2 Weighted Grammars . 79
6.1.3 Probabilistic Grammars . 79

Partition Functions . 80
Normalization . 81

6.2 Learning PCFGs . 82
6.3 Probabilistic Parsing as Intersection 84

6.3.1 Weighted Product . 84
6.3.2 Most Probable Parse . 85
6.3.3 Most Probable String . 86

Hardness . 86
Upper Bounds . 88

7 Categorial Grammars 91
7.1 AB Categorial Grammars . 92

7.1.1 Alternative Views . 92
7.1.2 Equivalence with Context-Free Grammars 93
7.1.3 Structural Limitations . 94

7.2 Lambek Grammars . 94
7.2.1 Background: Substructural Proof Systems 94
7.2.2 Lambek Calculus . 95
7.2.3 Equivalence with Context-Free Grammars 97

8 First-Order Semantics 99
8.1 Formal Semantics . 99

8.1.1 Event Semantics . 100
8.1.2 Thematic Roles . 101

8.2 A Dip into Description Logics . 102
8.2.1 A Basic Description Logic 102
8.2.2 Translation into First-Order Logic 103

8.3 Modal Semantics . 104
8.3.1 Background: Modal Logic 104
8.3.2 First-Order Modal Logic . 107

8.4 Decidability . 108
8.4.1 The Guarded Fragment . 109

Guarded Bisimulations . 109
Models of Bounded Treewidth 110
Limitations & Extensions . 111

9 Tree Patterns 113
9.1 Background: Existential First-Order Logic 113

9.1.1 Characterisations over Finite Models 114
9.1.2 Tree Models . 116

9.2 Meta-Grammars . 116
9.2.1 Diathesis Alternation . 116
9.2.2 Complexity . 117

9.3 Underspecified Semantics . 118

Logic and Linguistic Modelling 4

9.3.1 Scope Ambiguities . 118
9.3.2 Hole Semantics . 119

Constructive Satisfiability 120

10 Higher-Order Semantics 125
10.1 Compositional Semantics . 125

10.1.1 Background: Simply Typed Lambda Calculus 126
10.1.2 Ground Terms over Second-Order Signatures 127
10.1.3 Higher-Order Homomorphisms 129
10.1.4 Tree Transductions . 130

10.2 Intensionality . 132
10.3 Higher-Order Logic . 134

10.3.1 Background: Church’s Simple Theory of Types 134
10.3.2 Type-Logical Semantics . 135

11 References 139

Notations

We use the following notations in this document. First, as is customary in lin-
guistic texts, we prefix agrammatical or incorrect examples with an asterisk, like
∗ationhospitalmis or ∗sleep man to is the.

These notes also contain some exercises, and a difficulty appreciation is indi-
cated as a number of asterisks in the margin next to each exercise—a single aster-
isk denotes a straightforward application of the definitions.

Relations. We only consider binary relations, i.e. subsets of A × B for some
sets A and B. The inverse of a relation R is R−1 = {(b, a) | (a, b) ∈ R}, its
domain isR−1(B) and its range isR(A). Beyond the usual union, intersection and
complement operations, we denote the composition of two relations R1 ⊆ A×B
and R2 ⊆ B × C as R1 # R2 = {(a, c) | ∃b ∈ B, (a, b) ∈ R1 ∧ (b, c) ∈ R2}. The
reflexive transitive closure of a relation is noted R? =

⋃
iR

i, where R0 = IdA =
{(a, a) | a ∈ A} is the identity over A, and Ri+1 = R #Ri.

Terms. A ranked alphabetSee Comon et al. (2007) for
missing definitions and notations.

a pair (Σ, r) where Σ is a finite alphabet and r :
Σ → N gives the arity of symbols in Σ. The subset of symbols of arity n is noted
Σn.

Let X be a set of variables, each with arity 0, assumed distinct from Σ. We write
Xn for a set of n distinct variables taken from X .

The set T (Σ,X) of terms over Σ and X is the smallest set s.t. Σ0 ⊆ T (Σ,X),
X ⊆ T (Σ,X), and if n > 0, f is in Σn, and t1, . . . , tn are terms in T (Σ,X), then
f(t1, . . . , tn) is a term in T (Σ,X). The set of terms T (Σ, ∅) is also noted T (Σ) and
is called the set of ground terms.

A term t in T (Σ,X) is linear if every variable of X occurs at most once in t.
A linear term in T (Σ,Xn) is called a context, and the expression C[t1, . . . , tn] for
t1, . . . , tn in T (Σ) denotes the term in T (Σ) obtained by substituting ti for xi for
each 1 ≤ i ≤ n, i.e. is a shorthand for C{x1 ← t1, . . . , xn ← tn}. We denote
Cn(Σ) the set of contexts with n variables, and C(Σ) that of contexts with a single
variable—in which case we usually write � for this unique variable.

Logic and Linguistic Modelling 5

Trees. By tree we mean a finite ordered ranked tree t over some set of labels Σ,
i.e. a partial function t : {0, . . . , k}∗ → Σ where k is the maximal rank, associating
to a finite sequence its label. The domain of t is prefix-closed, i.e. if ui ∈ dom(t)
for u in N∗ and i in N, then u ∈ dom(t), and predecessor-closed, i.e. if ui ∈ dom(t)
for u in N∗ and i in N>0, then u(i− 1) ∈ dom(t).

The set Σ can be turned into a ranked alphabet simply by building k+1 copies of
it, one for each possible rank in {0, . . . , k}; we note a(m) for the copy of a label a in
Σ with rank m. Because in linguistic applications tree node labels typically denote
syntactic categories, which have no fixed arities, it is useful to work under the
convention that a denotes the “unranked” version of a(m). This also allows us to
view trees as terms (over the ranked version of the alphabet), and conversely terms
as trees (by erasing ranking information from labels)—we will not distinguish
between the two concepts.

Term Rewriting Systems. A term rewriting system over some ranked alphabet
Σ is a set of rules R ⊆ (T (Σ,X))2, each noted t→ t′. Given a rule r : t→ t′ (also
noted t r−→ t′), with t, t′ in T (Σ,Xn), the associated one-step rewrite relation over
T (Σ) is r

=⇒ = {(C[t{x1 ← t1, . . . , xn ← tn}], C[t′{x1 ← t1, . . . , xn ← tn}]) | C ∈
C(Σ), t1, . . . , tn ∈ T (Σ)}. We write r1r2==⇒ for r1=⇒ # r2=⇒, and R

=⇒ for
⋃
r∈R

r
=⇒.

Logic and Linguistic Modelling 6

Chapter 1

Introduction

If linguistics is about the description and understanding of human language, a
computational linguist thrives in developing computational models of language.
By computational, we mean models that are not only mathematically elegant, but
also amenable to an algorithmic treatment. Such models are certainly useful for
practical applications in natural language processing, which range from text min-
ing, question answering, and text summarization, to automated translation.

In spite of the large impact such technologies have on our lives, the case of com-
putational linguistics is even stronger. Consider that human brains have limited
capacity for holding language information (think for instance of dictionaries and
common turns of phrase), and that being able to learn, understand, and produce
a potentially unbounded number of utterances, we need to rely on some form or
other of computation—quite an efficient one at that if you think about it.

A computational model, rather than a “mere” mathematical one, also allows for
experimentation, and thus validation or refinement of the model. For example, a
theoretical linguist might test her predictions about which sentences are grammat-
ical by parsing large corpora of presumably correct text—does the model under-
generate?—, or about the syntax rules of a particular phenomenon by generating
random sentences and checking against over-generation. As another example, a
psycholinguist might try to match some measured degree of linguistic difficulty of
sentences with various aspects of the model: frequency of the lexemes and of the
syntactic rules, type and size of the involved rules, degree of ambiguity, etc.

1.1 Levels of Description

Language models are classically divided into several layers, first some specific to
speech processing: phonetics and phonology, then more generally applicable:
morphology, syntax, semantics, and pragmatics. This forms a pipeline, that
inputs utterances in oral or written form and outputs meaning representations in
context.

1.1.1 From Text to Meaning

Let us give a quick overview of the phases from text to meaning.

Morphology The purpose of morphology is to describe the mechanisms that un-
derlie the formation of words. Intuitively, one can recognize the existence of a

7

Logic and Linguistic Modelling 8

relation between the words sings and singing, and further find that the same rela-
tion holds between dances and dancing. Beyond the simple enumeration of words,
we usually want to retrieve some linguistic information that will be helpful for
further processing: are we dealing with a noun or a verb (its category)? Is it
plural or singular (its number)? What is its part-of-speech (POS) tag? Modeling
morphology often involves (probabilistic) word automata and transducers.

This process is quite prone to ambiguity: in the sentence

Gator attacks puzzle experts

is attacks a verb in third person singular (VBZ) or a plural noun (NNS)? Is puzzle
a verb (VB) or a noun (NN)? Should crossword experts avoid Florida?

Syntax deals with the structure of sentences: how do we combine words into
phrases and sentences?

Constituents and Dependencies. Two main types of analysis are used by syntac-
ticians: one as constituents, where the sentence is split into phrases, themselves
further split until we reach the word level, as in

[[She] [watches [a bird]]]

Such a constituent analysis can also be represented as a tree, as on the left of
Figure 1.1. Here we introduced part-of-speech tags and syntactic categories to
label the internal nodes: for instance, VBZ stands for a verb conjugated in present
third person, NP stands for a noun phrase, and VP for a verb phrase.

S

NP

PRP

She

VP

VBZ

watches

NP

DT

a

NN

bird She watches a bird

PRP
VBZ

DT
NN

subj obj

det

Figure 1.1: Constituent (on the left) and dependency (on the right) analyses.

An alternative analysis, illustrated on the right of Figure 1.1, rather exhibits
the dependencies between words in the sentence: its head is the verb watches,
with two dependents She and bird, which play the roles of subject and object
respectively. In turn, bird governs its determiner a. Again, additional labels can
decorate the nodes and relations in dependency structures, as shown in Figure 1.1.

Ambiguity. The following sentence is a classical example of a syntactic ambi-
guity, illustrated by the two derivation trees of Figure 1.2:

She watches a man with a telescope.

This is called a PP attachment ambiguity: who exactly is using a telescope?

Semantics studies meaning. We often use logical languages to describe mean-
ing, like the following (guarded) first-order sentence for “Every man loves a woman”:

∀x.man(x) ⊃ ∃y.love(x, y) ∧woman(y)

Logic and Linguistic Modelling 9

S

NP

PRP

She

VP

VBZ

watches

NP

NP

DT

a

NN

man

PP

IN

with

NP

DT

a

NN

telescope

S

NP

PRP

She

VP

VP

VBZ

watches

NP

DT

a

NN

man

PP

IN

with

NP

DT

a

NN

telescope

Figure 1.2: An ambiguous sentence.

or the description logic statement

Man v ∃love.Woman .

Ambiguity is of course present as in every aspect of language: for instance, scope
ambiguities, as in this alternate reading of “Every man loves a woman”

∃y.woman(y) ∧ ∀x.man(x) ⊃ love(x, y)

where there exists one particular woman loved by every man in the world.
More difficulties arise when we attempt to build meaning representations com-

positionally, based on syntactic structures, and when intensional phenomena must
be modeled. The solutions often mix higher-order logics with possible-worlds se-
mantics and modalities.

Pragmatics considers the ways in which meaning is affected by the context of a
sentence: it includes the study of discourse and of referential expressions.

As usual, the models have to account for massive ambiguity, as in this anaphora
resolution:

Mary asks Eve about her father

where her might refer to Mary or Eve; only the context of the sentence will allow
to disambiguate.

1.1.2 Ambiguity at Every Turn

The above succinct presentation should convince the reader that ambiguity perme-
ates every layer of the linguistic entreprise. To better emphasize the importance
of ambiguity, let us look at experimental results in real-world syntax grammars:
Martin et al. (1987) presents a typical sentence found in a corpus, which when
generalized to arbitrary lengths n, exhibits a number of parses related to the Cata-
lan numbers Cn ∼ 4n

n3/2
√
π

. In more recent experiments with treebank-induced

grammars, Moore (2004) reports an average number of 7.2×1027 different deriva-
tions for sentences of 5.7 words on average. The rationale behind these staggering
levels of ambiguity is that any formal grammar that accounts for a realistic part
of natural language, must allow for so many constructions, that it also yields an
enormous number of different analyses: robustness of the model comes at a steep
price in ambiguity.

The practical answer to this issue is to refine the models with weights, allow-
ing to attach a grammaticality estimation to each structure. Those weights are

Logic and Linguistic Modelling 10

typically probabilities inferred from frequencies found in large corpora. Stochas-
tic methods are now ubiquitous in natural language processing (Manning and
Schütze, 1999), and no purely symbolic model is able to compete with statisti-
cal models on practical benchmarks.

1.1.3 Romantics and Revolutionaries

Read (Pereira, 2000; Steedman, 2011).

1.2 Models of Syntax

To conclude this already long introduction, here is a short presentation of the kinds
of models employed for describing syntax. Not every one will be covered in class,
but there are pointers to the relevant literature.

For each of the two kinds of analyses, using constituents or dependencies, three
different flavors of models can be distinguished: generative models, which con-
struct structures through rewriting systems; model-theoretic approaches rather de-
scribe structures in a logical language and allow any model of a formula as an an-
swer; proof-theoretic techniques establish the grammaticality of sentences through
a proof in some formal deduction system. Finally, stochastic methods might be
mixed with any of the previous frameworks (Manning and Schütze, 1999). This
gives rise to twelve combinations—which should however not be distinguished too
strictly, as their borders are often quite blurry.

1.2.1 Constituent Syntax

Generative Syntax The formal description of morpho-syntactic phenomena through
rewriting systems can be traced back to 350BC and the Sanskrit grammar of
Pān. ini, the As.t.ādhyāyī. This large grammar employs contextual rewriting rules
like

A→ B / C D (1.1)

for “rewrite A to B in the context C D”, i.e. the rewrite rule

CAD → CBD . (1.2)

The grammar already features auxiliary symbols (like the labels on the inner
nodes of Figure 1.1), and this type of formal systems is therefore already Turing-
complete.

The adoption of phrase-structure grammars to derive constituent structures
stems mostly from Chomsky’s Three Models for the Description of Language (1956),
which considers the suitability of finite automata, context-free grammars, and
transformational grammars for syntactic modeling.

Readers with a computer science background are likely to be rather familiar with
context-free grammars from a compilers or formal languages course; it is quite
interesting to see that the equivalent BNF notation (Backus, 1959) was developed
at roughly the same time to specify the syntax of ALGOL 60 (Ginsburg and Rice,
1962). The focus in linguistics applications is however on trees, for which tree
languages provide a more appropriate framework (Comon et al., 2007).

Logic and Linguistic Modelling 11

Model-Theoretic Syntax Because the focus of linguistic models of syntax is on
trees, there is an alternative way of understanding a disjunction of context-free
production rules

A→ BC | DE . (1.3)

It posits that in a valid tree, a node labeled by A should feature two children,
labeled either by B and C or by D and E. In first-order logic, assuming A,B, . . .
to be predicates and using ↓ and→ to denote the child and right sibling relations,
this could be expressed as

∀x.A(x) ⊃ ∃y.∃z.x ↓ y ∧ x ↓ z ∧ y → z ∧
(
(B(y) ∧ C(z)) ∨ (D(y) ∧ E(z))

)
∧ ∀c.x ↓ c ⊃ c = y ∨ c = z .

(1.4)

A constituent tree is valid if it satisfies the constraints stated by the grammar, and
a language is the set of models, in a logical sense, of the grammar. See the survey
by Pullum (2007) on the early developments of the model-theoretic approach.

Of course, the logical language of context-free rules is rather limited, and more
expressive logics can be employed: we will consider monadic second-order logic
and propositional dynamic logic in Chapter 4.

Proof-Theoretic Syntax Yet another way of viewing a context-free rule like (1.3)
is as a deduction rules

A(xy) :− B(x), C(y). (1.5)

A(xy) :− D(x), E(y). (1.6)

(in Prolog-like syntax). Here the variables x and y range over finite strings, and
a sentence w is accepted by the grammar if the judgement S(w) (for “w ∈ L(S)”)
can be derived using the rules

B1(u1) . . . Bm(um)

A(u1 · · ·um)

{
A(x1 · · ·xm) :− B1(x1), . . . , Bm(xm) (1.7)

where u1, . . . , um are finite strings.
The interest of this proof-theoretic view is that it is readily generalizable beyond

context-free grammars, for instance by removing the restriction to monadic pred-
icates, as in multiple context-free grammars (Seki et al., 1991). It also encour-
ages annotations of proofs with terms (as with the Curry-Howard isomorphism) to
construct a semantic representation of the sentence, and thus provides an elegant
syntax/semantics interface.

1.2.2 Dependency Syntax

Dependency analyses take their roots in the work of Tesnière, and are especially
well-suited to language with “relaxed” word order, where discontinuities come
handy (Mel’čuk, 1988, e.g. Meaning-Text Theory for Czech). It also turns out that
several of the best statistical parsing systems today rely on dependencies rather
than constituents.

Logic and Linguistic Modelling 12

Generative Syntax If we look at the dependency structure of Figure 1.1, we can
observe that it can be encoded through rewrite rules of the form

h→ L ∗ R (1.8)

where L is the list of left dependents and R that of right dependents of the head
word h, and ∗ marks the position of this word: more concretely, the rules

VBZ→ PRP ∗ NN (1.9)

PRP→ ∗ (1.10)

NN→ DT ∗ (1.11)

would allow to generate the dependency tree on the right of Figure 1.1. This
general idea has been put forward by Gaifman (1965) and Hays (1964).

Conversely, given a constituent tree like the one on the left of Figure 1.1, a
dependency tree can be recovered by identifying the head of each phrase as in Fig-
ure 1.3. Applying this transformation to a context-free grammar results in a head
lexicalized grammar, which is a fairly common idea in statistical parsing (e.g.
Charniak, 1997; Collins, 2003).

S[watches]

NP[She]

PRP

She

VP[watches]

VBZ

watches

NP[bird]

DT

a

NN

bird

Figure 1.3: A head lexicalized constituent tree.

Model-Theoretic Syntax As with constituency analysis, dependency structures
can be described in a model-theoretic framework. Here I do not know much
work on the subject, besides a constraint-solving approach for a (positive existen-
tial) logic: the topological dependency grammars of Duchier and Debusmann
(2001), along with related formalisms.

Proof-Theoretic Syntax Regarding the proof-theoretic take on dependency syn-
tax, there is a very rich literature on categorial grammar. In the basic system of
Bar-Hillel (1953), categories are built using left and right quotients over a finite
set of symbols A:

γ ::= A | γ\γ | γ/γ (categories)

The proof system then features three deduction rules: one that looks up the possi-
ble categories associated to a word in a finite lexicon

Lexicon
w ` γ

and two rules to eliminate the \ and / connectors:

w1 ` γ1 w2 ` γ1\γ2 \E
w1 · w2 ` γ2

Logic and Linguistic Modelling 13

w1 ` γ2/γ1 w2 ` γ1
/E

w1 · w2 ` γ2

For instance, the dependencies from the right of Figure 1.1 can be described in

a lexicon over A def
= {s, n, d} by

She ` n watches ` (n\s)/n a ` d bird ` d\n

with a proof

She ` n
watches ` (s\n)/n

a ` d bird ` d\n
\E

a bird ` n
/E

watches a bird ` n\s
\E

She watches a bird ` s
By adding introduction rules to this proof system, Lambek (1958) has defined

the Lambek calculus, which can be viewed as a non-commutative variant of lin-
ear logic (e.g. Troelstra, 1992). As with constituency analyses, one of the interests
of proof-theoretic methods is that it provides an elegant way of building composi-
tional semantics interpretations.

1.3 Further Reading

Interested readers will find a good general textbook on natural language process-
ing by Jurafsky and Martin (2009). The present notes have a strong bias towards
logical formalisms, but this is hardly representative of the general field of natu-
ral language processing. In particular, the overwhelming importance of statistical
approaches in the current body of research makes the textbook of Manning and
Schütze (1999) another recommended reference.

The main journal of natural language processing is Computational Linguistics.
As often in computer science, the main conferences of the field have equiva-
lent if not greater importance than journal outlets, and one will find among the
major conferences ACL (“Annual Meeting of the Association for Computational
Linguistics”), EACL (“European Chapter of the ACL”), NAACL (“North American
Chapter of the ACL”), and CoLing (“International Conference on Computational
Linguistics”). A very good point in favor of the ACL community is their early
adoption of open access; one will find all the ACL publications online at http:
//www.aclweb.org/anthology/.

The more mathematics-oriented linguistics community is scattered around sev-
eral sub-communities, each with its meeting. Let me mention two special interest
groups of the ACL: SIGMoL on “Mathematics of Language” and SIGParse on “natu-
ral language parsing”.

http://www.aclweb.org/anthology/
http://www.aclweb.org/anthology/
http://molweb.org/
http://www.cs.cmu.edu/~sigparse/
http://www.cs.cmu.edu/~sigparse/

Logic and Linguistic Modelling 14

Chapter 2

Morphology

We consider in this chapter how to represent sets of words of a natural language
in linguistically meaningful and computationally efficient ways.

The purpose of morphology is to describe the mechanisms that underlie the for-
mation of words. Intuitively, one can recognize the existence of a relation between
the words sings and singing, and further find that the same relation holds between
dances and dancing. A morphological analysis of these words

• splits them into basic components, called morphemes: here the stems sing
and dance, and the affixes -s and -ing, standing for singular third person and
present participle, and thus

• recognizes them as inflected forms of the lemmas to sing and to dance.

Already observe some difficulties in the word formation rules: the realization of
the present participle of dance is not ∗danceing; and some words may be outright
irregular, e.g. sang and sung for the preterit and past participle forms of to sing.
We will consider formal systems describing the derivation of words.

Beyond the simple enumeration of words, we usually want to retrieve some
linguistic information that will be helpful for further processing: are we dealing
with a noun or a verb (its category)? is it plural or singular (its number)? what
is its part-of-speech (POS) tag? etc. Table 2.1 illustrates the kind of information
one can expect to find in a morphological lexicon. If our rules are well-designed,
we should be able to extract this information from the various derivations that
account for the word.

Table 2.1: Example of entries in English along with their POS tags (from the Penn
Treebank tagset) and some morphological features.

Input Lemma POS tag Features
race race NN [cat=n; num=sg; case=nom|acc]
races race NNS [cat=n; num=pl; case=nom|acc]
race to race VB [cat=v; mode=inf]
race to race VBP [cat=v; pers=1|2; num=sg|pl; tense=pres; mode=ind]
race to race VBP [cat=v; pers=3; num=pl; tense=pres; mode=ind]
races to race VBZ [cat=v; pers=3; num=sg; tense=pres; mode=ind]
race to race VB [cat=v; pers=2; num=sg; tense=pres; mode=imp]
raced to race VBD [cat=v; tense=past; mode=ind]
raced to race VBN [cat=v; mode=ppart]
racing to race VBG [cat=v; mode=ger]

15

Logic and Linguistic Modelling 16

2.0.1 A Bit of English Morphology

MorphologyMost of the discussion is based on
(Jurafsky and Martin, 2009,

Section 3.1).

is the study of the rules of word composition from their basic meaning-
bearing elements, known as morphemes.

One usually distinguishes between the main morphemes, called stems (like sing,
dance, etc.), that carry the main meaning, from affixes (like -s, -ing, etc.). Four
main types of composition rules are commonly considered, and we will briefly
review them in the following.

Inflection. Inflectional morphology composes a word stem along with a gram-
matical morpheme. Inflection can mark various syntactic features like case, tense,
mood, genre, or number.

The various inflected forms of race and to race in Table 2.1 show the regular
inflections of nouns and verbs in English: the -s plural marking for nouns, and the
-s present third person, -ed preterit or past participle, and -ing present participle
for verbs. Short gradable adjectives can take a comparative suffix -er (as in cuter)
and a superlative suffix -est (as in cutest).

The regular rules are productive in the sense that new-formed words fall prey to
them, for instance to twit/twits/twitted/twitting. In contrast, there are few irregu-
lar nouns and verbs, but they tend to be very frequent words. For nouns, ox/oxen,
mouse/mice, sheep/sheep are a few examples, and for verbs to sing/sang/sung, to
eat/ate/eaten, or to cut/cut/cut.

Derivation. A combination of a stem with an affix that results in a different
lemma is called a derivation. The obtained word is often of a different category—
e.g. from noun to verb with hospital and hospitalize, and back to noun with hospi-
talization—, but this is not mandatory—e.g. pseudohopitalization. Beyond prefixes
and suffixes,See McCarthy (1982) on the

composition rules for infixed
expletives.

English can employ expletives such as bloody, motherfuckin(g), sod-
ding etc. as infixes: absobloominglutely, Massafriggingchussets.

Compounding. Like derivation, compounding results in a different lemma, but
links several stems: doghouse, bed-time, rock ’n’ roll, bull’s eye, etc. We will not
treat compounding, which in practical processing is mostly a tokenization issue.
Note that there are also finite-state approaches to tokenization (see e.g. Karttunen
et al., 1996, Section 4.1).

Cliticization. A cliticCheck Zwicky (1985) to get a
better idea of what a clitic is.

is a morpheme that acts syntactically like a word, but is
bound to another word like an affix. English has auxiliary verbs that may become
simple clitics: has/’s, have/’ve, had/’d, am/’m, is/’s, are/’re, will/’ll, and would/’d.
Such simple clitics are usually replaced by their expanded forms prior any further
processing by the tokenizer.

The possessive marker ’s can also be seen as a special clitic, only applicable to
nouns.

Orthographic Rules. In addition to morpheme composition rules, a morphologi-
cal description has to take some orthographic rules into account. These are often
caused by phonological issues.

An -s suffix is turned into -es in ibises, waltzes, thrushes, finches, boxes for nouns,
and similarly tosses, waltzes, washes, catches, boxes for verbs. An ending y is turned
into ies in butterflies and tries. Regarding -ed and -ing suffixes, ending consonant
letters are doubled as in begging, while silent ending e’s are deleted as in dancing.

Other examples of orthographic rules include in- prefixes before some conso-

Logic and Linguistic Modelling 17

nants (b, p, m) turning into im-, e.g. impractical, but this does not apply to un-
prefixes (unperturbable).

A Formal Approach Let us define the morphological analysis problem as the
problem, given a single word in isolation, of recovering all its possible structures
and morphological features. The exact formulation of course depends on how
word structures and morphological features are formalized; we will consider a
particular case where a word is decomposed into a sequence of stems, affixes,
and feature structures. For instance, from hospitalized, we want to recover the
sequence hopital+ize+ed[cat=v; mode=ppart]. Note that we also want to recover
the sequence hopital+ize+ed[cat=v; tense=past; mode=ind], i.e. we need to ac-
count for ambiguity.

To solve the morphological analysis problem, if the set of words is finite, we can
store all the forms in a plain dictionary and simply lookup the various entries. A
much more efficient structure is a trie or a directed acyclic graph with the word
structure and morphological information attached to the nodes.

Of course, a finite set approach is linguistically unsatisfying: limits to affix stack-
ing are more of a performance issue, and are easily violated by extreme or playful
uses, like antidisestablishmentarianism or ∗mystery-y-ish-y. See Zwicky and Pullum (1987)

for a discussion of “playful”
morphology.

In order to represent
infinite sets of words, we switch naturally to automata with outputs, i.e. trans-
ducers. We first review some basic results on transducers in Section 2.1.1, before
returning to morphological analysis in Section 2.1.2.

2.0.2 Part-of-Speech Tags

Part-of-speech tags The best source on the Penn
Treebank tagset are the tagging
guidelines used by the annotators
of the Penn Treebank project
(Santorini, 1990). Beware that
in those early guidelines NNP,
NNPS and PRP were noted NP,
NPS and PP.

are refinements of the usual, basic categories like noun or
verb. Different sets of tags (or tagsets) will provide different amounts of mor-
phological or syntactic information about a word; for instance, one can see in
Table 2.1 that, in the Penn Treebank tagset (Marcus et al., 1993), VBP tags verbs
in present tense, indicative mode, except for the third person singular case, which
uses the VBZ tag. Table 2.2 presents the 36 POS tags of the Penn Treebank tagset,
12 further tags for punctuation and currency symbols being omitted.

By POS tagging we refer to the process of associating a POS tag to each word of
a sentence. There are two important differences with the morphological analysis
problem:

1. we only care about the POS tag, not about other morphological information,

2. the tagging of a word depends on its surrounding context: we should take it
into account in order to accurately disambiguate between different possible
tags.

For instance, we have several possible tags for hospitalized, but the tagging is
unambiguous in the context of

He/PRP hospitalized/VBD his/PP$ mother/NN ./.
His/PP$ mother/NN was/VBD hospitalized/VBN on/IN Saturday/NNP ./.
He/PRP ’s/VBZ visiting/VBG his/PP$ hospitalized/JJ mother/NN ./.

Note that syntactic context is not always enough:

∗Gator/NN attacks/VBZ puzzle/NN experts/NNS
Gator/NN attacks/NNS puzzle/VBP experts/NNS

Logic and Linguistic Modelling 18

Table 2.2: The Penn Treebank POS tagset, punctuation excepted (Marcus et al.,
1993).

Tag POS Tag POS
CC Coordinating conjunction PP$ Possessive pronoun
CD Cardinal number RB Adverb
DT Determiner RBR Adverb, comparative
EX Existential there RBS Adverb, superlative
FW Foreign word RP Particle
IN Preposition or subordinating conjunction SYM Symbol
JJ Adjective TO to
JJR Adjective, comparative UH Interjection
JJS Adjective, superlative VB Verb, base form
LS List item marker VBD Verb, past tense
MD Modal VBG Verb, gerund or present participle
NN Noun, singular or mass VBN Verb, past participle
NNP Proper noun, singular VBP Verb, present, non-3rd person singular
NNPS Proper noun, plural VBZ Verb, 3rd person present
NNS Noun, plural WDT Wh-determiner
PDT Predeterminer WP Wh-pronoun
POS Possessive ending WP$ Possessive wh-pronoun
PRP Personal pronoun WRB Wh-adverb

In fact, newspaper headlines—like the previous example, from AOL News, spotted
in a New York Times “On Language” column—can be quite puzzling. Another
example, from The Guardian, spotted on Language Log:

May/NNP axes/VBZ Labour/NNP police/NN beat/NN pledge/NN

where May—Theresa May, British Home Secretary—could also be a MD, axes a
NNS, and each of Labour, police, beat, and pledge VBPs. A last example, from the
BBC news, also spotted on Language Log:

Council/NN hires/VBZ ban/NN bid/NN taxi/NN firm/NN

where hires could also be a NNS, each of ban, bid, and taxi could VBPs, and firm a
JJ. This illustrates the amount of ambiguity that POS taggers have to cope with.

The POS tagging task can in fact be decomposed into two subtasks:

1. training a POS tagger from already-tagged data, for instance the annotated
texts from the Wall Street Journal present in the Penn Treebank corpus, which
represent approximately 50,000 sentences and 1,2 million tokens, and

2. using the tagger on tokenized text.

We describe two finite-state approaches for tackling the POS tagging tasks in Sec-
tion 2.2.

2.1 Finite-State Morphology

2.1.1 Background: Rational Transductions

Whereas the theory of regular languages is typically presented on rational and rec-
ognizable subsets of Σ∗ for Σ a finite alphabet, with Kleene’s Theorem stating their
equality, the landscape of results changes on products of monoids, for instance on

http://www.nytimes.com/2010/01/31/magazine/31FOB-onlanguage-t.html
http://www.guardian.co.uk/uk/2010/jun/29/theresa-may-labour-police-beat
http://languagelog.ldc.upenn.edu/nll/?p=2416
http://en.wikipedia.org/wiki/Theresa_May
http://www.bbc.co.uk/news/uk-scotland-glasgow-west-11032459
http://languagelog.ldc.upenn.edu/nll/?p=2572

Logic and Linguistic Modelling 19

Σ∗×∆∗ for Σ and ∆ two finite alphabets: rational and recognizable sets do not co-
incide. Nevertheless, rational subsets of Σ∗ ×∆∗, aka rational relations, have an
operational presentation through finite-state devices, namely finite transducers.

We only review basic results on rational relations, and briefly To learn more, go attend
MPRI 2-16 or check the
textbooks of Berstel (1979),
Sakarovitch (2009), and Berstel
and Reutenauer (2010).

mention two sub-
classes with applications in computational morphology, namely the length pre-
serving relations and sequential functions. We will also draw parallels in Sec-
tion 2.2.2 between hidden Markov models, which are probabilistic models com-
monly employed in statistical language processing, and recognizable series.

Rational Relations Observe that 〈Σ∗ ×∆∗, ·, (ε, ε)〉with (u, v)·(u′, v′) = (uu′, vv′)
is a monoid, generated by ({ε} ×∆∗) ∪ (Σ∗ × {ε}), but not freely generated (e.g.
(a, b) = (a, ε) ·(ε, b) = (ε, b) ·(a, ε)). We use u:v as a shorthand for (u, v) ∈ Σ∗×∆∗.

The rational subsets of Σ∗ ×∆∗ are defined as per usual: the finite subsets are
rational, and we take their closure by union, concatenation and Kleene star. Note
that subsets of Σ∗ ×∆∗ are relations, hence the name rational relations between
Σ∗ and ∆∗. We can also define rational expressions over Σ∗ × ∆∗ using the
abstract syntax

E ::= ∅ | ε:ε | a:ε | ε:b | E∗ | E1 + E2 | E1 · E2

with a in Σ and b in ∆.
A finite-state transducer is a finite automaton over Σ∗×∆∗: T = 〈Q,Σ∗ ×∆∗, δ, I, F 〉

with Q a finite set of states, δ ⊆ Q×Σ∗×∆∗×Q a finite transition relation, and I
and F the initial and final subsets of Q. The behavior of T is a relation in Σ∗×∆∗

defined by
JT K = {u:v | δ(I, u:v) ∩ F 6= ∅}

and is called a rational transduction. Without loss of generality, we can always
assume our finite transducers to be normalized, i.e. to be over ({ε}×∆∗)∪ (Σ∗×
{ε}).

Exercise 2.1. Show (∗)that the range R(Σ∗) of a rational transduction R is a rational
language.

Exercise 2.2. Show (∗)that if L is a rational language over Σ, then IdL is a rational
transduction over Σ∗ × Σ∗.

Exercise 2.3. Show (∗∗)that rational transductions are closed under inverse and com-
position.

Exercise 2.4. Let (∗∗)R be a relation over Σ∗×∆∗. Show that R is a rational relation
iff it is a rational transduction.

Remark 2.1 (Non-closure). Rational relations are not closed under intersection:

{cn:anbm | m,n ≥ 0} ∩ {cn:ambn | m,n ≥ 0} = {cn:anbn | n ≥ 0}

has a non-rational language {anbn | n ≥ 0} for range. Thus rational relations are
not closed under complement either.

Similarly, R = Id{a,b}∗ · ba:ab · Id{a,b}∗ is a rational relation, but its reflexive
transitive closure R? is not: let L = {(ab)n | n ≥ 0}, then

IdL #R?({a, b}∗) ∩ {anbm | m,n ≥ 0} = {anbn | n ≥ 0}

is not a rational language.

Logic and Linguistic Modelling 20

Sequential Functions The equivalence of deterministic and nondeterministic fi-
nite state automata breaks when entering the realm of rational relations. The
closest substitute for a deterministic transducer is called a sequential transducerHistorically, what we call here

“sequential” was named
“subsequential” by

Schützenberger (1977), but we
follow the more recent practice

initiated by Sakarovitch (2009).

.
Formally, a sequential transducer from Σ to ∆ is a tuple T = 〈Q,Σ,∆, q0, δ, η, ι, ρ〉
where δ : Q × Σ → Q is a partial transition function, η : Q × Σ → ∆∗ a partial
transition output function with the same domain as δ, ι ∈ ∆∗ is an initial output,
and ρ : Q → ∆∗ is a partial final output function. T defines a partial sequential
function JT K : Σ∗ → ∆∗ with

JT K(w) = ι · η(q0, w) · ρ(δ(q0, w))

for all w in Σ∗ for which δ(q0, w) and ρ(δ(q0, w)) are defined, where η(q, ε) = ε
and η(q, wa) = η(q, w) · η(δ(q, w), a) for all w in Σ∗ and a in Σ.

Exercise 2.5. Show(∗∗) that sequential transducers are closed under composition.

Normalization. Let us note T(q) for the sequential transducer with q for initial
state. The longest common prefix of all the outputs from state q can be written
formally as

∧
v∈Σ∗JT(q)K(v). A sequential transducer is normalized if this value is

ε for all q ∈ Q such that dom(JT(q)K) 6= ∅.

Exercise 2.6. Show(∗∗) that any sequential transducer can be normalized.

Minimization. The translation of a sequential function f by a word w in Σ∗ is
defined by

dom(w−1f) = w−1dom(f) w−1f(u) =

(∧
v∈Σ∗

f(wv)

)−1

· f(wu)

for all u in dom(w−1f).

Theorem 2.2 (Raney, 1958). A function f : Σ∗ → ∆∗ is sequential iff the set of
translations {w−1f | w ∈ Σ∗} is finite.

As in the finite automata case where minimal automata are isomorphic with
residual automata, the minimal sequential transducer for a sequential function f
is defined as the translation transducer 〈Q,Σ,∆, q0, δ, η, ι, ρ〉 where

• Q = {w−1f | w ∈ Σ∗} (which is finite according to Theorem 2.2),

• q0 = ε−1f ,

• ι =
∧
v∈Σ∗ f(v) if dom(f) 6= ∅ and ι = ε otherwise,

• δ(w−1, a) = (wa)−1f ,

• η(w−1f, a) =
∧
v∈Σ∗(w

−1f)(av) if dom((wa)−1f) 6= ∅ and η(w−1f, a) = ε
otherwise, and

• ρ(w−1f) = (w−1f)(ε) if ε ∈ dom(w−1f), and is otherwise undefined.

Logic and Linguistic Modelling 21

Recognizable Series The idea of relations in Σ∗ × ∆∗ can be extended to map
words of Σ∗ with values in a semiring K.

A finite weighted automaton (or automaton with multiplicity, or K-automaton)
in a semiring K is a generalization of a finite automaton: A = 〈Q,Σ,K, δ, I, F 〉
where δ ⊆ Q×Σ×K×Q is a weighted transition relation, and I and F are maps
from Q to K instead of subsets of Q. A run

ρ = q0
a1,k1−−−→ q1

a2,k2−−−→ q2 · · · qn−1
an,kn−−−→ qn

defines a monomial JρK = kw where w = a1 · · · an is the word label of ρ and
k = I(q0)k1 · · · knF (qn) its multiplicity. The behavior JAK of A is the sum of the
monomials for all runs in A: it is a formal power series on Σ∗ with coefficients in
K, i.e. a map Σ∗ → K. The coefficient of a word w in JAK is denoted 〈JAK, w〉 and
is the sum of the multiplicities of all the runs with w for word label:

〈JAK, a1 · · · an〉 =
∑

q0
a1,k1−−−→q1··· qn−1

an,kn−−−→qn

I(q0)k1 · · · knF (qn) .

A matrix K-representation for A is 〈I, µ, F 〉, where I is seen as a row matrix in
K1×Q, the morphism µ : Σ∗ → KQ×Q is defined by µ(a)(q, q′) = k iff (q, a, k, q′) ∈
δ, and F is seen as a column matrix in KQ×1. Then There is a notion of K-rational

series, which coincide with the
K-recognizable ones
(Schützenberger, 1961).

〈JAK, w〉 = Iµ(w)F .

A series is K-recognizable if there exists a K-representation for it.
The support of a series JAK is supp(JAK) = {w ∈ Σ∗ | 〈JAK, w〉 6= 0K}. This

corresponds to the language of the underlying automaton of A.

Exercise 2.7 (Hadamard Product). Let K be a commutative semiring. Show (∗∗)that
K-recognizable series are closed under product: given two K-recognizable series
s and s′, show that s � s′ with 〈s� s′, w〉 = 〈s, w〉 � 〈s′, w〉 for all w in Σ∗ is
K-recognizable. What can you tell about the support of s� s′?

Exercise 2.8 (Rational relations as series). (∗∗)Given a relation R in Σ∗ ×∆∗, define
the series JRK by 〈JRK, w〉 = R(w) for all w in Σ∗. See Berstel (1979, Corollary

III.7.2) or Sakarovitch (2009,
Theorem IV.1.7).

Show that R is rational iff JRK is
a Rat(∆∗)-recognizable series over Σ.

2.1.2 Morphological Analysis

Let us return to the problem of morphological analysis. We assume that we have
at our disposal a lexicon of all the possible stems, affixes, and feature structures,
and want to model how these morphemes can be combined.

Actually, we use in our examples POS tags as shorthand notations for both mor-
phological features and inflectional affixes. For instance, the morphological anal-
ysis of hospitalized will rather be hospital−ize[−vbd], where the POS tag VBG,
noted [−vbd], is a shorthand notation for both the inflectional affix -ed and the
features [cat=v; tense=past; mode=ind]. Accordingly, our lexicon gathers stems,
derivational affixes, and POS tags.

As we will see, using finite-state methods solely, we can

1. model the various possible morpheme associations, and their various possi-
ble orderings; this is called morphotactics (e.g. [−vbd] can follow any verb
stem, but the suffix -ation should be applied to verbs ending with -ize as in
hospitalization),

Logic and Linguistic Modelling 22

n

v−ize

−ation−er

ε

ε

ε

[−nn]

[−nns]

[−vb]

[−vbz]
[−vbd][−vbn]

[−vbg]

Figure 2.1: A finite state automaton for some morphotactics applicable to nouns
ending with -al.

2. implement the morphological rules (e.g. [−vbd] translates into -ed for regu-
lar verbs, but behaves differently for irregular ones) and orthographic rules
(e.g. hospitalized and not ∗hospitalizeed).

Affix Selection and Morphotactics The issue of finite-state morphotactics is
rather straightforward from a formal language viewpoint: the various orderings
can be stored in a simple finite state automaton over the lexicon as alphabet. This
automaton can then be turned into one over the Latin alphabet plus POS tags and
a morpheme boundary marker “−”—which we will denote by Σ from now on—,
and further minimized.

The automaton of Figure 2.1 presents morphotactics that derive for instance
hospitalizations (hospital−ize−ation[−nns]) or hospitalized (hospital−ize[−vbd]).

What is the linguistic value of such a finite automaton representation?

• For one thing, it merely stores information about the possible combinations
without providing any rationale. Consider for instance the rules of adjec-
tive suffixing with the comparative -er: the general rule is that adjectives
of two syllables or less can use it, like sadder (produced by sad[−jjr]) or
nicer (nice[−jjr]), but not the adjectives with more than two syllables, like
∗curiouser or ∗eleganter (see Pesetsky, 1985, for a related discussion). Con-
trast these affixation constraints with those of un- on adjectives: we can have
unwell, unhappy, or uncheerful, but not ∗unill, ∗unsad or ∗unsorrowful. The
explanation is that un- can only apply to an adjective with a positive connota-
tion (usually attributed to Zimmer, 1964). Such phonological and semantic
explanations are absent from the automaton model.

• Another issue comes from duplication of some parts of the automaton (Kart-
tunen, 1983; Sproat, 1992). For example, contrast enjoyable (en−joy−able)
and enrichable (en−rich−able) with the incorrect ∗joyable and ∗richable: in
these examples, the -able suffix is only acceptable if the en- prefix is present,
resulting in duplication in the automaton in order to record whether en-
was added or not. This seems to indicate that the finite state model is not
perfectly adequate; for instance a more compact representation would be
obtained through pushdown automata.

Logic and Linguistic Modelling 23

?:? ?:?

g:g −:g e:e

Figure 2.2: A transducer for rewrite rule (2.2). Question marks ?:? stand for a:a
for all a ∈ Σ.

Morphological and Orthographic Rules A natural way to represent morpho-
logical and orthographic rules is to use string rewrite systems. The formation of
begged out of the stem beg and the affix -ed can be explained as an application of
the morphological rule

[−vbn]→ −ed (2.1)

followed by the orthographic rule

g−e→ gge (2.2)

to beg[−vbn]. The one-step derivation relation R
=⇒ defined by a finite string rewrite

system R is a rational relation, which can also be expressed as IdΣ∗ ·(
∑

u→v∈R u:v)·
IdΣ∗ . For instance this corresponds to

IdΣ∗ · g−e:gge · IdΣ∗ (2.3)

for the one-rule system consisting of rule (2.2), which can be implemented by a
finite transducer, as the one of Figure 2.2 for (2.2).

The remainder of this section is dedicated to the translation from string rewrit-
ing formalisms into finite state transducers: Section 2.1.3 presents a formalism of
cascaded phonological rules to this end. See Koskenniemi and Church

(1988) for another formalism of
parallel rewrites.

2.1.3 Phonological Rules

Chomsky and Halle (1968) introduced a particular notation for the rewrite rules
used in phonology: the general form of a phonological rule is

α→ β / λ ρ (2.4)

where α, β, λ, and ρ are rational languages over Σ (for instance represented by
rational expressions). Such a rule stands roughly for “rewrite α into β in the
context of λ, ρ”, i.e. for the (generally infinite) string rewrite system

{x u y → x v y | (x, u, v, y) ∈ λ× α× β × ρ} (2.5)

—but not quite, as we will see later when considering the implicit restrictions on
derivations assumed by phonologists. The same formalism can also be employed
for the treatment of morphological and orthographic rules.

Example 2.3. Let us focus for instance on past participle inflection: (2.2) can be
restated with this notation as

− → g / g e . (2.6)

Logic and Linguistic Modelling 24

Keeping with past participle composition, we would also need

− → ε / (2.7)

in order to obtain faxed from fax−ed (contexts are left blank for the rational ex-
pression ε), and

e− → ε / e (2.8)

in order to obtain danced from dance−ed. On the other hand, the formation of
sung for to sing requires the addition of

sing[−vbn]→ sung / . (2.9)

Observe that we should be able to order our rules if we want to avoid spurious
rewrites, like ∗beged or ∗singged. In our case, we should apply (2.9), then (2.1),
then (2.6) and (2.8), and (2.7) last. Furthermore, we should make the rewrites
obligatory: if (2.9) or (2.6) can be applied, then they should be. But not all rules
should be obligatory: for instance, with

prove[−vbn]→ proven / (2.10)

both proven and proved are accepted as past participles of to prove, thus (2.10)
should be optional. Adding some derivational morphology to the mix allows to
witness another issue with rule application:

[−vbg]→ −ing / (2.11)

e− → ε / i (2.12)

could model gerund inflection in dancing. In order to obtain passivizing, we need
to apply (2.11) once to passive−ize[−vbg], and (2.12) on all the applicable factors
of passive−ize−ing: we are actually applying the transitive closure of the one-step
derivation relation defined by rule (2.12).

To sum up, a phonological rule system consists of a finite sequence P =
r1 · · · rn of phonological rules ri, each rule ri defining a rewrite relation JriK over
Σ∗ × Σ∗, such that the behavior of P is the composition JPK = Jr1K # · · · # JrnK.

Restrictions on Rewrites In the optional case, the rewrite relation defined by
a phonological rule of form (2.4) seems to be exactly the derivation relation of
the system (2.5). General string rewrite systems are already Turing-complete in
the finite case (in fact, three rules are enough to yield undecidable accessibility
(Matiyasevicha and Sénizergues, 2005)A related open problem is to

decide termination of one-rule
string rewrite systems, see

McNaughton (1995); Sénizergues
(1996) for partial solutions.

), thus there is no hope to be able to com-
pute the effect of a phonological rule without further restricting derivations.

Fortunately, linguists give a particular semantics to rewrites: after the applica-
tion of a rule like (2.4), the newly written word from β cannot be later rewritten.
Moreover, rewrites are constrained to occur left-to-right (or right-to-left or simul-
taneously, but we will only consider the first case).

Formally, given a phonological rule r = α → β / λ ρ, a derivation w0
r
=⇒

w1
r
=⇒ · · · r=⇒ wn is such that for each 0 ≤ i < n, wi = xiuiyi and wi+1 = xiviyi for

some (xi, ui, vi, yi) ∈ (Σ∗ · λ)× α× β × (ρ · Σ∗). A derivation is left-to-right if for
each 0 ≤ i < n− 1, |xivi| ≤ |xi+1|; we only consider left-to-right derivations in the
following. It is furthermore

Logic and Linguistic Modelling 25

leftmost if for each 0 ≤ i < n and for all (z, z′) in Σ∗ × Σ+ such that zz′ = xiui
and either i = 0, or i > 0 and |z| ≥ |xi−1vi−1|, (z, z′yi) 6∈ (Σ∗λα)× (ρΣ∗),

irreducible if either n = 0 and w0 6∈ Σ∗λαρΣ∗, or n > 0 and for all z, z′ in Σ∗

with yn−1 = zz′, (xn−1vn−1z, z
′) 6∈ (Σ∗λα)× (ρΣ∗).

Given a phonological rule r, its behavior JrK is a relation over Σ∗ defined by
w JrK w′ iff

• there exists a left-to-right derivation w = w0
r
=⇒ w1

r
=⇒ · · · r=⇒ wn = w′ if r is

optional, or iff

• there exists a left-to-right, leftmost, and irreducible derivation w = w0
r
=⇒

w1
r
=⇒ · · · r=⇒ wn = w′ if r is obligatory.

Note that the definition of left-to-right derivations justifies the context notation
in phonological rules: using directly rules of form λαρ→ λβρ in left-to-right mode
would not allow to later rewrite the factor matched by ρ.

Phonological Rules as Rational Relations We show in this section that the be-
havior of a phonological rule r is a rational relation. We only consider the simpler
case of optional rules; see Kaplan and Kay (1994) and Mohri and Sproat (1996)
for the obligatory case.

First observe that, in a left-to-right derivation w0
r
=⇒ w1

r
=⇒ · · · r=⇒ wn, since each

of the n rewrites has to occur to the right of the previous one, we can decompose
each wi as

w0 = z0u0z1u1z2 · · · zn−2un−1zn−1

w1 = z0v0z1u1z2 · · · zn−2un−1zn−1

...

wn = z0v0z1v1z2 · · · zn−2vn−1zn−1

verifying

(z0v0z1 · · · zi−1, ui, vi, zi · · · zn−2un−1zn−1) ∈ (Σ∗ · λ)× α× β × (ρ · Σ∗) (2.13)

for each 0 ≤ i < n.
The second observation is that right contexts can be checked againstw0, whereas

left contexts should be checked against wn. Hence a decomposition of JrK as the
composition of three relations

JrK = rightρ # replaceα,β # leftλ (2.14)

that respectively check the right contexts, perform the rewrites, and check the left
contexts.

It remains to implements these relations as rational transductions. Let us intro-
duce a fresh delimiter symbol # and the projection π# : (Σ] {#})∗ → Σ∗. The
relation rightρ nondeterministically introduces #s before factors in ρ. The relation
replaceα,β replaces a factor u# in α# by a factor #v in #β. The relation leftλ
erases #s after factors in π−1

(λ).

Exercise 2.9. Propose (∗∗∗)transducer constructions for each of rightρ, replaceα,β, and
leftλ.

Logic and Linguistic Modelling 26

Exercise 2.10. Given(∗∗∗) a rational relation R in Σ∗ ×∆∗, build a phonological rule
system P of optional rules such that, for all (w,w′) in Σ∗ × ∆∗, w JPK $w′$ iff
w R w′, where $ is an end-of-string marker neither in Σ nor in ∆.

Deduce that the morphological analysis problem for phonological rule sys-
tems, i.e. given a phonological rule system P of optional rules and a word w′, to
decide whether there exists w such that w JPK w′, is PSPACE-hard.

2.2 Part-of-Speech Tagging

Recall that the POS tagging task consists in assigning the appropriate part-of-
speech tag to a word in the context of its sentence. The program that performs
this task, the POS tagger, can be learned from an annotated corpus like the Penn
Treebank—called supervised learning.

Formally, we are given a finite tagset Θ and an annotated corpus. For bench-
marking purposes, the corpus is typically partitioned into

• a training corpus, on which the tagger is trained,

• optionally a development corpus, used to tune the tagger training algo-
rithm, and

• a test corpus, on which the performance of the tagger is measured.

Thus the training corpus is made of sequences of (word, POS tag) pairs in Σ ×
Θ, where Σ is the set of words in the training corpus. A consequence of this
subdivision is that Σ is likely to be a strict subset of the set of words in the entire
corpus; in particular, there are bound to be unknown words in the test corpus.
For instance, Brants (2000) reports that 2.9% of the words in his 10%-sized test set
from the Penn Treebank corpus were unknown; unsurprisingly, tagging accuracies
tend to be significantly lower for unknown words.

The accuracy of taggers trained on a corpus similar enough to the test set, for
instance using a partitioned corpus, is quite high: Brill (1992) reports tagging ac-
curacy scores around 95% using his rule-based tagger on the Brown corpus, while
Brants (2000) reports an overall 96.7% accuracy on the WSJ parts of the Penn
Treebank with his trigram-HMM tagger (these values are not directly comparable
due to differing tagsets and corpora). One has to contrast such numbers with the
mean inter-annotator agreement rate: Marcus et al. (1993) report that on average
two linguists agree over 96.6% of the tags. Hence the accuracy scores of taggers
trained on a corpus similar to the test set is pretty much optimal!

2.2.1 Rule-Based Tagging

The most famous rule-based POS tagging technique is due to Brill (1992).This section is partly based on
Roche and Schabes (1995).

He
introduced a three-parts technique comprising:

1. a lexical tagger, which associates a unique POS tag to each word from an an-
notated training corpus. This lexical tagger simply associates to each known
word its most probable tag according to the training corpus annotation, i.e.
a unigram maximum likelihood estimation;

2. an unknown word tagger, which attempts to tag unknown words based on
suffix or capitalization features. It works like the contextual tagger, using

Logic and Linguistic Modelling 27

the presence of a capital letter and bounded sized suffixes in its rules: for
instance, a -able suffix usually denotes an adjective;

3. a contextual tagger, on which we focus here. It consists of a cascade of
contextual rules As in Section 2.1.3, the rewrite

semantics of these rules are not
quite the usual ones.

of form uav → ubv for a, b in Θ and uv in Θ≤k for some
predefined k, which correct tag assignments based on the u, v contexts. We
present in this section how such rules are learned from the training or the
development corpus, and how they can be compiled into sequential trans-
ducers.

Learning Contextual Rules

We start with an example by Roche and Schabes (1995): Let us suppose the fol-
lowing sentences were tagged by the lexical tagger

∗Chapman/NNP killed/VBN John/NNP Lennon/NNP
∗John/NNP Lennon/NNP was/VBD shot/VBD by/IN Chapman/NNP
He/PRP witnessed/VBD Lennon/NNP killed/VBN by/IN Chapman/NNP

with mistakes in the first two sentences: killed should be tagged as a past tense
form, and shot as a past participle form.

The contextual tagger learns contextual rules of form uav → ubv for a, b in Θ
and uv in Θ≤k for some predefined k; in practice, k = 2 or k = 3. Brill (1992) and Roche and

Schabes (1995) use slightly
different templates than the one
parametrized by k we present
here.

The learning
algorithm simply consists in comparing the effect of all possible contextual rules
on the tagging accuracy, and keeping the one with the best results. The learning
phase always terminate since a rule is kept only if it actually improves tagging
accuracy, and there is only a finite number of possible pairs in Σ × Θ for each
token of the training corpus. In fact, Brill (1992) reports that 71 rules are enough
when learning on 5% of the Brown corpus; Roche and Schabes (1995) obtain 280
rules on 90% of the Brown corpus.

For instance, a first contextual rule could be

nnp vbn→ nnp vbd (2.15)

resulting in a new tagging

Chapman/NNP killed/VBD John/NNP Lennon/NNP
∗John/NNP Lennon/NNP was/VBD shot/VBD by/IN Chapman/NNP
∗He/PRP witnessed/VBD Lennon/NNP killed/VBD by/IN Chapman/NNP

A second contextual rule could be

vbd in→ vbn in (2.16)

resulting in the correct tagging

Chapman/NNP killed/VBD John/NNP Lennon/NNP
John/NNP Lennon/NNP was/VBD shot/VBN by/IN Chapman/NNP
He/PRP witnessed/VBD Lennon/NNP killed/VBN by/IN Chapman/NNP

Logic and Linguistic Modelling 28

Contextual Rules as Sequential Functions

As stated before, our goal is to compile the entire sequence of contextual rules
learned from a corpus into a single sequential function.

Let us first formalize the semantics of Brill’s contextual rules. Let C = r1r2 . . . rn
be a finite sequence of rewrite rules in Θ∗×Θ∗. In practice the rules constructed in
Brill’s contextual tagger are length-preserving and modify a single letter, but this
is not a useful consideration from a theoretical viewpoint. Each rule ri = ui → vi
defines a leftmost rewrite relation ri=⇒

lm
defined by

w
ri=⇒
lm

w′ iff ∃x, y ∈ Σ∗, w = xuiy ∧ w′ = xviy ∧ (∀z, z′ ∈ Σ∗, w 6= zuiz
′ ∨ x ≤pref z)

(2.17)
Note that the domain of ri=⇒

lm
is Θ∗ · ui ·Θ∗. The behavior of a single rule is then

JriK =
ri=⇒
lm
∪ IdΘ∗·ui·Θ∗ , (2.18)

i.e. it applies ri=⇒
lm

on Θ∗ ·ui ·Θ∗ and the identity on its complement Θ∗ · ui ·Θ∗. The

behavior of C is then the composition

JCK = Jr1K # Jr2K # · · · # JrnK . (2.19)

A naive implementation of C would try to match each ui at every position of the
input string w in Σ∗, resulting in an overall complexity of O(|w| ·

∑
i |ui|). How-

ever, one often faces the problem of tagging a set of sentences {w1, . . . , wm}, which
yields O((

∑
i |ui|) · (

∑
j |wj |)). As shown in Roche and Schabes’ experiments, com-

piling C into a single sequential transducer T results in practice in huge savings,
with overall complexities in O(|w|+ |T |) and O(|T |+

∑
j |wj |) respectively.

By (2.19) and the closure of sequential functions under composition, it suffices
to prove that JriK is a sequential function for each i in order to prove that JCK is
a sequential function. Since each JriK is a rational function, being the union of
two rational functions over disjoint domains, our efforts are not doomed from the
start.

Sequential Transducer of a Rule Intuitively, the sequential transducer for JriK
is related to the string matching automatonSee (Simon, 1994; Crochemore

and Hancart, 1997).
for ui, i.e. the automaton for the

language Θ∗ui. This insight yields a direct construction of the minimal sequential
transducer of a contextual rule, with |ui| + 1 states in most cases. Let us recall a
few definitions:

Definition 2.4 (Overlap, Border). The overlap ov(u, v) of two words u and v is
the longest suffix of u which is simultaneously a prefix of v:

u

v

ov(u, v)

A word u is a border of a word v if it is both a prefix and a suffix of v, i.e. if
there exist v1, v2 in Θ∗ such that v = uv1 = v2u. For v 6= ε, the longest border of v
different from v itself is denoted bord(v).

Logic and Linguistic Modelling 29

ε

ε

a

ε

ab

ε

aba

a

abab

ab

ababb

ε

b:b

a:a

a:a

b:b

b:b

a:ε

a:aa

b:ε b:bbb

a:ab

Θ:Θ

Figure 2.3: The sequential transducer constructed for ababb→ abbbb.

v
v2

v1
v

bord(v)

Exercise 2.11. Show (∗)that for all u, v in Θ∗ and a in Θ,

ov(ua, v) =

{
ov(u, v) · a if ov(u, v) · a ≤pref v

bord(ov(u, v) · a) otherwise.
(2.20)

Definition 2.5 (Transducer of a Contextual Rule). The sequential transducer Tr
associated with a contextual rule r = u→ v with u 6= ε is defined as

Tr = 〈Pref(u),Θ,Θ, ε, δ, η, ε, ρ〉

with the set of prefixes of u as state set, ε as initial state and initial output, and for
all a in Θ and w in Pref(u),

δ(w, a) =

wa if wa ≤pref u

w if w = u

bord(wa) otherwise

ρ(w) =

ε if w ≤pref (u ∧ v)

(u ∧ v)−1 · w if (u ∧ v) <pref w <pref u

ε otherwise, i.e. if w = u

η(w, a) =

a if wa ≤pref (u ∧ v)

ε if (u ∧ v) <pref wa <pref u

(u ∧ v)−1 · v if wa = u

a if w = u

ρ(w)a · ρ(bord(wa))−1 otherwise.

For instance, the sequential transducer for the rule ababb → abbbb is shown in
Figure 2.3 (one can check that ababb ∧ abbbb = ab, bord(b) = ε, bord(aa) = a,
bord(abb) = ε, bord(abaa) = a, and bord(ababa) = aba).

Proposition 2.6. Let r = u→ v with u 6= ε. Then JTrK = JrK.

Proof. Let us first consider the case of input words in Θ∗ · u ·Θ∗:
Claim 2.6.1. For all w in Θ∗ · u ·Θ∗,

δ(ε, w) = ov(w, u) η(ε, w) = w · ρ(ov(w, u))−1 .

Logic and Linguistic Modelling 30

Proof of Claim 2.6.1. By induction on w: since u 6= ε, the base case is w = ε with

δ(ε, ε) = ε = ov(ε, u) η(ε, ε) = ε = ε · ε−1 = ε · ρ(ε)−1 .

For the induction step, we consider wa in Θ∗ · u ·Θ∗ for some w in Θ∗ and a in Θ,
and we get

δ(ε, wa) = δ(δ(ε, w), a) (by def.)

= δ(ov(w, u), a) (by ind. hyp.)

= ov(wa, u) (by (2.20))

η(ε, wa) = η(ε, w) · η(δ(ε, w), a) (by def.)

= w · ρ(δ(ε, w))−1 · η(δ(ε, w), a) (by ind. hyp.)

= w · ρ(w′)−1 · η(w′, a) ; (by setting w′ = δ(ε, w))

we need to do a case analysis for this last equation:

Case w′a 6≤pref u Then η(w′, a) = ρ(w′) · a · ρ(border(w′a))−1, which yields

η(ε, wa) = w · ρ(w′)−1 · ρ(w′) · a · ρ(δ(ε, wa))−1

= wa · ρ(δ(ε, wa))−1 .

Case w′a <pref u Then δ(ε, wa) = w′a, and we need to further distinguish be-
tween several cases:

w′a ≤pref (u ∧ v) then ρ(w′) = ε, η(w′, a) = a, and ρ(w′a) = ε, thus

η(ε, wa) = wa = wa · ε−1 = wa · ρ(w′a)−1 ,

w′ = (u ∧ v) then ρ(w′) = ε, η(w′, a) = ε, and ρ(w′a) = (u∧v)−1 ·w′a = a,
thus

η(ε, wa) = w = wa · a−1 = wa · ρ(w′a)−1 ,

(u ∧ v) <pref w
′ then ρ(w′) = (u ∧ v)−1 · w′, η(w′, a) = ε, and ρ(w′a) =

(u ∧ v)−1 · w′a, thus

η(ε, wa) = w · ((u ∧ v)−1 · w′)−1 = wa · a−1 · ((u ∧ v)−1 · w′)−1

= wa · ρ(w′a)−1 . [2.6.1]

Claim 2.6.1 yields that JTrK coincides with JrK on words in with Θ∗ · u ·Θ∗, i.e.
is the identity over Θ∗ · u ·Θ∗. Then, since u 6= ε, a word in Θ∗ · u · Θ∗ can be
written as waw′ with w in Θ∗ · u ·Θ∗, a in Θ with wa in Θ∗ · u, and w′ in Θ∗. Let
u = u′a; Claim 2.6.1 implies that

δ(ε, w) = u′ η(ε, w) = w · ρ(u′)−1 .

Thus, by definition of Tr, δ(ε, wa) = u′a = u and

η(ε, wa) = η(ε, w) · η(u′, a) = w · ρ(u′)−1 · (u ∧ v)−1 · v ;

if (u ∧ v) <pref u
′

η(ε, wa) = w · ((u ∧ v)−1 · u′)−1 · (u ∧ v)−1 · v = w · u′−1 · v = wa · u−1 · v ;

Logic and Linguistic Modelling 31

otherwise i.e. if u′ = (u ∧ v):

η(ε, wa) = w · u′−1 · v = wa · u−1 · v .

Thus in all cases JTrK(wa) = JrK(wa), and since Tr starting in state u (i.e. Tr(u))
implements the identity over Θ∗, we have more generally JTrK = JrK.

Lemma 2.7. Let r = u→ v. Then Tr is normalized.

Proof. Let w ∈ Prefix(u) be a state of Tr; we need to show that
∧

JTr(w)K(Θ∗) = ε.

If (u ∧ v) <pref w <pref u let u′ = w−1u ∈ Θ+, and consider the two outputs

JTr(w)K(u′) = η(w, u′)ρ(u) = (u ∧ v)−1v JTr(w)K(ε) = ρ(w) = (u ∧ v)−1w .

Since (u∧v) <pref u we can write u as (u∧v)au′′u′, and either v = (u∧v)bv′

or v = u∧ v, for some a 6= b in Θ and u′′, v′ in Θ∗; this yields w = (u∧ v)au′′

and thus JTr(w)K(u′) ∧ JTr(w)K(ε) = ε.

otherwise ρ(w) = ε, which yields the lemma.

Proposition 2.8. Let r = u → v with u 6= ε and u 6= v. Then Tr is the minimal
sequential transducer for JrK.

Proof. Let w <pref w
′ be two different states in Prefix(u); we proceed to prove that

Jw−1TrK 6= Jw′−1TrK, hence that no two states of Tr can be merged. By Lemma 2.7
it suffices to prove that JTr(w)K 6= JTr(w′)K, thus to exhibit some x ∈ Θ∗ such that
JTr(w)K(x) 6= JTr(w′)K(x). We perform a case analysis:

if w′ ≤pref (u ∧ v) then w <pref (u∧ v) thus JTr(w)K(x) = x for all x 6∈ w−1 ·Θ∗ ·
u ·Θ∗; consider

JTr(w)K(w′−1u) = w′−1u 6= w′−1v = JTr(w′)K(w′−1u) ;

if w ≤pref (u ∧ v) and w′ = u then JTr(w′)K(x) = x for all x and we consider

JTr(w)K(w−1u) = w−1v 6= w−1v = JTr(w′)K(w−1u) ;

otherwise that is if w ≤pref (u ∧ v) and (u ∧ v) <pref w
′ <pref u, or (u ∧ v) <pref

w <pref w
′ ≤pref u, we have ρ(w) 6= ρ(w′) thus

JTr(w)K(ε) 6= JTr(w′)K(ε) .

Exercise 2.12. Define (∗)the minimal sequential transducers for r = u → v in the
cases u = ε and u = v.

2.2.2 HMM Tagging

Other approaches to the POS tagging problem rely on probabilistic models to find
an appropriate tag sequence given a word sequence. A simple formalism to this
end is that of hidden Markov models (HMM), where the observed sequences of
symbols (here the words) depend on hidden sequences of states (here the tags)
that spanned them.

We need to define a notion of probabilities for sequences. Consider n variables
Y1, . . . , Yn with values in Σ, and a sequence w of n words in Σ. Variable Yi is the

Logic and Linguistic Modelling 32

act of observing the ith word in the sequence of n words. The probability of a
particular sequence w = a1 · · · an is then

p(a1 · · · an)

= Pr(Y1 = a1, Y2 = a2, . . . , Yn = an)

= Pr(Y1 = a1) · Pr(Y2 = a2|Y1 = a1) · · ·Pr(Yn = an|Y1 = a1, . . . , Yn−1 = an−1)

=

n∏
i=1

Pr(Yi = ai|Y1 = a1, . . . , Yi−1 = ai−1) .

Add an extra variable Y0 and a “beginning-of-sequence” marker $ with Pr(Y0 =
$) = 1; we obtain a simpler expression

p(a1 · · · an) =
n∏
i=1

p(ai|$a1 · · · ai−1) . (2.21)

Hidden Markov model provide a means to define the probability of an observed
sequence as the result of another, hidden, sequence of states.

Given a set S, Disc(S) denotes the set of discrete probability distributions over
S, i.e. {p : S → [0, 1] |

∑
e∈S p(e) = 1}.

Definition 2.9 (HMM). A hidden Markov model is a tuple H = 〈Q,Σ, S, T,E〉
where Q is a finite set of states, Σ a finite output alphabet, S ∈ Disc(Q) the
starting state probabilities, T : Q → Disc(Q) the transition probabilities, and
E : Q→ Disc(Σ) the emission probabilities.

The entries of S represent the conditional probability S(q) = p(q|$) of starting
a sequence of states in state q, T the conditional probability T (q)(q′) = p(q′|q)
of moving to q′ when in q, and E the conditional probability E(q)(a) = p(a|q) of
emitting a when in q. The probability for a run ρ = q1 · · · qn to occur is defined to
be

p(ρ) =
n∏
i=1

p(qi|$q1 · · · qi−1) =
n∏
i=1

p(qi|qi−1) = S(q1) ·
n∏
i=2

T (qi−1)(qi)

(with q0 = $), i.e. the conditional probability distribution of the next state depends
only upon the current state—the Markov property—, while the probability for this
run to emit w = a1 · · · an is defined to depend solely on the currently visited states,

p(w|ρ) =

n∏
i=1

p(ai|qi) =

n∏
i=1

E(qi)(ai) ;

and the probability of w is thus

p(w) =
∑
ρ∈Qn

p(w|ρ) · p(ρ) .

Observe that a HMM defines a discrete probability distribution over Σn for all
n:

∀n,
∑
w∈Σn

p(w) = 1 . (2.22)

Logic and Linguistic Modelling 33

Example 2.10. Consider the HMM defined by Q = {q1, q2, q3}, Σ = {a, b}, and

S =
(

0.5 0.5 0
)

T =

 1 0 0
0 0.5 0.5
0 0 1

 E =

 1 0
1 0

0.5 0.5

 .

It starts with probability 0.5 in either q1 or q2. Supposing it starts in q2, it remains
there with probability 0.5 and emits a, or moves to q3 and emits a or b. The run q2q2

has probability p(q2q2) = 0.25 and emits aa with probability p(aa|q2q2) = 1. There
are other runs that emit aa, for instance q3q3 is such that p(aa|q3q3) = 0.25, but
p(q3q3) = 0, and in fact there are only two other runs with non-null probability that
emit aa: p(q1q1) = 0.5 with p(aa|q1q1) = 1 and p(q2q3) = 0.25 with p(aa|q2q3) =
0.5, thus we have p(aa) = 0.875.

Constructing HMMs from N -Grams

As we have seen in (2.21), the probability of a given sequence is a complex ex-
pression that involves the full history of the sequence at each step. The idea of
N -grams is to approximate this full history by considering only the last N − 1
events as conditioning the current one, i.e. by replacing (2.21) with

p(a1 · · · an) ≈
n∏
i−1

p(ai|ai−N+1 · · · ai−1) , (2.23)

(with the convention that aj = $ is a dummy observation for each j ≤ 0). In the
particular cases of N = 1, N = 2, and N = 3, N -grams are called unigrams,
bigrams, and trigrams repectively.

Maximum Likelihood Estimation Suppose now that we have an annotated cor-
pus made of sequences of (word, POS tag) pairs in Σ × Θ. Then we can estimate
the probability of a given tag t appearing after N − 1 other tags t1 · · · tN−1 by
counting the number of occurrences C(t1 · · · tN−1t) of the sequence t1 · · · tN−1t
and dividing by the number of occurrences of C(t1 · · · tN−1) of t1 · · · tN−1:

p(t|t1 · · · tN−1) =
C(t1 · · · tN−1t)

C(t1 · · · tN−1)
(2.24)

(assuming we pad our corpus sequences with dummy $s both on the left and on
the right); this is called a maximum likelihood estimation.

We can build a HMM from such estimations by setting Q = (Θ]{$})N , i.e. using
states of form q = t1 · · · tN , and computing the next state probabilities as

p(t′1 · · · t′N |t1 · · · tN) =

{
p(t′N |t2 · · · tN) if ∀1 ≤ i ≤ N − 1, t′i = ti+1

0 otherwise
(2.25)

the initial state probabilities being the particular case p(t′1 · · · t′N |$N), and the emis-
sion probabilities as

p(a|t1 · · · tN) =
1

|Σ|N−1

∑
a1···aN−1∈ΣN−1

C((a1, t1) · · · (a, tN))∑
aN∈ΣC((a1, t1) · · · (aN , tN))

(2.26)

estimated from occurrences of sequences of pairs. One can then reconstruct a
sequence of tags from a sequence of states by projection on the N th component.

Logic and Linguistic Modelling 34

SmoothingThe statistical distribution of
words in corpora can be

approximated by Zipf’s law (see
Manning and Schütze, 1999,

Section 1.4.3).

Maximum likelihood estimations are accurate if there are enough
occurrences in the training corpus. Nevertheless, some valid sequences of tags
or of pairs of tags and words will invariably be missing, and be assigned a zero
probability. Furthermore, the estimations are also unreliable for observations with
low occurrence counts.

The idea of smoothingSee Jurafsky and Martin (2009,
Section 4.5) and Manning and

Schütze (1999, Chapter 6).

is to compensate data sparseness by moving some of the
probability mass from the higher counts towards the lower and null ones. This
can be performed in rather crude ways (for instance add 1 to the counts on the
numerators of (2.24) and (2.26) and normalize, called Laplace smoothing), or
more involved ones that take into account the probability of observations with a
single occurrence (Good-Turing discounting) or the probabilities of (N−1)-grams
(interpolation and backoff). A common side-effect of all these techniques is that
there are no zero-probability values left in the constructed HMMs.

HMM Decoding

Recall the POS tagging problem: find the best possible sequence of tags t1 · · · tn,
given a sequence of words w = a1 · · · an. Let us assume we are given a HMM
model where we can reconstruct the sequence t1 · · · tn from the most probable
execution ρ = q1 · · · qn that emits w, i.e. we want to compute

ρ = argmax
ρ′∈Qn

p(ρ′|w) , (2.27)

which is also known as HMM decoding. By Bayes’ inversion rule, this is the same
as

ρ = argmax
ρ′∈Qn

p(w|ρ′) p(ρ′)
p(w)

= argmax
ρ′∈Qn

p(w|ρ′) p(ρ′) . (2.28)

The usual procedure to compute the result of (2.28) is to use the Viterbi al-
gorithm, a dynamic programming algorithm. We also present another approach
based on weighted automata products and shortest path algorithms, like Dijkstra’s
algorithm.

The Viterbi Algorithm Let w = a1 · · · an, 0 ≤ i < n, and consider the maximal
joint probability V (i + 1, q) among all sequences of i + 1 states ending in a given
state q and of a sequence of emissions a1 · · · ai+1:

V (i+ 1, q) = max
ρ′∈Qi

p(a1 · · · ai+1|ρ′q) p(ρ′q) . (2.29)

For i = 0, this probability is clearly

V (1, q) = p(a1|q) p(q|$) = E(q)(a1)S(q) . (2.30)

Then, for 1 ≤ i < n,

V (i+ 1, q) = max
ρ′∈Qi−1,q′∈Q

p(a1 · · · aiai+1|ρ′q′q) p(ρ′q′q)

= max
ρ′∈Qi−1,q′∈Q

p(a1 · · · ai|ρ′q′) p(ai+1|q) p(ρ′q′) p(q|q′)

= max
q′∈Q

V (i, q′) p(ai+1|q) p(q|q′)

= E(q)(ai+1) max
q′∈Q

V (i, q′)T (q′)(q) . (2.31)

http://en.wikipedia.org/wiki/Viterbi_algorithm
http://en.wikipedia.org/wiki/Viterbi_algorithm
http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

Logic and Linguistic Modelling 35

q0

1

1

q1

1

q2

1

q3

1

a:1 a:0.5 a:0.5

b:0.5

a:0.25

b:0.25

a:0.5 a:0.5

Figure 2.4: The probabilistic automaton for the HMM of Example 2.10.

Let us introduce backpointers for the best choice at each step 1 ≤ i < n and for
each state q:

B(i, q) = argmax
q′∈Q

V (i, q′)T (q′)(q) . (2.32)

Let ρ = q1 · · · qn, then the last state qn of the most likely explanation is

qn = argmax
q∈Q

V (n, q) , (2.33)

and we can work our way back from there using

qi = B(i, qi+1) , (2.34)

for each 1 ≤ i < n to reconstruct ρ.

Example 2.11. For the HMM of Example 2.10 and the input aa, we obtain

V =

(
0.5 0.5 0
0.5 0.25 0.125

)
B = (q1 q2 q2)

from which we reconstruct the most likely state sequence q1q1.

Complexity of the Viterbi Algorithm. The algorithm proceeds by computing V (i+
1, q) for each 0 ≤ i < n and q inQ; the computation given by (2.31) of one of these
probabilities is in O(|Q|). The complexity of the computation of V dominates the
other operations, and the overall complexity is thus in O(|w| |Q|2).

Shortest Path Approach A HMM defines a rational series JHK on the probabilis-
tic semiring. Indeed, set Q′ = Q] {q0}, I(q0) = 1 and I(q 6= q0) = 0 and define
the representation 〈I, µ, 1̄〉 where, for all a in Σ and q, q′ in Q,

µ(a)(q0, q0) = 0 µ(a)(q0, q
′) = S(q′) · E(q′)(a) µ(a)(q, q′) = T (q)(q′) · E(q′)(a)

(2.35)

combines the transition and emission probabilities. Observe that the support of
this series is prefix-closed: if 〈JHK, uv〉 6= 0, then 〈JHK, u〉 6= 0—this is reflected
by the 1̄ final matrix in the representation. Figure 2.4 shows the probabilistic
automaton that corresponds to the HMM of Example 2.10.

Our HMM decoding problem then reduces to choosing the path of maximal
weight labeled by w = a1 · · · an in the probabilistic automaton associated to H by

Logic and Linguistic Modelling 36

q0

0

0

q1

0

q2

0

q3

0

a:0 a:1 a:1

b:1

a:2

b:2

a:1 a:1

Figure 2.5: The tropical automaton − logH for the HMM H of Example 2.10.

(2.35):

ρ = argmax
ρ′∈Qn

p(w|ρ′) p(ρ′) (2.28)

= argmax
q1···qn

n∏
i=1

p(ai|qi) p(qi|qi−1)

= argmax
q1···qn

S(q1)E(q1)(a1)

n∏
i=2

E(qi)(ai)T (qi−1)(qi) . (2.36)

For performance reasons, we rather look for the path of minimal weight in the
tropical automaton− logH of representation 〈− log I,− logµ, 0̄〉. (See Figure 2.5.)
From a practical standpoint, this allows to use addition instead of multiplication,
and avoids issues with the floating-point representation of real numbers close to
zero. From a theoretical standpoint, a solution to (2.36) becomes

ρ = argmin
q1···qn

(
− logS(q1)− E(q1)(a1)−

n∑
i=2

logE(qi)(ai) + log T (qi−1)(qi)

)
,

(2.37)
i.e. a path with weight 〈J− logHK, w〉 assigned by the tropical automaton to w.

We can effectively build the product of our weighted automaton − logH with
an automaton W for the singleton language {w} (Figure 2.6a). The transition
labels in the resulting weighted automaton − logH +W (Figure 2.6b) are then
useless, and we can see it more simply as a weighted graph with weights in R+.
Adding a single sink node s with edges ((p, q), 0, s) for each final state (p, q) of
the product automaton (Figure 2.6c) then allows to use a single-pair shortest path
algorithm between (p0, q0) and s to find a solution for (2.37) (q1q1 in the example
of Figure 2.6).

Complexity of the Shortest Path Approach. Recall that Dijkstra’s algorithm with
Fibonacci heaps runs in O(m + n log n) in a graph with m edges and n vertices.
The product automaton − logH +W has at most n = |w| · |Q|+ 1 states (there is
a single initial state (p0, q0) by construction).

In practice, due to smoothing, the transition relation of − logH is complete
except that q0 does not have any incoming transition: the number of transitions
with weight different from +∞ is |Q|2 + |Q|. Luckily, the situation is not as bad
with − logH+W: its number of transitions is not n2 but m = (|w|−1) · |Q|2 + |Q|.
Indeed, there are in total |Q| outgoing transitions from (p0, q0) to each (p1, q) with
q in Q, and after that for each 1 ≤ i < |w| there are in total |Q|2 transitions
between some state (pi, q) and some state (pi+1, q

′) with q, q′ in Q.
Overall, we obtain a complexity of

O
(
(|w| − 1) |Q|2 + |Q|+ (|w| |Q|+ 1) log(|w| |Q|+ 1)

)
= O

(
|w| |Q|2 + |w| |Q| log(|w| |Q|)

)
,

Logic and Linguistic Modelling 37

p0 p1 p2 0
a:0 a:0

(a) Tropical automaton W for aa. Only +∞
and 0 weights are used.

p0, q0

p1, q1

p1, q2

p2, q1 0

p2, q2 0

p2, q3 0

a:1

a:1

a:0

a:1

a:2

(b) Product automaton − logH+W.

p0, q0

p1, q1

p1, q2

p2, q1

p2, q2

p2, q3

s

1

1

0

1

2

0

0

0

(c) Weighted graph with sink state.

Figure 2.6: Construction steps for the tagging algorithm on aa.

which is close enough to that of the Viterbi algorithm.

Sequential Series Approach One might rightly think that, even if we end up
with similar complexities, the weighted automata approach induces quite a bit
of extra machinery, and is of limited practical interest compared to the Viterbi
algorithm.

There is however one case where the weighted automata approach yields prac-
tical advantages: when the automaton − logH can be determinized. Recall that
a solution ρ of (2.37) is a path with weight 〈J− logHK, w〉. One could thus issue
the state information along with this weight and hope to perform HMM tagging
deterministically, with a O(|w|+ |A|) complexity where A is the determinized and
minimized automaton for − logH.

However, unlike the rule-based tagging technique of Section 2.2.1, there is
no general determinization procedure for (weighted automata translations of)
HMMs. Consider for instance the automaton of Figure 2.5 for the HMM of Ex-
ample 2.10: it implements the series over the tropical semiring defined by

〈s, w〉 =

{
1 if w = an,
n+ 2 + |w′| if w = anbw′, w′ ∈ {a, b}∗.

(2.38)

The set of translations w−1s for all w ∈ Σ∗ is not finite: for each m A related open problem is the
decidability of sequentiality for
rational series over the tropical
semiring; see Lombardy and
Sakarovitch (2006).

and n, one
gets a different 〈(an)−1s, amb〉 = n + m + 1; thus by the pendant of Theorem 2.2
for sequential series, s is not sequential (see Lombardy and Sakarovitch, 2006,
Theorem 8, where w−1s is noted [w−1s]]).

Still, an incomplete determinization algorithm that might work in practice is
described by Mohri (1997), and can be followed by a minimization step.

Logic and Linguistic Modelling 38

Chapter 3

Context-Free Syntax

Syntax deals with how words are arranged into sentences. An important body of
linguistics proposes constituent analyses for sentences, where for instance

Those torn books are completely worthless.

can be decomposed into a noun phrase those torn books and a verb phrase are
completely worthless. These two constituants can be recursively decomposed until
we reach the individual words, effectively describing a tree:

S

NP

DT

Those

NP

AP

JJ

torn

NP

NNS

books

VP

VBP

are

AP

RB

completely

AP

JJ

worthless

Figure 3.1: A context-free derivation tree.

You have probably recognized in this example a derivation tree for a context-free
grammar (CFG). Context-free grammars, proposed by Chomsky (1956), consti-
tute the primary example of a generative formalism for syntax, which we take to
include all string- or term-rewriting systems.

3.1 Grammars

Definition 3.1 (Phrase-Structured Grammars). A phrase-structured grammar is
a tuple G = 〈N,Σ, P, S〉 where N is a finite nonterminal alphabet, Σ a finite termi-
nal alphabet disjoint from N , V = N] Σ the vocabulary, P ⊆ V ∗ × V ∗ a finite set
of rewrite rules or productions, and S a start symbol or axiom in N .

A phrase-structure grammar defines a string rewrite system over V . Strings α in
V ∗ s.t. S =⇒? α are called sentential forms, whereas strings w in Σ∗ s.t. S =⇒? w
are called sentences. The language of G is its set of sentences, i.e.

L(G) = LG(S) LG(A) = {w ∈ Σ∗ | A =⇒? w} .

Different restrictions on the shape of productions lead to different classes of gram-
mars; we will not recall the entire Chomsky hierarchy (Chomsky, 1959) here, but
only define context-free grammars (aka type 2 grammars) as phrase-structured
grammars with P ⊆ N × V ∗.

39

Logic and Linguistic Modelling 40

Example 3.2. The derivation tree of Figure 3.1 corresponds to the context-free
grammar with

N = {S,NP,AP,VP,DT, JJ,NNS,VBP,RB} ,
Σ = {those, torn, books, are, completely ,worthless} ,

P = { S→ NP VP, NP→ DT NP | AP NP | NNS,

VP→ VBP AP, AP→ RB AP | JJ,

DT→ Those, JJ→ torn | worthless,

NNS→ books, VBP→ are,

RB→ completely} ,
S = S .

Note that it also generates sentences such as Those books are torn. or Those com-
pletely worthless books are completely completely torn. Also note that this grammar
describes part-of-speech tagging information, based on the Penn TreeBank tagset
(Santorini, 1990). A different formalization could set Σ = {DT, JJ,NNS,VBP,RB}
and delegate the POS tagging issues to an external device.

3.1.1 The Parsing Problem

Context-free grammars enjoy a number of nice computational properties:

• both their uniform membership problem—i.e. given 〈G, w〉 doesw ∈ L(G)—
and their emptiness problem—i.e. given 〈G〉 does L(G) = ∅—are P-complete
(Jones and Laaser, 1976),

• their fixed grammar membership problem—i.e. for a fixed G, given 〈w〉
doesw ∈ L(G)—is by very definition LOGCFL-complete (Sudborough, 1978),

• they have a natural notion of derivation trees, which constitute a local reg-
ular tree language (Thatcher, 1967).

The monograph of Grune and
Jacobs (2007) is a rather

exhaustive resource on
context-free parsing.

Recall that our motivation in context-free grammars lies in their ability to model
constituency through their derivation trees. Thus much of the linguistic interest
in context-free grammars revolves around a variant of the membership problem:
given 〈G, w〉, compute the set of derivation trees of G that yield w—the parsing
problem.

Parsing Techniques Outside the realm of deterministicThe asymptotically best parsing
algorithm is that of Valiant

(1975), with complexity
Θ(B(|w|)) where B(n) is the
complexity of n-dimensional

boolean matrix multiplication,
currently known to be in

O(n2.3727) (Williams, 2012). A
converse reduction from boolean

matrix multiplication to
context-free parsing by Lee

(2002) shows that any
improvement for one problem

would also yield one for the other.

parsing algorithms for
restricted classes of CFGs, for instance for LL(k) or LR(k) grammars (Knuth, 1965;
Kurki-Suonio, 1969; Rosenkrantz and Stearns, 1970)—which are often studied in
computer science curricula—, there exists quite a variety of methods for general
context-free parsing. Possibly the best known of these is the CKY algorithm (Cocke
and Schwartz, 1970; Kasami, 1965; Younger, 1967), which in its most basic form
works with complexity O(|G| |w|3) on grammars in Chomsky normal form. Both
the CKY algorithm(s) and the advanced methods (Earley, 1970; Lang, 1974; Gra-
ham et al., 1980; Tomita, 1986; Billot and Lang, 1989) can be seen as refinement
of the construction first described by Bar-Hillel et al. (1961) to prove the closure
of context-free languages under intersection with recognizable sets, which will be
central in these notes on syntax.

Logic and Linguistic Modelling 41

Ambiguity and Parse Forests The key issue in general parsing and parsing for
natural language applications is grammatical ambiguity: the existence of several
derivation trees sharing the same string yield.

The following sentence is a classical example of a PP attachment ambiguity,
illustrated by the two derivation trees of Figure 3.2:

She watches a man with a telescope.

S

NP

PRP

She

VP

VBZ

watches

NP

NP

DT

a

NN

man

PP

IN

with

NP

DT

a

NN

telescope

S

NP

PRP

She

VP

VP

VBZ

watches

NP

DT

a

NN

man

PP

IN

with

NP

DT

a

NN

telescope

Figure 3.2: An ambiguous sentence.

In the case of a cyclic CFG, with a nonterminal A verifying A =⇒+ A, the number
of different derivation trees for a single sentence can be infinite. For acyclic CFGs,
it is finite but might be exponential in the length of the grammar and sentence:

Example 3.3 (Wich, 2005). The grammar with rules

S → a S | a A | ε, A→ a S | a A | ε

has exactly 2n different derivation trees for the sentence an.

Such an explosive behavior is not unrealistic for CFGs in natural languages:
Moore (2004) reports an average number of 7.2 × 1027 different derivations for
sentences of 5.7 words on average, using a CFG extracted from the Penn Treebank.

The solution in order to retain polynomial complexities is to represent all these
derivation trees as the language of a finite tree automaton (or using a CFG). This
is sometimes called a shared forest representation.

3.1.2 Background: Tree Automata

Because our focus in linguistics analyses is on trees, context-free grammars are
mostly useful as a means to define tree languages. Let us first recall basic defini-
tions on regular tree languages.

Definition 3.4 (Finite Tree Automata). A finite tree automaton See Comon et al. (2007).(NTA) is a tuple
A = 〈Q,F , δ, I〉 where Q is a finite set of states, F a ranked alphabet, δ a finite
transition relation in

⋃
nQ×Fn ×Qn, and I ⊆ Q a set of initial states.

The semantics of a NTA can be defined by term rewrite systems over F = Q]F
where the states in Q have arity 0: either bottom-up:

RB = {a(n)(q
(0)
1 , . . . , q(0)

n)→ q(0) | (q, a(n), q1, . . . , qn) ∈ δ}

L(A) = {t ∈ T (F) | ∃q ∈ I, t RB==⇒? q} ,

Logic and Linguistic Modelling 42

or top-down:

RT = {q(0) → a(n)(q
(0)
1 , . . . , q(0)

n) | (q, a(n), q1, . . . , qn) ∈ δ}

L(A) = {t ∈ T (F) | ∃q ∈ I, q RT==⇒? t} .

A tree language L ⊆ T (F) is regular if there exists an NTA A such that L = L(A).

Example 3.5. The 2n derivation trees for an in the grammar of Example 3.3 are
generated by theO(n)-sized automaton 〈{qS , qa, qε, q1, . . . , qn}, {S,A, a, ε}, δ, {qS}〉
with rules

δ = {(qS , S(2), qa, q1), (qa, a
(0)), (qε, ε

(0))}
∪ {(qi, X, qa, qi+1) | 1 ≤ i < n,X ∈ {S(2), A(2)}}
∪ {(qn, X, qε) | X ∈ {S(1), A(1)}} .

It is rather easy to define the set of derivation trees of a CFG through an NTA.
The only slightly annoying point is that nonterminals in a CFG do not have a fixed
arity; for instance if A → BC | a are two productions, then an A-labeled node
in a derivation tree might have two children B and C or a single child a. This
motivates the notation A(r) for an A-labeled node with rank r.

Definition 3.6 (Derived Tree Language). Let G = 〈N,Σ, P, S〉 be a context-free
grammar and let m be its maximal right-hand side length. Its derived tree lan-
guage T (G) is defined as the language of the NTA A = 〈V] {ε},F , δ, {S}〉, where

F def
= {a(0) | a ∈ Σ} ∪ {ε(0)} ∪ {A(1) | A→ ε ∈ P}
∪ {A(m) | m > 0 and ∃A→ X1 · · ·Xm ∈ P with ∀i.Xi ∈ V }

δ
def
= {(A,A(m), X1, . . . , Xm) | m > 0 ∧A→ X1 · · ·Xm ∈ P}
∪ {(A,A(1), ε) | A→ ε ∈ P}
∪ {(a, a(0)) | a ∈ Σ}
∪ {(ε, ε(0))} .

The class of derived tree languages of context-free grammars is a strict subclass
of the class of regular tree languages.

Exercise 3.1 (Local Tree Languages). Let(∗∗) F be a ranked alphabet and t a term of
T (F). We denote by r(t) the root symbol of t and by b(t) the set of local branches
of t, defined inductively by

r(a(0))
def
= a(0) b(a(0))

def
= ∅

r(f (n)(t1, . . . , tn))
def
= f (n) b(f (n)(t1, . . . , tn))

def
= {f (n)(r(t1), . . . , r(tn))} ∪

n⋃
i=1

b(ti) .

For instance b(f(g(a), f(a, b))) = {f(g, f), g(a), f(a, b)}.
A tree language L ⊆ T (F) is local if and only if there exist two sets R ⊆ F of

root symbols and B ⊆ b(T (F)) of local branches, such that t ∈ L iff r(t) ∈ R and
b(t) ⊆ B. Let

L(R,B) = {t ∈ T (F) | r(t) ∈ R and b(t) ⊆ B} ;

then a tree language L is local if and only if L = L(r(L), b(L)).

Logic and Linguistic Modelling 43

1. Show that { f(g(a), g(b)) } is not a local tree language.

2. Show that any local tree language is the language of some NTA.

3. Show that a tree language included in T (F) is local with R ⊆ F>0 if and
only if it is the derived tree language of some CFG.

4. Show that any regular tree language is the homomorphic image of a local
tree language by an alphabetic tree morphism, i.e. the application of a rela-
beling to the tree nodes.

5. Given a tree language L, let Yield(L)
def
=
⋃
t∈L Yield(t) and define inductively

Yield(a(0))
def
= a and Yield(f (r)(t1, . . . , tr)

def
= Yield(t1) · · ·Yield(tr). Show

that, if L is a regular tree language, then Yield(L) is a context-free language.

3.2 Tabular Parsing

We briefly survey the principles of general context-free parsing using dynamic
or tabular algorithms. For more details, see the survey by Nederhof and Satta
(2004).

3.2.1 Parsing as Intersection

The basic construction underlying all the tabular parsing algorithms is the inter-
section grammar of Bar-Hillel et al. (1961). It consists in an intersection between
an (|w|+1)-sized automaton with language {w} and the CFG under consideration.
The intersection approach is moreover quite convenient if several input strings are
possible, for instance if the input of the parser is provided by a speech recognition
system. A landmark paper on the

importance of the construction of
Bar-Hillel et al. (1961) for
parsing is due to Lang (1994).

Theorem 3.7 (Bar-Hillel et al., 1961). Let G = 〈N,Σ, P, S〉 be a CFG and A =
〈Q,Σ, δ, I, F 〉 be a NFA. The set of derivation trees of G with a word of L(A) as yield is
generated by the NTA T = 〈(V] {ε})×Q×Q,Σ]N] {ε}, δ′, {S} × I × F 〉 with

δ′ = {((A, q0, qm), A(m), (X1, q0, q1), . . . , (Xm, qm−1, qm))

| m ≥ 1, A→ X1 · · ·Xm ∈ P, q0, q1, . . . , qm ∈ Q}
∪ {((A, q, q), A(1), (ε, q, q)) | A→ ε ∈ P, q ∈ Q}
∪ {((ε, q, q), ε(0)) | q ∈ Q}
∪ {((a, q, q′), a(0)) | (q, a, q′) ∈ δ} .

The size of the resulting NTA is in O(|G| · |Q|m+1) where m is the maximal arity
of a nonterminal in N . We can further reduce this NTA to only keep useful states,
in linear time on a RAM machine. It is also possible to determinize and minimize
the resulting tree automaton.

In order to reduce the complexity of this construction to O(|G| · |Q|3), one can
put the CFG in quadratic form, so that P ⊆ N × V ≤2. This changes the shape of
trees, and thus the linguistic analyses, but the transformation is reversible:

Lemma 3.8. Given a CFG G = 〈Σ, N, P, S〉, one can construct in time O(|G|) an
equivalent CFG G′ = 〈Σ, N ′, P ′, S〉 in quadratic form s.t. V ⊆ V ′, LG(X) = LG′(X)
for all X in V , and |G′| ≤ 5 · |G|.

Logic and Linguistic Modelling 44

Proof. For every production A→ X1 · · ·Xm of P with m ≥ 2, add productions

A→ [X1][X2 · · ·Xm]

[X2 · · ·Xm]→ [X2][X3 · · ·Xm]
...

[Xm−1Xm]→ [Xm−1][Xm]

and for all 1 ≤ i ≤ m

[Xi]→ Xi .

Thus an (m + 1)-sized production is replaced by m − 1 productions of size 3 and
m productions of size 2, for a total less than 5m. Formally,

N ′ = N ∪ {[β] | β ∈ V + and ∃A ∈ N,α ∈ V +, A→ αβ ∈ P}
∪ {[X] | X ∈ V and ∃A ∈ N,α, β ∈ V ∗, A→ αXβ ∈ P}

P ′ = {A→ α ∈ P | |α| ≤ 1}
∪ {A→ [X][β] | A→ Xβ ∈ P,X ∈ V and β ∈ V +}
∪ {[Xβ]→ [X][β] | [Xβ] ∈ N ′, X ∈ V and β ∈ V +}
∪ {[X]→ X | [X] ∈ N ′ and X ∈ V } .

Grammar G′ est clearly in quadratic form with N ⊆ N ′ and |G′| ≤ 5 · |G|. It remains
to show equivalence, which stems from LG(X) = LG′(X) for allX in V . Obviously,
LG(X) ⊆ LG′(X). Conversely, by induction on the length n of derivations in G′,
we prove that

X =⇒n
G′ w implies X =⇒?

G w (3.1)

[α] =⇒n
G′ w implies α =⇒?

G w (3.2)

for all X in V , w in Σ∗, and [α] in N ′\N . The base case n = 0 implies X in Σ and
the lemma holds. Suppose it holds for all i < n.

From the shape of the productions in G′, three cases can be distinguished for a
derivation

X =⇒G′ β =⇒n−1
G′w :

1. β = ε implies immediately X =⇒?
Gw = ε, or

2. β = Y in V implies X =⇒?
Gw by induction hypothesis (3.1), or

3. β = [Y][γ] with [Y] and [γ] in N ′ implies again X =⇒?
Gw by induction hypoth-

esis (3.2) and context-freeness, since in that case X → Y γ is in P .

Similarly, a derivation
[α] =⇒G′ β =⇒n−1

G′ w

implies α =⇒? w by induction hypothesis (3.1) if |α| = 1 and thus β = α, or by
induction hypothesis (3.2) and context-freeness if α = Y γ with Y in V and γ in
V +, and thus β = [Y][γ].

3.2.2 Parsing as Deduction

In practice, we want to perform at least some of the reduction of the tree automa-
ton constructed by Theorem 3.7 on the fly, in order to avoid constructing states
and transitions that will be later discarded as useless.

Logic and Linguistic Modelling 45

Bottom-Up Tabular Parsing One way is to restrict ourselves to co-accessible
states, by which we mean states q of the NTA such that there exists at least one

tree t with t
RB==⇒? q. This is the principle underlying the classical CKY parsing

algorithm (but here we do not require the grammar to be in Chomsky normal
form).

We describe the algorithm using deduction rules (Pereira and Warren, 1983;
Sikkel, 1997), which conveniently represent how new tabulated items can be con-
structed from previously computed ones: in this case, items are states (A, q, q′) in
V ×Q×Q of the constructed NTA. Side conditions constrain how a deduction rule
can be applied.

(X1, q0, q1), . . . , (Xm, qm−1, qm)

(A, q0, qm)

{
m > 0, A→ X1 · · ·Xm ∈ P
q0, q1, . . . , qm ∈ Q

(Internal)

(A, q, q)

{
A→ ε ∈ P
q ∈ Q (Empty)

(a, q, q′)

{
(q, a, q′) ∈ δ (Leaf)

The construction of the NTA proceeds by creating new states following the rules,
and transitions of δ′ as output to the deduction rules, i.e. an application of (Internal)
outputs if m ≥ 1 ((A, q0, qm), A(m), (X1, q0, q1), . . . , (Xm, qm−1, qm)), or if m = 0
((A, q0, q0), A(1), (ε, q0, q0)), and one of (Leaf) outputs ((a, q, q′), a(0)). We only
need to add states (ε, q, q) and transitions ((ε, q, q), ε(0)) for each q in Q in order to
obtain the co-accessible part of the NTA of Theorem 3.7.

The algorithm performs the deduction closure of the system; the intersection
itself is non-empty if an item in {S} × I × F appears at some point. The complex-
ity depends on the “free variables” in the premices of the rules and on the side
constraints; here it is dominated by the (Internal) rule, with at most |G| · |Q|m+1

applications.
We could similarly construct a system of top-down deduction rules that only

construct accessible states of the NTA, starting from (S, qi, qf) with qi in I and qf
in F , and working its way towards the leaves.

Exercise 3.2. Give (∗)the deduction rules for top-down tabular parsing.

Earley Parsing The algorithm of Earley (1970) uses a mix of accessibility and
co-accessibility. An Earley item is a triple (A → α · β, q, q′), q, q′ in Q and A → αβ
in P , constructed This invariant proves the

correctness of the algorithm. For
a more original proof using
abtract interpretation, see Cousot
and Cousot (2003).

iff

1. there exists both (i) a run of A starting in q and ending in q′ with label v and
(ii) a derivation α =⇒? v, and furthermore

2. there exists (i) a run in A from some qi in I to q with label u and (ii) a
derivation S =⇒

lm

? uAγ for some γ in V ∗.

Logic and Linguistic Modelling 46

(S → ·α, qi, qi)

{
S → α ∈ P
qi ∈ I

(Init)

(A→ α ·Bα′, q, q′)
(B → ·β, q′, q′)

{
B → β ∈ P (Predict)

(A→ α · aα′, q, q′)
(A→ αa · α′, q, q′′)

{
(q′, a, q′′) ∈ δ (Scan)

(A→ α ·Bα′, q, q′)
(B → β·, q′, q′′)

(A→ αB · α′, q, q′′)
(Complete)

The intersection is non empty if an item (S → α·, qi, qf) is obtained for some qi in
I and qf in F .

The algorithm run as a recognizer works in O(|G|2 · |Q|3) regardless of the ar-
ity of symbols in G ((Complete) dominates this complexity), and can be further
optimized to run in O(|G| · |Q|3), which is the object of Exercise 3.3. This cubic
complexity in the size of the automaton can be understood as the effect of an
on-the-fly quadratic form transformation into G′ = 〈N ′,Σ, P ′, S′〉 with

N ′ = {S′}] {[A→ α · β] | A→ αβ ∈ P}
P ′ = {S′ → [S → α·] | S → α ∈ P}
∪ {[A→ αB · α′]→ [A→ α ·Bα′] [B → β·] | B → β ∈ P}
∪ {[A→ αa · α′]→ [A→ α · aα′] a | a ∈ Σ}
∪ {[A→ ·α′]→ ε} .

Note that the transformation yields a grammar of quadratic size, but can be modi-
fied to yield one of linear size—this is the same simple trick as that of Exercise 3.3.
It is easier to output a NTA for this transformed grammar G′:

• create state ([S → ·α], qi, qi) and transition (([S → ·α], qi, qi), ε
(0)) when

applying (Init),

• create state ([B → ·β], q′, q′) and transition (([B → ·β], q′, q′), ε(0)) when
applying (Predict),

• create states ([A → αa · α′], q, q′′) and (a, q′, q′′), and transitions (([A → αa ·
α′], q, q′′), [A→ αa ·α′](2), ([A→ α ·aα′], q, q′), (a, q′, q′′)) and ((a, q′, q′′), a(0))
when applying (Scan),

• create state ([A→ αB · α′], q, q′′) and transition (([A→ αB · α′], q, q′′), [A→
αB ·α′](2), ([A→ α ·Bα′], q, q′), ([B → β·], q′, q′′) when applying (Complete).

We finally need to add states (S′, qi, qf) for qi in I and qf in F , and transitions
((S′, qi, qf), S′(1), ([S → α·], qi, qf) for each S → α in P .

Exercise 3.3. How(∗) should the algorithm be modified in order to run in time
O(|G| · |Q|3) instead of O(|G|2 · |Q|3)?

Exercise 3.4. Show(∗) that the Earley recognizer works in time O(|G| · |Q|2) if the
grammar is unambiguous and the automaton deterministic.A related open problem is

whether fixed grammar
membership can be solved in time
O(|w|) if G is unambiguous. See
Leo (1991) for a partial answer

in the case where G is LR-Regular.

Chapter 4

Model-Theoretic Syntax

In contrast with the generative approaches of the first part of the course, we take
here a different stance on how to formalise constituent-based syntax. Instead of a
more or less operational description using some string or term rewrite system, the
trees of our linguistic analyses are now models of logical formulæ.

4.0.1 Model-Theoretic vs. Generative

The Most of this discussion is inspired
by Pullum and Scholz (2001).

connections between the classes of tree structures that can be singled out
through logical formulæ on the one hand and context-free grammars or finite tree
automata on the other hand are well-known, and we will survey some of these
bridges. Thus the interest of a model theoretic approach does not reside so much
in what can be expressed as in how it can be expressed.

Local vs. Global View The model-theoretic approach simplifies the specification
of global properties of syntactic analyses. Let us consider for instance the problem
of finding the head of a constituent, which can be used to lexicalise CFGs. Re-
member that the solution there was to explicitly annotate each nonterminal with
the head information of its subtree—which is the only way to percolate the head
information up the trees in a context-free grammar. On the other hand, one can
write a logic formula postulating the existence of a unique head word for each
node of a tree (see (4.19) and (4.20)).

Gradience of Grammaticality Agrammatical Practical aspects of the notion of
grammaticality gradience have
been investigated in the context of
property grammars, see e.g.
Duchier et al. (2009).

sentences can vary considerably in
their degree of agrammaticality. Rather than a binary choice between grammatical
and agrammatical, one would rather have a finer classification that would give
increasing levels of agrammaticality to the following sentences:

∗In a hole in in the ground there lived a hobbit.
∗In a hole in in ground there lived a hobbit.
∗Hobbit a ground in lived there a the hole in.

One way to achieve this finer granularity with generative syntax is to employ
weights as a measure of grammaticality. Note that it is not quite what we obtained
through probabilistic methods, because estimated probabilities are not grammat-
icality judgements per se, but occurrence-based (although smoothing techniques
attempt to account for missing events).

A natural way to obtain a gradience of grammaticality using model theoretic
methods is to structure formulæ as large conjunctions

∧
i ϕi, where each conjunct

47

Logic and Linguistic Modelling 48

ϕi implements a specific linguistic notion. A degree of grammaticality can be
derived from (possibly weighted) counts of satisfied conjuncts.

Open Lexicon An underlying assumption of generative syntax is the presence of
a finite lexicon Σ. A specific treatment is required in automated systems in order
to handle unknown words.

This limitation is at odds with the diachronic addition of new words to lan-
guages, and with the grammaticality of sentences containing pseudo-words, as
for instance

Could you hand over the salt, please?
Could you smurf over the smurf, please?

Again, structuring formulæ in such a way that lexical information only further
constrains the linguistic trees makes it easy to handle unknown or pseudo-words,
which simply do not add any constraint.

Infinite Sentences A debatable point is whether natural language sentences
should be limited to finite ones. An example illustrating why this question is not
so clear-cut is an expression for “mutual belief” that starts with the following:

Jones believes that iron rusts, and Smith believes that iron rusts, and Jones
believes that Smith believes that iron rusts, and Smith believes that Jones
believes that iron rusts, and Jones believes that Smith believes that Jones
believes that iron rusts, and. . .

Dealing with infinite sequences and trees requires to extend the semantics of
generative devices (CFGs, PDAs, etc.) and leads to complications. By contrast,
logics are not a priori restricted to finite models, and in fact the two examples
we will see are expressive enough to force the choice of either infinite or finite
models. Of course, for practical applications one might want to restrict oneself to
finite models.

Algorithmic Costs Formulæ in the logics considered in this chapter are provably
more succinct than context-free grammars. The downfall is an algorithmic cost
increased in the same proportion, e.g. parsing can require exponential time for
PDL (Afanasiev et al., 2005), and non-elementary time for wMSO (Meyer, 1975;
Reinhardt, 2002).

4.0.2 Tree Structures

Before we turn to the two logical languages that we consider for model-theoretic
syntax, let us introduce the structures we will consider as possible models. Because
we work with constituent analyses, these will be labelled ordered trees. Given
a set A of labels, a tree structure is a tuple M = 〈W, ↓,→, (Pa)a∈A〉 where W is
a set of nodes, ↓ and→ are respectively the child and next-sibling relations over
W , and each Pa for a in A is a unary labelling relation over W . We take W to be
isomorphic to some prefix-closed and predecessor-closed subset of N∗, where ↓ and
→ can then be defined by

↓ def
= {(w,wi) | i ∈ N ∧ wi ∈W} (4.1)

→ def
= {(wi,w(i+ 1)) | i ∈ N ∧ w(i+ 1) ∈W} . (4.2)

Logic and Linguistic Modelling 49

Note that (a) we do not limit ourselves to a single label per node, i.e. we actually

work on trees labelled by Σ
def
= 2A, (b) we do not bound the rank of our trees,

and (c) we do not assume the set of labels to be finite.

Binary Trees See Comon et al. (2007,
Section 8.3.1).

One way to deal with unranked trees is to look at their encoding
as “first child/next sibling” binary trees. Formally, given a tree structure M =
〈W, ↓,→, (Pa)a∈A〉, we construct a labelled binary tree t, which is a partial func-
tion {0, 1}∗ → Σ with a prefix-closed domain. We define for this dom(t) = fcns(W)
and t(w) = {a ∈ A | Pa(fcns−1(w))} for all w ∈ dom(t), where

fcns(ε)
def
= ε fcns(w0)

def
= fcns(w)0 fcns(w(i+ 1))

def
= fcns(wi)1 (4.3)

for all w in N∗ and i in N and the corresponding inverse mapping is

fcns−1(ε)
def
= ε fcns−1(w0)

def
= fcns−1(w)0 fcns−1(w1)

def
= fcns−1(w) + 1

(4.4)

for all w in ε ∪ 0{0, 1}∗, under the understanding that (wi) + 1 = w(i + 1) for all
w in N∗ and i ∈ N. Observe that binary trees t produced by this encoding verify
dom(t) ⊆ 0{0, 1}∗.

The tree t can be seen as a binary structure fcns(M) = 〈dom(t), ↓0, ↓1, (Pa)a∈A〉,
defined by

↓0
def
= {(w,w0) | w0 ∈ dom(t)} (4.5)

↓1
def
= {(w,w1) | w1 ∈ dom(t)} (4.6)

Pa
def
= {w ∈ dom(t) | a ∈ t(w)} . (4.7)

The domains of our constructed binary trees are not necessarily predecessor-
closed, which can be annoying. Let # be a fresh symbol not in A; given t a
labelled binary tree, its closure t̄ is the tree with domain

dom(t̄)
def
= {ε, 1} ∪ {0w | w ∈ dom(t)} ∪ {0wi | w ∈ dom(t) ∧ i ∈ {0, 1}} (4.8)

and labels

t̄(w)
def
=

{
t(w′) if w = 0w′ ∧ w′ ∈ dom(t)

{#} otherwise.
(4.9)

Note that in t̄, every node is either a node not labelled by # with exactly two
children, or a #-labelled leaf with no children, or a #-labelled root with two
children, thus t̄ is a full (aka strict) binary tree.

4.1 Monadic Second-Order Logic

See Comon et al. (2007,
Section 8.4).

We consider the weak monadic second-order logic (wMSO), over tree structures
M = 〈W, ↓,→, (Pa)a∈A〉 and two infinite countable sets of first-order variables X1

and second-order variables X2. Its syntax is defined by

ψ ::= x = y | x ∈ X | x ↓ y | x→ y | Pa(x) | ¬ψ | ψ ∨ ψ | ∃x.ψ | ∃X.ψ

where x, y range over X1, X over X2, and a over A. We write FV(ψ) for the set of
variables free in a formula ψ; a formula without free variables is called a sentence.

Logic and Linguistic Modelling 50

First-order variables are interpreted as nodes inW , while second-order variables
are interpreted as finite subsets of W (it would otherwise be the full second-order
logic). Let ν : X1 → W and µ : X2 → Pf (W) be two corresponding assignments;
then the satisfaction relation is defined by

M |=ν,µ x = y if ν(x) = ν(y)

M |=ν,µ x ∈ X if ν(x) ∈ µ(X)

M |=ν,µ x ↓ y if ν(x) ↓ ν(y)

M |=ν,µ x→ y if ν(x)→ ν(y)

M |=ν,µ Pa(x) if Pa(ν(x))

M |=ν,µ ¬ψ if M 6|=ν,µ ψ

M |=ν,µ ψ ∨ ψ′ if M |=ν,µ ψ or M |=ν,µ ψ
′

M |=ν,µ ∃x.ψ if ∃w ∈W,M |=ν{x←w},µ ψ

M |=ν,µ ∃X.ψ if ∃U ⊆W,U finite ∧M |=ν,µ{X←U} ψ .

As usual, we define conjunctions as ψ ∧ ψ′ def
= ¬(¬ψ ∨ ¬ψ′), implications as ψ ⊃

ψ′
def
= ¬ψ ∨ ψ′, and equivalences as ψ ≡ ψ′ def

= ψ ⊃ ψ′ ∧ ψ′ ⊃ ψ.
Given a wMSO formula ψ, we are interested in two algorithmic problems: the

satisfiability problem, which asks whether there exist M and ν and µ s.t. M |=ν,µ

ψ, and the model-checking problem, which given M asks whether there exist ν
and µ s.t. M |=ν,µ ψ. By modifying the vocabulary to have labels in A] FV(ψ),
these questions can be rephrased on a wMSO sentence ψ′:

ψ′
def
= ∃FV(ψ).ψ ∧

 ∧
x∈X1∩FV(ψ)

Px(x) ∧ ∀y.x 6= y ⊃ ¬Px(y)

∧

 ∧
X∈X2∩FV(ψ)

∀y.y ∈ X ≡ PX(y)

 .

In practical applications of model-theoretic techniques we restrict ourselves to fi-
nite models for these questions.

Example 4.1. Here are a few useful wMSO formulæ: To allow any label in a finite
set B ⊆ A:

PB(x)
def
=
∨
a∈B

Pa(x)

PB(X)
def
= ∀x.x ∈ X ⊃ PB(x) .

To check whether we are at the root or a leaf or similar constraints:

root(x)
def
= ¬∃y.y ↓ x

leaf(x)
def
= ¬∃y.x ↓ y

internal(x)
def
= ¬leaf(x)

children(x,X)
def
= ∀y.y ∈ X ≡ x ↓ y

x ↓0 y
def
= x ↓ y ∧ ¬∃z.z → y .

Logic and Linguistic Modelling 51

To use the monadic transitive closure of a formula ψ(u, v) with u, v ∈ FV(ψ):
such a formula ψ(u, v) defines a binary relation over the model, and [TCu,v ψ(u, v)]
then defines the transitive reflexive closure of the relation:

x [TCu,v ψ(u, v)] y
def
= ∀X.(x ∈ X ∧ ∀uv.(u ∈ X ∧ ψ(u, v) ⊃ v ∈ X) ⊃ y ∈ X)

(4.10)
For example,

x ↓? y def
= x [TCu,v u ↓ v] y

x→? y
def
= x [TCu,v u→ v] y .

4.1.1 Linguistic Analyses in wMSO

See Rogers (1998) for a complete
analysis using wMSO. Monadic
second-order logic can also be
applied to queries in treebanks
(Kepser, 2004; Maryns and
Kepser, 2009).

Let us illustrate how we can work out a constituent-based analysis using wMSO.
Following the ideas on grammaticality expressed at the beginning of the chapter,
we define large conjunctions of formulæ expressing various linguistic constraints.

Basic Grammatical Labels Let us fix two disjoint finite sets N of grammatical
categories and Θ of part-of-speech tags and distinguish a particular category S ∈
N standing for sentences, and let N]Θ ⊆ A (we do not assume A to be finite).

Define the formula

labelsN,Θ
def
= ∀x.root(x) ⊃ PS(x) , (4.11)

which forces the root label to be S;

∧ ∀x.internal(x) ⊃
∨

a∈N]Θ

Pa(x) ∧
∧

b∈N]Θ\{a}

¬Pb(x) (4.12)

checks that every internal node has exactly one label from N]Θ (plus potentially
others from A\(N]Θ));

∧ ∀x.leaf(x) ⊃ ¬PN]Θ(x) (4.13)

forbids grammatical labels on leaves;

∧ ∀y.leaf(y) ⊃ ∃x.x ↓ y ∧ PΘ(x) (4.14)

expresses that leaves should have POS-labelled parents;

∧ ∀x.∃y0y1y2.x ↓? y0 ∧ y0 ↓ y1 ∧ y1 ↓ y2 ∧ leaf(y2) ⊃ PN (x) (4.15)
verifies that internal nodes at distance at least two from some leaf should have
labels drawn from N , and are thus not POS-labelled by (4.12), and thus cannot
have a leaf as a child by (4.13);

∧ ∀x.PΘ(x) ⊃ ¬∃yz.y 6= z ∧ x ↓ y ∧ x ↓ z (4.16)

discards trees where POS-labelled nodes have more than one child. The purpose
of labelsN,Θ is to restrict the possible models to trees with the particular shape we
use in constituent-based analyses.

Open Lexicon Let us assume that some finite part of the lexicon is known, as
well as possible POS tags for each known word. One way to express this in an
open-ended manner is to define a finite set L ⊆ A disjoint from N and Θ, and a
relation pos ⊆ L×Θ. Then the formula

lexiconL,pos
def
= ∀x.

∨
`∈L

P`(x) ⊃ leaf(x) ∧
∧

`′∈L\{`}

¬P`′(x) ∧ ∀y.y ↓ x ⊃ Ppos(`)(y)

(4.17)

Logic and Linguistic Modelling 52

makes sure that only leaves can be labelled by words, and that when a word is
known (i.e. if it appears in L), it should have one of its allowed POS tag as imme-
diate parent. If the current POS tagging information of our lexicon is incomplete,
then this particular constraint will not be satisfied. For an unknown word however,
any POS tag can be used.

Context-Free Constraints It is of course easy to enforce some local constraints
in trees. For instance, assume we are given a CFG G = 〈N,Θ, P, S〉 describing the
“usual” local constraints between grammatical categories and POS tags. Assume ε
belongs to A; then the formula

grammarG
def
= ∀x.(Pε(x) ⊃ ¬PN]Θ]L(x)) ∧

∨
B∈N

PB(x) ⊃
∨

B→β∈P
∃y.x ↓0 y ∧ ruleβ(y)

(4.18)

forces the tree to comply with the rules of the grammar, where

ruleXβ(x)
def
= PX(x) ∧ ∃y.x→ y ∧ ruleβ(y) (for β 6= ε and X ∈ N]Θ)

ruleX(x)
def
= PX(x) ∧ ¬∃y.x→ y (for X ∈ N]Θ)

ruleε(x)
def
= Pε(x) ∧ leaf(x) .

Again, the idea is to provide a rather permissive set of local constraints, and to be
able to spot the cases where these constraints are not satisfied.

Non-Local Dependencies Implementing local constraints as provided by a CFG
is however far from ideal. A much more interesting approach would be to take
advantage of the ability to use long-distance constraints, and to model subcate-
gorisation frames and modifiers.

The following examples also show that some of the typical features used for
training statistical models can be formally expressed using wMSO. This means that
treebank annotations can be computed very efficiently once a tree automaton has
been computed for the wMSO formulæ, in time linear in the size of the treebank.

Head Percolation. The first step is to find which child is the head among its
siblings; several heuristics have been developed to this end, and a simple way to
describe such heuristics is to use a head percolation function h : N → {l, r}×(N]
Θ)∗ that describes for a given parent label A a list of potential labels X1, . . . , Xn

in N] Θ in order of priority and a direction d ∈ {l, r} standing for “leftmost” or
“rightmost”: such a value means that the leftmost (resp. rightmost) occurrence of
X1 is the head, this unless X1 is not among the children, in which case we should
try X2 and so on, and if Xn also fails simply choose the leftmost (resp. rightmost)
child (see e.g. Collins, 1999, Appendix A). For instance, the function

h(S) = (r,TO IN VP S SBAR · · ·)
h(VP) = (l,VBD VBN VBZ VB VBG VP · · ·)
h(NP) = (r,NN NNP NNS NNPS JJR CD · · ·)
h(PP) = (l, IN TO VBG VBN · · ·)

would result in the correct head annotations in Figure 6.1.

Logic and Linguistic Modelling 53

Given such a head percolation function h, we can express the fact that a given
node is a head:

head(x)
def
= leaf(x) ∨

∨
B∈N
∃yY.y ↓ x ∧ children(y, Y) ∧ PB(y) ∧ headh(B)(x, Y)

(4.19)

headd,Xβ(x, Y)
def
= ¬priorityd,X(x, Y) ⊃ (headd,β(x, Y) ∧ ¬PX(Y))

headl,ε(x, Y)
def
= ∀y.y ∈ Y ⊃ x→? y

headr,ε(x, Y)
def
= ∀y.y ∈ Y ⊃ y →? x

priorityl,X(x, Y)
def
= PX(x) ∧ ∀y.y ∈ Y ∧ y →? x ⊃ ¬PX(y)

priorityr,X(x, Y)
def
= PX(x) ∧ ∀y.y ∈ Y ∧ x→? y ⊃ ¬PX(y) .

where β is a sequence in (N]Θ)∗ and X a symbol in N]Θ.

S
[>,hurled ,VBD]

NP
[S,he,PRP]

PRP
[NP,he,PRP]

He

VP
[S,hurled ,VBD]

VP
[VP,hurled ,VBD]

VBD
[VP,hurled ,VBD]

hurled

NP
[VP,ball ,NN]

DT
[NP,the,DT]

the

NN
[NP,ball ,NN]

ball

PP
[VP,into,IN]

IN
[VP,into,IN]

into

NP
[PP,basket ,NN]

DT
[NP,the,DT]

the

NN
[NP,basket ,NN]

basket

Figure 4.1: A derivation tree refined with lexical and parent information.

Lexicalisation. Using head information, we can also recover lexicalisation in-
formation:

lexicalise(x, y)
def
= leaf(y) ∧ x [TCu,v u ↓ v ∧ head(v)] y . (4.20)

This formula recovers the lexical information in Figure 6.1.

Exercise 4.1. Propose (∗)wMSO formulæ to recover the parent and lexical POS
information in constituent trees, as illustrated in Figure 6.1.

Modifiers. Here is a first use of wMSO to extract information about a proposed
constituent tree: try to find which word is modified by another word. For instance,
for an adverb we could write something like

modifyRB(x, y)
def
= ∃x′y′z.z ↓ x ∧ PRB(z) ∧ lexicalise(x′, x) ∧ y′ ↓ x′

∧ ¬lexicalise(y′, x) ∧ lexicalise(y′, y) (4.21)

that finds a maximal head x′ and the lexical projection of its parent y′. This for-
mula finds for instance that really modifies likes in Figure 4.2.

Logic and Linguistic Modelling 54

S

WhNP

WP

who

S

VBZ

does

S

NP

NNP

Bill

VP

VB

think

S

NP

NNP

Bill

VP

RB

really

VP

VBZ

likes

NP

ε

Figure 4.2: Derivation tree for Who does Bill think Bill really likes?

Exercise 4.2. Modify(∗) (4.21) to make sure that any leaf with a parent tagged by
the POS RB modifies either a verb or an adjective.

Exercise 4.3. Consider(∗∗) the ε node in Figure 4.2: modify (4.20) to recover that
who lexicalises the bottommost NP node.

4.1.2 wS2S

See (Doner, 1970; Thatcher and
Wright, 1968; Rabin, 1969;

Meyer, 1975) for classical results
on wS2S, and more recently

(Rogers, 1996, 2003) for
linguistic applications.

The classical logics for trees do not use the vocabulary of tree structures M,
but rather that of binary structures 〈dom(t), ↓0, ↓1, (Pa)a∈A〉. The weak monadic
second-order logic over this vocabulary is called the weak monadic second-order
logic of two successors (wS2S). The semantics of wS2S should be clear.

The interest of considering wS2S at this point is that it is well-known to have a
decidable satisfiability problem, and that for any wS2S sentence ψ one can con-
struct a tree automaton Aψ—with tower(|ψ|) as size—that recognises all the finite
models of ψ. More precisely, when working with finite binary trees and closed
formulæ ψ,See Comon et al. (2007,

Section 3.3)—their construction
is easily extended to handle

labelled trees. Using automata
over infinite trees, these can also

be handled (Rabin, 1969; Weyer,
2002).

L(Aψ) = {t̄ ∈ T (Σ] {{#}}) | t finite ∧ t |= ψ} . (4.22)

Now, it is easy to translate any wMSO sentence ψ into a wS2S sentence ψ′ s.t.
M |= ψ iff fcns(M) |= ψ′. This formula simply has to interpret the ↓ and →
relations into their binary encodings: let

ψ′
def
= ψ ∧ ∃x.¬(∃z.z ↓0 x ∨ z ↓1 x) ∧ ¬(∃y.x ↓1 y) (4.23)

where the conditions on x ensure it is at the root and does not have any right
child, and where ψ uses the macros

x ↓ y def
= ∃x0.x ↓0 x0 ∧ (x0 [TCu,v u ↓1 v] y) (4.24)

x→ y
def
= x ↓1 y . (4.25)

The conclusion of this construction is

Theorem 4.2. Satisfiability and model-checking for wMSO are decidable.

Logic and Linguistic Modelling 55

Exercise 4.4 (ω Successors). Show (∗)that the weak second-order logic of ω suc-

cessors (wSωS), i.e. with ↓i
def
= {(w,wi) | wi ∈ W} defined for every i ∈ N, has

decidable satisfiability and model-checking problems.

4.2 Propositional Dynamic Logic

An alternative take on model-theoretic syntax is to employ modal logics on tree
structures. Several properties of modal logics make them interesting to this end:
their decision problems are usually considerably simpler, and they allow to express
rather naturally how to hop from one point of interest to another.

Propositional dynamic logic on
ordered trees was first defined by
Kracht (1995). The name of PDL
on trees is due to Afanasiev et al.
(2005); this logic is also known
as Regular XPath in the XML
processing community (Marx,
2005). Various fragments have
been considered through the
years; see for instance Blackburn
et al. (1993, 1996); Palm
(1999); Marx and de Rijke
(2005).

Propositional dynamic logic (Fischer and Ladner, 1979) is a two-sorted modal
logic where the basic relations can be composed using regular operations: on tree
structures M = 〈W, ↓,→, (Pa)a∈A〉, its terms follow the abstract syntax

π ::= ↓ | → | π−1 | π;π | π + π | π∗ | ϕ? (path formulæ)

ϕ ::= a | > | ¬ϕ | ϕ ∨ ϕ | 〈π〉ϕ (node formulæ)

where a ranges over A.
The semantics of a node formula on a tree structure M = 〈W, ↓,→, (Pa)a∈A〉

is a set of tree nodes JϕK = {w ∈ W | M, w |= ϕ}, while the semantics of a path
formula is a binary relation over W :

JaK def
= {w ∈W | Pa(w)} J↓K def

= ↓

J>K def
= W J→K def

= →

J¬ϕK def
= W\JϕK Jπ−1K def

= JπK−1

Jϕ1 ∨ ϕ2K
def
= Jϕ1K ∪ Jϕ2K Jπ1;π2K

def
= Jπ1K # Jπ2K

J〈π〉ϕK def
= JπK−1(JϕK) Jπ1 + π2K

def
= Jπ1K ∪ Jπ2K

Jπ∗K def
= JπK?

Jϕ?K def
= IdJϕK .

Finally, a tree M is a model for a PDL formula ϕ if its root is in JϕK, written
M, root |= ϕ.

We define the classical dual operators

⊥ def
= ¬> ϕ1 ∧ ϕ2

def
= ¬(¬ϕ1 ∨ ¬ϕ2) [π]ϕ

def
= ¬〈π〉¬ϕ . (4.26)

We also define

↑ def
= ↓−1 ← def

= →−1

root
def
= [↑]⊥ leaf

def
= [↓]⊥

first
def
= [←]⊥ last

def
= [→]⊥ .

Exercise 4.5 (Converses). (∗)Prove the following equivalences:

(π1;π2)−1 ≡ π−1
2 ;π−1

1 (4.27)

(π1 + π2)−1 ≡ π−1
1 + π−1

2 (4.28)

(π∗)−1 ≡ (π−1)∗ (4.29)

(ϕ?)−1 ≡ ϕ? . (4.30)

Logic and Linguistic Modelling 56

Exercise 4.6 (Reductions).(∗) Prove the following equivalences:

〈π1;π2〉ϕ ≡ 〈π1〉〈π2〉ϕ (4.31)

〈π1 + π2〉ϕ ≡ (〈π1〉ϕ) ∨ (〈π2〉ϕ) (4.32)

〈π∗〉ϕ ≡ ϕ ∨ 〈π;π∗〉ϕ (4.33)

〈ϕ1?〉ϕ2 ≡ ϕ1 ∧ ϕ2 . (4.34)

4.2.1 Model-Checking

As with MSO, the main
application of PDL on trees is to

query treebanks (see e.g. Lai and
Bird, 2010).

The model-checking problem for PDL is rather easy to decide. Given a model
M = 〈W, ↓,→, (Pp)p∈A〉, we can compute inductively the satisfaction sets and
relations using standard algorithms. This is a P algorithm.

4.2.2 Satisfiability

See also (Blackburn et al., 2001,
Section 6.8) for a reduction from

a tiling problem and (Harel
et al., 2000, Chapter 8) for a

reduction from alternating Turing
machines.

Unlike the model-checking problem, the satisfiability problem for PDL is rather
demanding: it is EXPTIME-complete.

Theorem 4.3 (Fischer and Ladner, 1979). Satisfiability for PDL is EXPTIME-hard.

As with wMSO, it is more convenient to work on binary trees t of the form
〈dom(t), ↓0, ↓1, (Pa)a∈A]{0,1}〉 that encode our tree structures. Compared with the
wMSO case, we add two atomic predicates 0 and 1 that hold on left and right
children respectively. The syntax of PDL over such models simply replaces ↓ and
→ by ↓0 and ↓1; as with wMSO in Section 4.1.2 we can interpret these relations in
PDL by

↓ def
= ↓0; ↓∗1 → def

= ↓1 (4.35)

and translate any PDL formula ϕ into a formula

ϕ′
def
= ϕ ∧ ([↑∗; ↓∗; ↓0]0 ∧ ¬1) ∧ ([↑∗; ↓∗; ↓1]1 ∧ ¬0) ∧ [↑∗; root?; ↓1]⊥ (4.36)

that checks that ϕ holds, that the 0 and 1 labels are correct, and verifies M, w |= ϕ
iff fcns(M), fcns(w) |= ϕ′. The conditions in (4.36) ensure that the tree we are
considering is the image of some tree structure by fcns: we first go back to the
root by the path ↑∗; root?, and then verify that the root does not have a right child.

Normal Form. Let us write

↑0
def
= ↓−1

0 ↑1
def
=↓−1

1 ;

then using the equivalences of Exercise 4.5 we can reason on PDL with a restricted
path syntax

α ::= ↓0 | ↑0 | ↓1 | ↑1 (atomic relations)

π ::= α | π;π | π + π | π∗ | ϕ? (path formulæ)

and using the dualities of (4.26), we can restrict node formulæ to be of form

ϕ ::= a | ¬a | > | ⊥ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈π〉ϕ | [π]ϕ . (node formulæ)

Lemma 4.4. For any PDL formula ϕ, we can construct an equivalent formula ϕ′ in
normal form with |ϕ′| = O(|ϕ|).

Proof sketch. The normal form is obtained by “pushing” negations and converses
as far towards the leaves as possible, and can result in the worst-case in doubling
the size of ϕ due to the extra ¬ and −1 at the leaves.

Logic and Linguistic Modelling 57

Fisher-Ladner Closure

The equivalences found in Exercise 4.6 and their duals allow to simplify PDL for-
mulæ into a reduced normal form we will soon see, which is a form of disjunctive
normal form with atomic propositions and atomic modalities for literals. In order
to obtain algorithmic complexity results, it will be important to be able to bound
the number of possible such literals, which we do now.

The Fisher-Ladner closure of a PDL formula in normal form ϕ is the smallest
set S of formulæ in normal form s.t.

1. ϕ ∈ S,

2. if ϕ1 ∨ ϕ2 ∈ S or ϕ1 ∧ ϕ2 ∈ S then ϕ1 ∈ S and ϕ2 ∈ S,

3. if 〈π〉ϕ′ ∈ S or [π]ϕ′ ∈ S then ϕ′ ∈ S,

4. if 〈π1;π2〉ϕ′ ∈ S then 〈π1〉〈π2〉ϕ′ ∈ S,

5. if [π1;π2]ϕ′ ∈ S then [π1][π2]ϕ′ ∈ S,

6. if 〈π1 + π2〉ϕ′ ∈ S then 〈π1〉ϕ′ ∈ S and 〈π2〉ϕ′ ∈ S,

7. if [π1 + π2]ϕ′ ∈ S then [π1]ϕ′ ∈ S and [π2]ϕ′ ∈ S,

8. if 〈π∗〉ϕ′ ∈ S then 〈π〉〈π∗〉ϕ′ ∈ S,

9. if [π∗]ϕ′ ∈ S then [π][π∗]ϕ′ ∈ S,

10. if 〈ϕ1?〉ϕ2 ∈ S or [ϕ1?]ϕ2 ∈ S then ϕ1 ∈ S.

We write FL(ϕ) for the Fisher-Ladner closure of ϕ.

Lemma 4.5. Let ϕ be a PDL formula in normal form. Its Fisher-Ladner closure is of
size |FL(ϕ)| ≤ |ϕ|.

�

;

;

?

ϕ1

∗

π1

π2

ϕ2

[ϕ1?;π∗1 ;π2]ϕ2

ϕ2

[π2]ϕ2

[π∗1][π2]ϕ2

[π1][π∗1][π2]ϕ2

[ϕ1?;π∗1][π2]ϕ2

[ϕ1?][π∗1][π2]ϕ2

ϕ1

1
5

3

3

3

9

3

3

5

3
10

Figure 4.3: The surjection σ from positions in ϕ
def
= [ϕ1?;π∗1;π2]ϕ2 to FL(ϕ)

(dashed), and the rules used to construct FL(ϕ) (dotted).

Proof. We construct a surjection σ between positions p in the term ϕ and the for-
mulæ in S:

• for positions p spanning a node subformula span(p) = ϕ1, we can map to ϕ1

(this corresponds to cases 1—3 and 10 on subformulæ of ϕ′);

Logic and Linguistic Modelling 58

• for positions p spanning a path subformula span(p) = π, we find the closest
ancestor spanning a node subformula (thus of form 〈π′〉ϕ1 or [π′]ϕ1). If π =
π′ we map p to the same 〈π′〉ϕ1 or [π′]ϕ1. Otherwise we consider the parent
position p′ of p, which is mapped to some formula σ(p′), and distinguish
several cases:

– for σ(p′) = 〈π1;π2〉ϕ2 we map p to 〈π1〉〈π2〉ϕ2 if span(p) = π1 and to
〈π2〉ϕ2 if span(p) = π2 (this matches case 4 and the further application
of 3);

– for σ(p′) = [π1;π2]ϕ2 we map p to [π1][π2]ϕ2 if span(p) = π1 and to
[π2]ϕ2 if span(p) = π2 (this matches case 5 and the further application
of 3);

– for σ(p′) = 〈π1 + π2〉ϕ2 and span(p) = πi with i ∈ {1, 2}, we map p to
〈πi〉ϕ2 (this matches case 6);

– for σ(p′) = [π1 + π2]ϕ and span(p) = πi with i ∈ {1, 2}, we map p to
[πi]ϕ2 (this matches case 7);

– for σ(p′) = 〈π∗〉ϕ2, span(p) = π and we map p to 〈π〉〈π∗〉ϕ2 (this
matches case 8);

– for σ(p′) = [π∗]ϕ2, span(p) = π and we map p to [π][π∗]ϕ2 (this matches
case 9).

The function σ we just defined is indeed surjective: we have covered every formula
produced by every rule. Figure 4.3 presents an example term and its mapping.

Reduced Formulæ

Reduced Normal Form. We try now to reduce formulæ into a form where any
modal subformula is under the scope of some atomic modality 〈α〉 or [α]. Given a
formula ϕ in normal form, this is obtained by using the equivalences of Exercise 4.6
and their duals, and by putting the formula into disjunctive normal form, i.e.

ϕ ≡
∨
i

∧
j

χi,j (4.37)

where each χi,j is of form

χ ::= a | ¬a | 〈α〉ϕ′ | [α]ϕ′ . (reduced formulæ)

Observe that all the equivalences we used can be found among the rules of the
Fisher-Ladner closure of ϕ:

Lemma 4.6. Given a PDL formula ϕ in normal form, we can construct an equivalent
formula

∨
i

∧
j χi,j where each χi,j is a reduced formula in FL(ϕ).

Two-Way Alternating Tree Automaton

The presentation follows mostly
Calvanese et al. (2009).

We finally turn to the construction of a tree automaton that recognises the models
of a normal form formula ϕ. To simplify matters, we use a powerful model for this
automaton: a two-way alternating tree automaton (2ATA) over finite ranked
trees.

Logic and Linguistic Modelling 59

Definition 4.7. A two-way alternating tree automaton (2ATA) is a tuple A =
〈Q,Σ, qi, F, δ〉whereQ is a finite set of states, Σ is a ranked alphabet with maximal
rank k, qi ∈ Q is the initial state, and δ is a transition function from pairs of states
and symbols (q, a) in Q×Σ to positive Boolean formulæ f in B+({−1, . . . , k} ×Q),
defined by the abstract syntax

f ::= (d, q) | f ∨ f | f ∧ f | > | ⊥ ,

where d ranges over {−1, . . . , k} and q over Q. For a set J ⊆ {−1, . . . , k} × Q
and a formula f , we say that J satisfies f if assigning > to elements of J and ⊥ to
those in {−1, . . . , k}×Q\J makes f true. A 2ATA is able to send copies of itself to
a parent node (using the direction −1), to the same node (using direction 0), or
to a child (using directions in {1, . . . , k}).

Given a labelled ranked ordered tree t over Σ, a run of A is a tree ρ labelled by
dom(t)×Q satisfying

1. ε is in dom(ρ) with ρ(ε) = (ε, qi),

2. if w is in dom(ρ), ρ(w) = (u, q) and δ(q, t(u)) = f , then there exists J ⊆
{−1, . . . , k} × Q of form J = {(d0, q0), . . . , (dn, qn)} s.t. J |= f and for all
0 ≤ i ≤ n we have

wi ∈ dom(ρ) ρ(wi) = (u′i, qi) u′i =

u(di − 1) if di > 0

u if di = 0

u′ where u = u′j otherwise

with each u′i ∈ dom(t).

A tree is accepted if there exists a run for it.

Theorem 4.8 (Vardi, 1998). Given a 2ATA A = 〈Q,Σ, qi, F, δ〉, deciding the empti-
ness of L(A) can be done in deterministic time |Σ| · 2O(k|Q|3).

Automaton of a Formula Let ϕ be a formula in normal form. We want to con-
struct a 2ATA Aϕ = 〈Q,Σ, qi, δ〉 that recognises exactly the closed models of ϕ,
so that we can test the satisfiability of ϕ by Theorem 4.8. We assume wlog. that
A ⊆ Sub(ϕ). We define

Q
def
= FL(ϕ)] {qi, qϕ, q#}

Σ
def
= {#(0),#(2)} ∪ {a(2) | a ⊆ A] {0, 1}} .

The transitions of Aϕ are based on formula reductions. Let ϕ′ be a formula in
FL(ϕ) which is not reduced: then we can find an equivalent formula

∨
i

∧
j χi,j

where each χi,j is reduced. We define accordingly

δ(ϕ′, a)
def
=
∨
i

∧
j

(0, χi,j)

Logic and Linguistic Modelling 60

for all such ϕ′ and all a ⊆ A, thereby staying in place and checking the various
χi,j . For a reduced formula χ in FL(ϕ), we set for all a ⊆ A] {0, 1}

δ(p, a)
def
=

{
> if p ∈ a
⊥ otherwise

δ(¬p, a)
def
=

{
⊥ if p ∈ a
> otherwise

δ(〈↓0〉ϕ′, a)
def
= (1, ϕ′) δ([↓0]ϕ′, a)

def
= (1, ϕ′) ∨ (1, q#)

δ(〈↓1〉ϕ′, a)
def
= (2, ϕ′) δ([↓1]ϕ′, a)

def
= (2, ϕ′) ∨ (2, q#)

δ(〈↑0〉ϕ′, a)
def
= (−1, ϕ′) ∧ (0, 0) δ([↑0]ϕ′, a)

def
= ((−1, ϕ′) ∧ (0, 0)) ∨ (−1, q#) ∨ (0, 1)

δ(〈↑1〉ϕ′, a)
def
= (−1, ϕ′) ∧ (0, 1) δ([↑1]ϕ′, a)

def
= ((−1, ϕ′) ∧ (0, 1)) ∨ (−1, q#) ∨ (0, 0)

where the subformulæ 0 and 1 are used to check that the node we are coming from
was a left or a right son and q# checks that the node label is #:

δ(q#,#)
def
= > δ(q#, a)

def
= ⊥ .

The initial state qi checks that the root is labelled # and has ϕ for left son and
another # for right son:

δ(qi,#)
def
= (1, qϕ) ∧ (2, q#) δ(qi, a)

def
= ⊥

δ(qϕ, a)
def
= δ(ϕ, a) ∧ (2, q#) .

For any state q beside qi and q#

δ(q,#)
def
= ⊥ .

Corollary 4.9. Satisfiability of PDL can be decided in EXPTIME.

Proof sketch. Given a PDL formula ϕ, by Lemma 4.4 construct an equivalent for-
mula in normal form ϕ′ with |ϕ′| = O(|ϕ|). We then construct Aϕ′ with O(|ϕ|)
states by Lemma 4.5 and an alphabet of size at most 2O(|ϕ|), s.t. t̄ is accepted by
Aϕ′ iff t, root |= ϕ. By Theorem 4.8 we can decide the existence of such a tree
t̄ in time 2O(|ϕ|3). The proof carries to satisfiability on tree structures rather than
binary trees.

4.2.3 Expressiveness

Monadic Transitive Closure PDL can be expressed in FO[TC1]See ten Cate and Segoufin
(2010).

the first-order
logic with monadic transitive closure. The translation can be expressed by in-
duction, yielding formulæ STx(ϕ) with one free variable x for node formulæ and
STx,y(π) with two free variables for path formulæ, such that M |=x 7→w STx(ϕ) iff

Logic and Linguistic Modelling 61

w ∈ JϕKM and M |=x 7→u,y 7→v STx,y(π) iff u JπKM v:

STx(a)
def
= Pa(x)

STx(>)
def
= (x = x)

STx(¬ϕ)
def
= ¬STx(ϕ)

STx(ϕ1 ∨ ϕ2)
def
= STx(ϕ1) ∨ STx(ϕ2)

STx(〈π〉ϕ)
def
= ∃y.STx,y(π) ∧ STy(ϕ)

STx,y(↓)
def
= x ↓ y

STx,y(→)
def
= x→ y

STx,y(π
−1)

def
= STy,x(π)

STx,y(π1;π2)
def
= ∃z.STx,z(π1) ∧ STz,y(π2)

STx,y(π1 + π2)
def
= STx,y(π1) ∨ STx,y(π2)

STx,y(π
∗)

def
= [TCu,v STu,v(π)](x, y)

STx,y(ϕ?)
def
= (x = y) ∧ STx(ϕ) .

It is known that wMSO is strictly more expressive than FO[TC1] (ten Cate and
Segoufin, 2010, Theorem 2). Ten Cate and Segoufin also provide an extension of
PDL with a “within” modality that extracts the subtree at the current node; they
show that this extension is exactly as expressive as FO[TC1]. It is open whether
FO[TC1] is strictly more expressive than PDL without this extension.

Exercise 4.7 (Within modality). Let M = 〈W, ↓,→, (Pa)a∈A〉 be a tree structure
and p be a point in M. We define the substructure at p, noted M � p, as the

substructure induced by W � p
def
= {w ∈ W | p ↓? w}. The semantics of a PDLW

formula Wϕ is defined by M, w |= Wϕ iff M � w,w |= ϕ.
Propose (∗∗)a translation of PDLW formulæ into FO[TC1].

Conditional PDL A particular fragment of PDL called conditional PDL (cPDL)
is equivalent to FO[↓?,→?]: See Marx (2005).

π ::= α | α∗ | π;π | π + π | (α;ϕ?)∗ | ϕ? (conditional paths)

The translation to FO[↓?,→?] is as above, with

STx,y(↓)
def
= x ↓? y ∧ x 6= y ∧ ∀z.x ↓? z ∧ x 6= z ⊃ y ↓? z

STx,y(↓∗)
def
= x ↓? y

STx,y((α;ϕ?)∗)
def
= ∀z.(STx,z(α

∗) ∧ STz,y(α
∗)) ⊃ STz(ϕ) .

An example of a PDL formula that is not first-order definable, and thus not
definable in cPDL, is [(↓; ↓)∗]a, which ensures that all the nodes situated at an even
distance from the root are labelled by a.

Exercise 4.8. Express (∗)the formulæ (4.12)–(4.21) in cPDL.

Logic and Linguistic Modelling 62

4.3 Parsing as Intersection

TheSee Boral and Schmitz (2013) for
the complexity of PDL parsing
when the shape and labels of

trees is constrained by a CFG.

parsing as intersection framework readily applies to model-theoretic syntax.
Indeed, in both the wMSO and the PDL cases, given a formula ϕ, we can effectively
construct a non-deterministic tree automatonAϕ that recognises the exactly closed
trees that satisfy ϕ. Given a sentence w to parse, it remains to intersect this tree
language L(Aϕ) with the set of closed binary trees with w as yield to recover the
set of parses of w:

Exercise 4.9. Fix(∗) a finite word w and a finite alphabet Γ of internal nodes. Define
a non-deterministic tree automaton that recognises the set of closed binary trees
with w as yield—the yield should here be understood with the ‘#’ symbols ignored.

Chapter 5

Mildly Context-Sensitive Syntax

Recall that context-sensitive languages (aka type-1 languages) are defined by
phrase structure grammars with rules of form λAρ → λαρ with A in N , λ, ρ in
V ∗, and α in V +. Their expressive power is equivalent to that of linear bounded
automata (LBA), i.e. Turing machines working in linear space. Such grammars are
not very useful from a computational viewpoint: membership is PSPACE-complete,
and emptiness is undecidable.

Still, for the purposes of constituent analysis of syntax, one would like to use
string- and tree-generating formalisms with greater expressive power than context-
free grammars. The rationale is twofold: See Pullum (1986).

• some natural language constructs are not context-free, the Swiss-German
account by Shieber (1985) being the best known example. Such fragments
typically involve so-called limited cross-serial dependencies, as in the lan-
guages {anbmcndm | n,m ≥ 0} or {ww | w ∈ {a, b}∗}.

• the class of regular tree languages is not rich enough to account for the
desired linguistic analyses (e.g. Kroch and Santorini, 1991, for Dutch).

This second argument is actually the strongest: the class of tree structures and
how they are combined—which ideally should relate to how semantics compose—
in context-free grammars are not satisfactory from a linguistic modeling point of
view.

Based on his experience with tree-adjoining grammars (TAGs) and weakly
equivalent formalisms (head grammars, a version of combinatory categorial gram-
mars, and linear indexed grammars; see Joshi et al., 1991), Joshi (1985) proposed
an informal definition of which properties a class of formal languages should have
for linguistic applications: mildly context-sensitive languages (MCSLs) were
“roughly” defined as the extensions of context-free languages that accommodate

1. limited cross-serial dependencies, while preserving

2. constant growth—a requisite nowadays replaced by semilinearity, which
demands the Parikh image of the language to be a semilinear subset of N|Σ|
(Parikh, 1966), and

3. polynomial time recognition.

A possible formal definition for MCSLs is the class of languages generated by mul-
tiple context-free grammars (MCFGs, Seki et al., 1991), or equivalently linear
context-free rewrite systems (LCFRSs, Weir, 1992), multi-component tree ad-
joining grammars (MCTAGs), and quite a few more.

63

Logic and Linguistic Modelling 64

Context-free languages

Tree-adjoining languages
(TAG, HG, CCG, LIG, . . .)

Well-nested mildly context-sensitive languages
(MCFGwn, Macro`, CCFG, ACG(2,3), . . .)

Mildly context-sensitive languages
(MCFG, LCFRS, MCTAG, ACG(2,4),. . .)

Indexed languages (IG, Macro, . . .)

Context-sensitive languages

Figure 5.1: Hierarchies between context-free and full context-sensitive languages.

We will however concentrate on two strict subclasses: tree adjoining languages
(TALs, Section 5.1) and well-nested MCSLs (wnMCSLs, Section 5.2); Figure 5.1 il-
lustrates the relationship between these classes. As in Section 3.1.1 our main focus
will be on the corresponding tree languages, representing linguistic constituency
analyses and sentence composition.

5.1 Tree Adjoining Grammars

Tree-adjoining grammars are a restricted class of term rewrite systems (we will
see later that they are more precisely a subclass of the linear monadic context-
free tree grammars). They have first been defined by Joshi et al. (1975) and
subsequentely extended in various ways; see Joshi and Schabes (1997) for the
“standard” definitions.

Definition 5.1 (Tree Adjoining Grammars). A tree adjoining grammar (TAG) is
a tuple G = 〈N,Σ, Tα, Tβ, S〉 where N is a finite nonterminal alphabet, Σ a finite
terminal alphabet and N ∩ Σ = ∅, Tα and Tβ two finite sets of finite initial and
auxiliary trees, where Tα ∪ Tβ is called the set of elementary trees, and S in N a
start symbol.

Given the nonterminal alphabet N , define

• N↓ def
= {A↓ | A ∈ N} the ranked alphabet of substitution labels, all with

arity 0,

• Nna def
= {Ana | A ∈ N} the unranked alphabet of null adjunction labels,

• N?
def
= {A? | A ∈ N ∪ Nna} the ranked alphabet of foot variables, all with

arity 0.

In order to work on ranked trees, we confuse N with N>0, Σ with Σ0, and Nna

with Nna
>0 in the following. Then the set Tα∪Tβ of elementary trees is a set of trees

of height at least one. They always have a root labeled by a symbol in N ∪ Nna,
and we define accordingly rl(t) of a tree t as its unranked root label modulo na:

rl(t)
def
= A if there exists m in N>0, t(ε) = A(m) or t(ε) = Ana(m). Then

Logic and Linguistic Modelling 65

A↓

A

α

subst−−−→
A

α

A

A
β

A?

adj−−→

A
β

A

Figure 5.2: Schematics for the substitution and adjunction operations.

• Tα ⊆ T (N ∪ N↓ ∪ Nna ∪ Σ ∪ {ε(0)}) is a finite set of finite trees α with
nonterminal or null adjunction symbols as internal node labels, and terminal
symbols or ε or substitution symbols as leaf labels;

• Tβ ⊆ T (N ∪ N↓ ∪ Nna ∪ Σ ∪ {ε(0)}, N?) trees β[A?] are defined similarly,
except for the additional condition that they should have exactly one leaf,
called the foot node, labeled by a variable A?, which has to match the root
label A = rl(β). The foot node A? acts as a hole, and the auxiliary tree is
basically a context.

The semantics of a TAG is that of a finite term rewrite system with rules (see
Figure 5.2)

RG
def
= {A↓ → α | α ∈ Tα ∧ rl(α) = A} (substitution)

∪ {A(m)(x1, . . . , xm)→ β[A(m)(x1, . . . , xm)] | m ∈ N>0, A
(m) ∈ Nm, β[A?] ∈ Tβ}

∪ {A(m)(x1, . . . , xm)→ β[Ana(m)(x1, . . . , xm)] | m ∈ N>0, A
(m) ∈ Nm, β[Ana

?] ∈ Tβ} .
(adjunction)

A derivation starts with an initial tree in Tα and applies rules from RG until no
substitution node is left:

LT (G)
def
= {h(t) | ∃t ∈ T (N ∪ Σ ∪ {ε(0)}), ∃α ∈ Tα, rl(α) = S ∧ α RG

==⇒? t}

is the tree language of G, where the na annotations are disposed of, thanks to an

alphabetic tree homomorphism h generated by h(Ana(m))
def
= A(m) for all Ana(m) of

Nna, and h(X)
def
= X for all X in N ∪ Σ ∪ {ε(0)}. The string language of G is

L(G)
def
= yield(LT (G))

the set of yields of all its trees.

Example 5.2. Figure 5.3 presents a tree adjoining grammar with

N = {S,NP,VP,VBZ,NNP,NNS,RB} ,
Σ = {likes,Bill ,mushrooms, really} ,
Tα = {α1, α2, α3} ,
Tβ = {β1} ,
S = S .

Its sole S-rooted initial tree is α1, on which one can substitute α2 or α3 in order to
get Bill likes mushrooms or mushrooms likes mushrooms; the adjunction of β1 on the

Logic and Linguistic Modelling 66

S

NP↓ VP

VBZ

likes

NP↓

NP

NNP

Bill

NP

NNS

mushrooms

VP

RB

really

VPna
?

(α1) (α2) (α3) (β1)

Figure 5.3: A tree adjoining grammar.

S

NP

NNP

Bill

VP

RB

really

VP

VBZ

likes

NP

NNS

mushrooms

α1[likes]

α2[Bill] β1[really] α3[mushrooms]

Figure 5.4: A derived tree and the corresponding derivation tree for the TAG of
Example 5.2.

VP node of α1 also yields Bill really likes mushrooms (see Figure 5.4) or mushrooms
really really really likes Bill. In the TAG literature, a tree in T (N ∪Nna∪Σ∪{ε(0)})
obtained through the substitution and adjunction operations is called a derived
tree, while a derivation tree records how the rewrites took place (see Figure 5.4
for an example; children of an elementary tree are shown in addressing order, with
plain lines for substitutions and dashed lines for adjunctions).

Example 5.3 (Copy Language). The copy language Lcopy
def
= {ww | w ∈ {a, b}∗}

is generated by the TAG of Figure 5.5 with N = {S}, Σ = {a, b}, Tα = {αε}, and
Tβ = {βa, βb}.

Exercise 5.1. Give(∗) a TAG for the language {anbmcndm | n,m ≥ 0}.

5.1.1 Linguistic Analyses Using TAGs

Starting in particular with Kroch and Joshi (1985)’s work, the body of literature on
linguistic analyses using TAGs and their variants is quite large. As significant evi-
dence of the practical interest of TAGs, the XTAG project (XTAG Research Group,
2001) has published a large TAG for English, with a few more than 1,000 ele-
mentary unanchored trees. This particular variant of TAGs, a lexicalized, feature-
based TAG, uses finite feature structures and lexical anchors. We will briefly
survey the architecture of this grammar, and give a short account of it how treats
some long-distance dependencies in English.

Lexicalized Grammar

A TAG is lexicalized if all its elementary trees have at least one terminal symbol
as a leaf. In linguistic modeling, it will actually have one distinguished termi-
nal symbol, called the anchor, plus possibly some other terminal symbols, called

Logic and Linguistic Modelling 67

S

ε

Sna

a S

Sna
? a

Sna

b S

Sna
? b

(αε) (βa) (βb)

Figure 5.5: A TAG for Lcopy.

coanchors. An anchor serves as head word for at least a part of the elementary
tree, as likes for α1 in Figure 5.3. Coanchors serve for particles, prepositions, etc.,
whose use is mandatory in the syntactic phenomenon modeled by the elementary
tree, as by for α5 in Figure 5.6.

Subcategorization Frames A more principled organization of
the trees for subcategorization
frames and their various
instantiations can be obtained
thanks to a meta grammar
describing the set of elementary
trees (see e.g. Crabbé, 2005).

Each elementary tree then instantiates a subcate-
gorization frame for its anchor, i.e. specifications of the number and categories of
the arguments of a word. For instance, to like is a transitive verb taking a NP sub-
ject and a NP complement, as instantiated by α1 in Figure 5.3; similarly, to think
takes a clausal S complement, as instantiated by β2 in Figure 5.6. These first two
examples are canonical instantiations of the subcategorization frames of to like
and to think, but there are other possible instantiations, for instance interrogative
with α4 or passive with α5 for to like.

Example 5.4. Extend the TAG of Figure 5.3 with the trees of Figure 5.6. This new
grammar is now able to generate

mushrooms are liked by Bill
mushrooms think Bill likes Bill
who does Bill really think Bill really likes

In a feature-based grammar, both the obligatory adjunction of a single β3 on the
S node of α4, and that of a single β4 on the VP node of α5 are controlled through
the feature structures, and there is no overgeneration from this simple grammar.

Syntactic Lexicon In practice, elementary trees as the ones of Figure 5.3 are not
present as such in the XTAG grammar. It rather contains unanchored versions of
these trees, with a specific marker � for the anchor position. For instance, α2 in
Figure 5.3 would be stored as a context NP(NNP(�)) and enough information to
know that Bill anchors this tree.

See Schabes and Shieber (1994)
for an alternative definition of
adjunction, which yields more
natural derivation trees. Among
the possible interfaces to
semantics, let us mention the use
of feature structures (Gardent
and Kallmeyer, 2003; Kallmeyer
and Romero, 2004), or better a
mapping from the derivation
structures to logical ones
(de Groote, 2001). See also
(Kallmeyer and Kuhlmann,
2012) on the extraction of
dependency analyses from TAG
derivations.

The anchoring information is stored in a syntactic lexicon associating with each
lexical entry classes of trees that it anchors. The XTAG project has developed a
naming ontology for these classes based on subcategorization frame and type of
construction (e.g. canonical, passive, . . .).

Long-Distance Dependencies

Let us focus on α4 in Figure 5.6. The “move” of the object NP argument of likes
into sentence-first position as a WhNP is called a long-distance dependency. Ob-
serve that a CFG analysis would be difficult to come with, as this “move” crosses
through the VP subtree of think—see the dotted dependency in the derived tree of
Figure 5.7. We leave the question of syntax/semantics interfaces using derivation
trees to later chapters.

Logic and Linguistic Modelling 68

S

NP↓ VP

VB

think

Sna
?

Sna

WhNP↓ S

NP↓ VP

VBZ

likes

NP

ε

S

NP↓ VP

VBD

liked

PP

IN

by

NP↓

WhNP

WP

who

Sna

VBZ

does

Sna
?

VP

VBP

are

VPna
?

(β2) (α4) (α5)

(α6) (β3) (β4)

Figure 5.6: More elementary trees for the tree adjoining grammar of Example 5.2.

5.1.2 Background: Context-Free Tree Grammars

Context-free tree languages are an extension of regular tree languages proposed
by Rounds (1970):

Definition 5.5 (Context-Free Tree Grammars).See Gécseg and Steinby (1997,
Section 15) and Comon et al.

(2007, Section 2.5). Regarding
string languages, the set

yield(L(G)) of CFTGs
characterizes the class of indexed

languages (Aho, 1968; Fischer,
1968). Context-free tree

languages are also defined
through top-down pushdown

tree automata (Guessarian,
1983).

A context-free tree grammar
(CFTG) is a tuple G = 〈N,F , S,R〉 consisting of a ranked nonterminal alphabet N ,
a ranked terminal alphabet F , an axiom S(0) in N0, and a finite set of rules R of
form A(n)(y1, . . . , yn)→ e with e ∈ T (N ∪ F ,Yn) where Y is an infinite countable
set of parameters. The language of G is defined as

L(G)
def
= {t ∈ T (F) | S(0) R

=⇒? t}.

Observe that a regular tree grammar is simply a CFTG where every nontermi-
nal is of arity 0.

Example 5.6 (Squares). The CFTG with rules

S → A(a, f(a, f(a, a)))

A(y1, y2)→ A(f(y1, y2), f(y2, f(a, a))) | y1

has {an2 | n ≥ 1} for yield(L(G)): Note that

n−1∑
i=0

2i+ 1 = n+ 2

n−1∑
i=0

i = n2 (5.1)

and that if S =⇒n A(t1, t2), then yield(t1) = an
2

and yield(t2) = a2n+1.

Example 5.7 (Non-primes). The CFTG with rules

S → A(f(a, a))

A(y)→ A(f(y, a)) | B(y)

B(y)→ f(y,B(y)) | f(y, y)

Logic and Linguistic Modelling 69

S

WhNP

WP

who

S

VBZ

does

S

NP

NNP

Bill

VP

VB

think

S

NP

NNP

Bill

VP

RB

really

VP

VBZ

likes

NP

ε

α4[likes]

α6[who] β2[think]

α2[Bill] β3[does]

α2[Bill] β1[really]

Figure 5.7: Derived and derivation trees for Who does Bill think Bill really likes?
using the TAG of Figures 5.3 and 5.6.

has {an | n ≥ 2 is not a prime} for yield(L(G)): in a derivation

S =⇒ A(f(a, a)) =⇒m A(t) =⇒ B(t) =⇒n C[B(t)] =⇒ t′

with t′ in T (F), we have yield(t) = a2+m, yield(C[B(t)]) = a(2+m)n, and finally
yield(t′) = a(2+m)(n+1).

Exercise 5.2 (Powers of 2). Give (∗)a CFTG with yield(L(G)) = {anba2n | n ≥ 1}.

Exercise 5.3 (Normal Form). Show (∗)that any CFTG can be put in a normal form
where every rule in R is either of form A(n)(y1, . . . , yn) → a(n)(y1, . . . , yn) with a
in Fn or of form A(n)(y1, . . . , yn)→ e with e in T (N,Yn).

IO and OI Derivations

If See Fischer (1968).we see derivations in a CFTG as evaluation in a recursive program with non-
terminals are functions, a natural way to define the semantics of a nonterminal
A(n) is for them to take fully derived trees in T (F) as parameters, i.e. to use call-
by-value semantics, or equivalently inside-out (IO) evaluation of the rewrite rules,
i.e. evaluation starting from the innermost nonterminals. The dual possibility is to
consider outside-in (OI) evaluation, which corresponds to call-by-name semantics.
Formally, for a set of rewrite rules R,

IO
=⇒ def

=
R
=⇒ ∩ {(C[A(n)(t1, . . . , tn)], C[t]) | C ∈ C(N ∪ F), A(n) ∈ Nn, t1, . . . , tn ∈ T (F)}

OI
=⇒ def

=
R
=⇒ ∩ {(C[A(n)(t1, . . . , tn), tn+1, tn+m−1], C[t, tn+1, . . . , tn+m−1])

| m ≥ 1, C ∈ Cm(F), A(n) ∈ Nn, t1, . . . tn+m−1 ∈ T (N ∪ F)} .

Example 5.8 (IO vs. OI). Consider the CFTG with rules

S → A(B) A(y)→ f(y, y)

B → g(B) B → a .

Logic and Linguistic Modelling 70

Then OI derivations are all of form

S
OI
=⇒ A(B)

f
=⇒
OI

(B,B)
OI
=⇒n+m f(gm(a), gn(a))

for some m,n in N, whereas the IO derivations are all of form

S
IO
=⇒ A(B)

IO
=⇒n A(gn(a))

IO
=⇒ f(gn(a), gn(a)) .

The two modes of derivation give rise to two tree languages LOI(G) and LIO(G),
both obviously included in L(G).

Theorem 5.9 (Fischer, 1968). For any CFTG G, LIO(G) ⊆ LOI(G) = L(G).

As seen with Example 5.8, the case LIO(G) (LOI(G) can occur. Theorem 5.9
shows that can assume OI derivations whenever it suits us; for instance, a basic
observation is that OI derivations on different subtrees are independent:

Lemma 5.10. Let G = 〈N,F , S,R〉. If t1, . . . , tn are trees in T (N∪F), C is a context
in Cn(F), and t = C[t1, . . . , tn]

R
=⇒m t′ for some m, then there exist m1, . . . ,mn in N

and t′1, . . . , t
′
n in T (N ∪F) s.t. ti

R
=⇒mi t′i, m = m1 + · · ·+mn, and t′ = C[t′1, . . . , t

′
n].

Proof. Let us proceed by induction on m. For the base case, the lemma holds
immediately for m = 0 by choosing mi = 0 and t′i = ti for each 1 ≤ i ≤ n.

For the induction step, consider a derivation t = C[t1, . . . , tn]
R
=⇒m t′

R
=⇒ t′′. By

induction hypothesis, we find m1, . . . ,mn and t′1, . . . , t
′
n with ti

R
=⇒mi t′i, m =∑n

i=1mi, and t′ = C[t′1, . . . , t
′
n]

R
=⇒ t′′. Since C ∈ Cn(F) is a linear term devoid of

nonterminal symbols, the latter derivation step stems from a rewrite occurring in
some t′i subtree. Thus ti

R
=⇒mi+1 t′′i for some t′′i s.t. t′′ = C[t′1, . . . , t

′′
i , . . . , t

′
n].

In contrast with Theorem 5.9, if we consider the classes of tree languages that
can be described by CFTGs using IO and OI derivations, we obtain incomparable
classes (Fischer, 1968).

5.1.3 TAGs as Context-Free Tree Grammars

Tree adjoining grammars can be seen as a special case of context-free tree gram-
mars with a few restrictions on the form of its rewrite rules. This is a folklore re-
sult, which was stated (at least) by Mönnich (1997), Fujiyoshi and Kasai (2000),
and Kepser and Rogers (2011), and which is made even more obvious with the
“rewriting”-flavoured definition we gave for TAGs.

Translation from TAGs to CFTGs Given a TAG G = 〈N,Σ, Tα, Tβ, S〉, we con-
struct a CFTG G′ = 〈N ′,F , S↓, R ∪R′〉 with

N ′
def
= N↓ ∪ {Ā(1) | A ∈ N}

F def
= Σ0 ∪ {ε(0)} ∪N>0

R
def
= {A↓ → τ(α) | α ∈ Tα ∧ rl(α) = A}
∪ {Ā(1)(y)→ τ(β)[Ā(1)(y)] | β[A?] ∈ Tβ}
∪ {Ā(1)(y)→ τ(β)[y] | β[Ana

?] ∈ Tβ}

R′
def
= {Ā(1)(y)→ y | Ā(1) ∈ N̄}

Logic and Linguistic Modelling 71

where τ : T (∆∪{�})→ T (∆′∪{�}) for ∆
def
= N↓∪Nna

>0∪N∪Σ0 and ∆′
def
= N ′∪F

is a tree homomorphism generated by

τ(A(m)(x1, . . . , xm))
def
= Ā(1)(A(m)(x1, . . . , xm))

τ(Ana(m))
def
= A(m)(x1, . . . , xm)

and the identity for the other cases (i.e. for symbols in N↓ ∪ Σ0 ∪ {ε,�}).

Example 5.11. Consider again the TAG of Figure 5.5 for the copy language: we
obtain G′ = 〈N ′,F , S↓, R ∪R′〉 with N ′ = {S↓, S̄}, F = {S, a, b, ε}, and rules

R = {S↓ → S̄(S(ε)), (corresponding to αε)

S̄(y)→ S(a, S̄(S(y, a))), (corresponding to βa)

S̄(y)→ S(b, S̄(S(y, b)))} (corresponding to βb)

R′ = {S̄(y)→ y} .

Proposition 5.12. LT (G) = L(G′).

Proof of LT (G) ⊆ L(G′). We first prove by induction on the length of derivations:

Claim 5.12.1. For all trees t in T (∆), t
RG
==⇒? t′ implies t′ is in T (∆) and τ(t)

R
=⇒?

τ(t′).

Proof of Claim 5.12.1. That T (∆) is closed under RG is immediate. For the second
part of the claim, we only need to consider the case of a single derivation step:

For a substitution C[A↓] RG
==⇒ C[α] occurs iff α is in Tα with rl(α) = A, which

implies τ(C[A↓]) = τ(C)[τ(A↓)] = τ(C)[A↓] R
=⇒ τ(C)[τ(α)] = τ(C[α]).

For an adjunction C[A(m)(t1, . . . , tm)]
RG
==⇒ C[β[A(m)(t1, . . . , tm)]] occurs iff β[A?]

is in Tβ, implying

τ(C[A(m)(t1, . . . , tm)]) = τ(C)[Ā(1)(A(m)(τ(t1), . . . , τ(tm)))]

R
=⇒ τ(C)[τ(β)[Ā(1)(A(m)(τ(t1), . . . , τ(tm)))]]

= τ(C[β[A(m)(t1, . . . , tm)]]) .

The case of a tree β[Ana
?] is similar. [5.12.1]

Claim 5.12.2. If t is a tree in T (Nna ∪ F), then there exists a derivation τ(t)
R′
=⇒?

h(t) in G′.

Proof of Claim 5.12.2. We proceed by induction on t:

For a tree rooted by A(m):

τ(A(m)(t1, . . . , tm)) = Ā(1)(A(m)(τ(t1), . . . , τ(tm)))

R′
=⇒ A(m)(τ(t1), . . . , τ(tm))

R′
=⇒? A(m)(h(t1), . . . , h(tm)) (by ind. hyp.)

= h(A(m)(t1, . . . , tm)) .

Logic and Linguistic Modelling 72

For a tree rooted by Ana(m):

τ(Ana(m)(t1, . . . , tm)) = A(m)(τ(t1), . . . , τ(tm))

R′
=⇒? A(m)(h(t1), . . . , h(tm)) (by ind. hyp.)

= h(Ana(m)(t1, . . . , tm)) .

The case of a tree rooted by a in Σ ∪ {ε} is trivial. [5.12.2]

For the main proof: Let t be a tree in LT (G); there exist t′ in T (Nna ∪ F) and

α in Tα with rl(α) = S s.t. α
RG
==⇒? t′ and t = h(t′). Then S↓ R

=⇒ τ(α)
R
=⇒? τ(t′)

according to Claim 5.12.1, and then τ(t′)
R′
=⇒? t removes all its nonterminals

according to Claim 5.12.2.

Proof of L(G′) ⊆ LT (G). We proceed similarly for the converse proof. We first need
to restrict ourselves to well-formed trees (and contexts): we define the set L ⊆
T (∆′ ∪ {�}) as the language of all trees and contexts where every node labeled
Ā(1) in N̄ has A(m) in N as the label of its daughter—L is defined formally in the
proof of the following claim:

Claim 5.12.3. The homomorphism τ is a bijection from T (∆ ∪ {�}) to L.

Proof of Claim 5.12.3. It should be clear that τ is injective and has a range in-
cluded in L. We can define τ−1 as a deterministic top-down tree transduction
from T (∆′ ∪ {�}) into T (∆ ∪ {�}) with L for domain, thus proving surjectivity:
Let T = 〈{q} ∪ {qA | A ∈ N},∆′ ∪ {�},∆ ∪ {�}, ρ, {q}〉 with rules

ρ = {q(A(1)(x))→ qA(x) | Ā(1) ∈ N̄}
∪ {qA(A(m)(x1, . . . , xm))→ A(m)(q(x1), . . . , q(xm)) | A(m) ∈ N}

∪ {q(A(m)(x1, . . . , xm))→ Ana(m)(q(x1), . . . , q(xm)) | A(m) ∈ N}
∪ {q(a(m)(x1, . . . , xm)→ a(m)(q(x1), . . . , q(xm)) | a(m) ∈ N↓ ∪ Σ ∪ {ε(0),�(0)}} .

We see immediately that JT K(t) = τ−1(t) for all t in L. [5.12.3]

Thanks to Claim 5.12.3, we can use τ−1 in our proofs. We obtain claims mirror-
ing Claim 5.12.1 and Claim 5.12.2 using the same types of arguments:

Claim 5.12.4. For all trees t in L, t R
=⇒? t′ implies t′ in L and τ−1(t)

RG
==⇒? τ−1(t′).

Claim 5.12.5. If t is a tree in L ∩ T (N̄ ∪ F), t′ a tree in T (F), and t R′
=⇒? t′, then

h(τ−1(t′)) = τ−1(t).

For the main proof, consider a derivation S↓ R
=⇒? t with t ∈ T (F) of G. We can

reorder this derivation so that S↓ R
=⇒ τ(α)

R
=⇒? τ(t′)

R′
=⇒? t for some α in Tα with

rl(α) = S and t′ in L ∩ T (N̄ ∪ F) (i.e. t′ does not contain any symbol from N↓).
By Claim 5.12.4, α

RG
==⇒? t′ and by Claim 5.12.5 h(t′) = τ−1(t). Since t belongs to

T (F), τ−1(t) = t, which shows that t belongs to LT (G).

Logic and Linguistic Modelling 73

From CFTGs to TAGs The converse direction is more involved, because TAGs as
usually defined have locality restrictions (in a sense comparable to that of CFGs
generating only local tree languages) caused by their label-based selection mech-
anisms for the substitution and adjunction rules. This prompted the definition of
non-strict definitions for TAGs, where root and foot labels of auxiliary trees do
not have to match, where tree selection for substitution and adjunction is made
through selection lists attached to each substitution node or adjunction site, and
where elementary trees can be reduced to a leaf or a foot node (which does not
make much sense for strict TAGs due to the selection mechanism); see Kepser and
Rogers (2011).

Putting these considerations aside, the essential fact to remember is that TAGs
are “almost” equivalent to linear, monadic CFTGs as far as tree languages are
concerned, and exactly for string languages: a CFTG is called

• linear if, for every rule A(n)(y1, . . . , yn) → e in R, the right-hand side e is
linear,

• monadic if the maximal rank of a non-terminal is 1.

Exercise 5.4 (Non-Strict TAGs). Definition 5.1 (∗∗∗)is a strict definition of TAGs.

1. Read the definition of non-strict TAGs given by Kepser and Rogers (2011).
Show that strict and non-strict TAGs derive the same string languages.

2. Give a non-strict TAG for the regular tree language

S((A(a,�))∗ · b, (A(�, a))∗ · b) . (5.2)

3. Can you give a strict TAG for it? There are more trivial tree languages lying
beyond the reach of strict TAGs: prove that the two following finite lan-
guages are not TAG tree languages:

{A(a), B(a)} (5.3)

{a} (5.4)

Note that allowing distinct foot and root labels in auxiliary trees is useless
for these examples.

5.2 Well-Nested MCSLs

The class of well-nested MCSLs is at the junction of different extensions of context-
free languages that still lie below full context-sensitive ones Figure 5.1. This pro-
vides characterizations both in terms of See (Kuhlmann, 2013) for

related definitions in terms of
dependency syntax.• well-nested multiple context-free grammars (or equivalently well-nested

linear context-free rewrite systems) (Kanazawa, 2009), and in terms of

• linear macro grammars (Seki and Kato, 2008), a subclass of the macro
grammars of Fischer (1968), also characterized via linear context-free tree
grammars (Rounds, 1970) or linear macro tree transducers (Engelfriet and
Vogler, 1985).

We concentrate on this second view.

Logic and Linguistic Modelling 74

5.2.1 Linear CFTGs

As already seen with tree adjoining grammars, the case of linear CFTGs is of
particular interest. Intuitively, the relevance of linearity for linguistic modeling is
that arguments in a subcategorization frame have a linear behaviour: they should
appear exactly the stated number of times (by contrast, modifiers can be added
freely).

Linear CFTGs enjoy a number of properties. For instance, unlike the general
case, for linear CFTGs the distinction between IO and OI derivations is irrelevant:See Kepser and Mönnich (2006).

Proposition 5.13. Let G = 〈N,F , S,R〉 be a linear CFTG. Then LIO(G) = LOI(G).

Proof. Consider a derivation S R
=⇒? t in a linear CFTG. Thanks to Theorem 5.9, we

can assume this derivation to be OI. Let us pick the last non-IO step within this OI
derivation:

S
OI
=⇒? C[A(n)(e1, . . . , en)]
rA=⇒ C[eA{y1 ← e1, . . . , yn ← en}]
IO
=⇒? t

using some rule rA : A(n)(y1, . . . , yn) → eA, where an ei contains a nonterminal.
By Lemma 5.10, we can “pull” all the independent rewrites occurring after this

rA=⇒
so that they occur before the

rA=⇒ rewrite, so that the next rewrite occurs within
the context C. Since everything after this

rA=⇒ is IO, this rewrite has to involve an
innermost nonterminal, thus a nonterminal that was not introduced in eA, but one
that already appeared in some ei: in the context C:

eA{y1 ← e1, . . . , yi ← C ′[B(m)(e′1, . . . , e
′
m)], . . . , yn ← en}

rB=⇒ eA{y1 ← e1, . . . , yi ← C ′[eB{x1 ← e′1, . . . , xm ← e′m}], . . . , yn ← en}

which is possible thanks to linearity: in general, there is no way to force the various
copies of ei to use the same rewrite for B(m). Now this sequence is easily swapped:
in the context C:

A(n)(e1, . . . , C
′[B(m)(e′1, . . . , e

′
m)], . . . , en)

rB=⇒ A(n)(e1, . . . , C
′[eB{x1 ← e′1, . . . , xm ← e′m}], . . . , en)

rA=⇒ eA{y1 ← e1, . . . , yi ← C ′[eB{x1 ← e′1, . . . , xm ← e′m}], . . . , yn ← en} .

Repeating this operation for every nonterminal that occurred in the ei’s yields a
derivation of the same length for S R

=⇒? t with a shorter OI prefix and a longer IO
suffix. Repeating the argument at this level yields a full IO derivation.

Proposition 5.13 allows to apply several results pertaining to IO derivations to
linear CFTGs. A simple one is an alternative semantics for IO derivations in a CFTG
G = 〈N,F , S,R〉: the semantics of a nonterminal A(n) can be recast as a subset of
the relation JA(n)K ⊆ (T (F))n+1:

JA(n)K(t1, . . . , tn)
def
=

⋃
(A(n)(y1,...,yn)→e)∈R

JeK(t1, . . . , tn)

Logic and Linguistic Modelling 75

where JeK ⊆ (T (F))n+1 is defined inductively for all subterms e in rule right-hand
sides—with n variables in the corresponding full term—by

Ja(m)(e1, . . . , em)K(t1, . . . , tn)
def
= {a(m)(t′1, . . . , t

′
m) | ∀1 ≤ i ≤ m.t′i ∈ JeiK(t1, . . . , tn)}

JB(m)(e1, . . . , em)K(t1, . . . , tn)
def
= {JB(m)K(t′1, . . . , t

′
m) | ∀1 ≤ i ≤ m.t′i ∈ JeiK(t1, . . . , tn)}

JyiK(t1, . . . , tn)
def
= {ti} .

The consequence of this definition is

LIO(G) = JS(0)K .

This semantics will be easier to employ in the following proofs concerned with IO
derivations (and thus applicable to linear CFTGs).

5.2.2 Parsing as Intersection

This section relies heavily on
Maneth et al. (2007).

Let us look into more algorithmic issues and consider the parsing problem for
linear CFTGs. In order to apply the parsing as intersection paradigm, we need two
main ingredients: the first is emptiness testing (Proposition 5.14), the second is
closure under intersection with regular sets (Proposition 5.15). We actually prove
these results for IO derivations in CFTGs rather than for linear CFTGs solely.

Proposition 5.14 (Emptiness). Given a CFTG G, one can decide whether LIO(G) = ∅
in O(|G|).

Proof sketch. Given G = 〈N,F , S,R〉, we construct a context-free grammar G′ =
〈N ′, ∅, P, S〉 s.t. LIO(G) = ∅ iff L(G′) = ∅ and |G′| = O(|G|). Since emptiness of
CFGs can be tested in linear time, this will yield the result. We define for this

N ′
def
= N ∪

⋃
A(m)(y1,...,ym)→e∈R

Sub(e) ,

i.e. we consider both nonterminals and positions inside rule right hand sides as
nonterminals of G′, and

P ′
def
= {A→ e | A(m)(y1, . . . , ym)→ e ∈ R} (rules)

∪ {a(m)(e1, . . . , em)→ e1 · · · em | a ∈ F ∪ Y} (F - or Y-labeled positions)

∪ {A(m)(e1, . . . , em)→ Ae1 · · · em} . (N -labeled positions)

We noteN -labeled positions with arity information and nonterminal symbols with-
out in order to be able to distinguish them. Note that terminal- or variable-labeled
positions with arity 0 give rise to empty rules, whereas for nonterminal-labeled
positions of arity 0 we obtain unit rules.

The constructed grammar is clearly of linear size; we leave the fixpoint induction

proof of X G′
=⇒? ε iff JXK 6= ∅ to the reader.

Proposition 5.15 (Closure under Intersection with Regular Tree Languages). Let
G be a (linear) CFTG with maximal nonterminal rank M and maximal number of
nonterminals in a right-hand side D, and A a DTA with |Q| states. Then we can con-
struct a (linear) CFTG G′ with LIO(G′) = LIO(G) ∩ L and |G′| = O(|G| · |Q|M+D+1).

Proof. Let G = 〈N,F , S,R〉 and A = 〈Q,F , δ, F 〉. We define G′ = 〈N ′,F , S′, R′〉
where

N ′
def
= {S′} ∪

⋃
m≤M

Nm ×Qm+1,

Logic and Linguistic Modelling 76

i.e. we add a new axiom and otherwise consider tuples of form 〈A(m), q0, q1, . . . , qm〉
as nonterminals of rank m,

R′
def
= {S′ → 〈S, qf 〉 | qf ∈ F}

∪ {〈A, q0, . . . , qm〉(m)(y1, . . . , ym)→ e′

| A(m)(y1, . . . , ym)→ e ∈ R ∧ e′ ∈ θq0q1···qm(e)},
where each θq0q1···qm is a nondeterministic translation of right-hand sides, under
the understanding that variable yi should hold a tree recognized by state qi and
the root should be recognized by q0:

θq0q1···qm(a(m)(e1, . . . , em))
def
= {a(m)(e′1, . . . , e

′
m) | ∃(q0, a, q

′
1, . . . , q

′
m) ∈ δ,

∀1 ≤ i ≤ m, e′i ∈ θq′iq1···qm(ei)}

θq0q1···qm(B(m)(e1, . . . , em))
def
= {〈B, q0, q

′
1, . . . , q

′
m〉(e′1, . . . , e′m) | ∀1 ≤ i ≤ m,

q′i ∈ Q ∧ e′i ∈ θq′iq1···qm(ei)}

θqiq1···qm(yi)
def
= {yi} .

The intuition behind this definition is that G′ guesses that the trees passed as yi
parameters will be recognized by state qi of A, leading to a tree generated by
A(m) and recognized by q0. A computationally expensive point is the translation
of nonterminals in the right-hand side, where we actually guess an assignment of
states for its parameters.

We can already check that G′ is constructed through at most |R| · |Q|M+1 calls
to θ translations, each allowing at most |Q|D choices for the nonterminals in the
argument right-hand side. In fine, each rule of G is duplicated at most |Q|M+D+1

times.
For a tuple of states q1, . . . , qm in Qm, let us define the relation Jq1 · · · qmK ⊆

(T (F))m as the cartesian product of the sets JqiK
def
= {t ∈ T (F) | qi

RT==⇒? t}. We
can check that, for all m ≤ M , all states q0, q1, . . . , qm of Q, and all nonterminals
A(m) of N ,

J〈A, q0, q1, . . . , qm〉K(Jq1 · · · qmK) = JA(m)K ∩ Jq0K .

This last equality proves the correctness of the construction.

In order to use these results for string parsing, we merely need to construct,
given a string w and a ranked alphabet F , the “universal” DTA with w as yield—it
has O(|w|2) states, thus we can obtain an O(|G| · |w|2(M+D+1)) upper bound for IO
parsing with CFTGs, even in the non linear case.

Chapter 6

Probabilistic Syntax

Probabilistic approaches to syntax and parsing are helpful on (at least) two differ-
ent grounds:

1. the first is ambiguity issues; in order to choose between the various possible
parses of a sentence, like the PP attachment ambiguity of Figure 3.2, we
can resort to several techniques: heuristics, semantic processing, and what
interests us in this section, probabilities learned from a corpus.

2. the second is robustness of the parser: rather than discarding a sentence
as agrammatical or returning a partial parse, a probabilistic parser with
smoothed probabilities will still propose several parses, with low probabili-
ties.

Smoothing and Hidden Variables See Pereira (2000).The relevance of statistical models of syntax
has been a subject of heated discussion: Chomsky (1957) famously wrote

(1) Colorless green ideas sleep furiously.
(2) Furiously sleep ideas green colorless.

. . . It is fair to assume that neither sentence (1) nor (2) (nor indeed
any parts of these sentences) has ever occurred in an English discourse.
Hence, in any statistical model for grammaticalness, these sentences
will be rules out on identical grounds as equally ‘remote’ from English.
Yet (1), though nonsensical, is grammatical, while (2) is not.

The main issue with this statement is the ‘in any statistical model’ bit, which actu-
ally assumes a rather impoverished statistical model, unable to assign a non-null
probability to unseen events. The current statistical models are quite capable of
handling them, mainly through two techniques:

smoothing which consists in assigning some weight to unseen events (and renor-
malizing probabilities). A very basic smoothing technique is called Laplace
smoothing, and simply adds 1 to the counts of occurrence of any unseen
event. Using such a technique over the Google books corpus from 1800 to
1954, Norvig trains a model where (1) is about 104 times more probable
than (2).

hidden variables where the model assumes the existence of hidden variables re-
sponsible for the observations. Pereira trains a model using the expectation
maximization method on newspaper text, where (1) is about 2.105 times
more probable than (2).

77

http://norvig.com/chomsky.html

Logic and Linguistic Modelling 78

We will not go much into the details of learning algorithms (which is the subject
of another course at MPRI), but rather look at the algorithmics of weighted models.

6.1 Weighted and Probabilistic CFGs

The models we consider are actually weighted models defined over semirings, for
which probabilities are only one particular case.

6.1.1 Background: Semirings and Formal Power Series

Semirings

A semiring 〈K,⊕,�, 0K, 1K〉 is endowed with two binary operations, an addition
⊕ and a multiplication � such that

• 〈K,⊕, 0K〉 is a commutative monoid for addition with 0K for neutral element,

• 〈K,�, 1K〉 is a monoid for multiplication with 1K for neutral element,

• multiplication distributes over addition, i.e. a � (b ⊕ c) = (a � b) ⊕ (a � c)
and (a⊕ b)� c = (a� c)⊕ (b� c) for all a, b, c in K,

• 0K is a zero for multiplication, i.e. a� 0K = 0K � a = 0K for all a in K.

A semiring is commutative if 〈K,�, 1K〉 is a commutative monoid.
Among the main semirings of interest are the

boolean semiring 〈B,∨,∧, 0, 1〉 where B = {0, 1},

probabilistic semiring 〈R≥0,+, ·, 0, 1〉 where R≥0 = [0,+∞) is the set of non-
negative reals (sometimes restricted to [0, 1] when in presence of a probabil-
ity distribution),

tropical semiring 〈R≥0] {+∞},min,+,+∞, 0〉,

rational semiring 〈Rat(∆∗),∪, ·, ∅, {ε}〉 where Rat(∆∗) is the set of rational sets
over some alphabet ∆. This is the only non-commutative example here.

Weighted Automata

A finite weighted automaton (or automaton with multiplicity, or K-automaton)
in a semiring K is a generalization of a finite automaton: A = 〈Q,Σ,K, δ, I, F 〉
where δ ⊆ Q×Σ×K×Q is a weighted transition relation, and I and F are maps
from Q to K instead of subsets of Q. A run

ρ = q0
a1,k1−−−→ q1

a2,k2−−−→ q2 · · · qn−1
an,kn−−−→ qn

defines a monomial JρK = kw where w = a1 · · · an is the word label of ρ and
k = I(q0)k1 · · · knF (qn) its multiplicity. The behavior JAK of A is the sum of the
monomials for all runs in A: it is a formal power series on Σ∗ with coefficients in
K, i.e. a map Σ∗ → K. The coefficient of a word w in JAK is denoted 〈JAK, w〉 and
is the sum of the multiplicities of all the runs with w for word label:

〈JAK, a1 · · · an〉 =
∑

q0
a1,k1−−−→q1··· qn−1

an,kn−−−→qn

I(q0)k1 · · · knF (qn) .

Logic and Linguistic Modelling 79

A matrix K-representation for A is 〈I, µ, F 〉, where I is seen as a row matrix in
K1×Q, the morphism µ : Σ∗ → KQ×Q is defined by µ(a)(q, q′) = k iff (q, a, k, q′) ∈
δ, and F is seen as a column matrix in KQ×1. Then There is a notion of K-rational

series, which coincide with the
K-recognizable ones
(Schützenberger, 1961).

〈JAK, w〉 = Iµ(w)F .

A series is K-recognizable if there exists a K-representation for it.
The support of a series JAK is supp(JAK) = {w ∈ Σ∗ | 〈JAK, w〉 6= 0K}. This

corresponds to the language of the underlying automaton of A.

Exercise 6.1 (Hadamard Product). Let K be a commutative semiring. Show (∗∗)that
K-recognizable series are closed under product: given two K-recognizable series
s and s′, show that s � s′ with 〈s� s′, w〉 = 〈s, w〉 � 〈s′, w〉 for all w in Σ∗ is
K-recognizable. What can you tell about the support of s� s′?

6.1.2 Weighted Grammars

Definition 6.1 (Weighted Context-Free Grammars). A weighted context-free gram-
mar The presentation of this section

follows closely Nederhof and
Satta (2008).

G = 〈N,Σ, P, S, ρ〉 over a semiring K (K-CFG) is a context-free grammar
〈N,Σ, P, S〉 along with a mapping ρ : P → K, which is extended in a natural way
into a morphism from 〈P ∗, ·, ε〉 to 〈K,�, 1K〉. The weight of a leftmost derivation
α

π
=⇒
lm

? β is then defined as ρ(π). Considering leftmost derivations
is only important if 〈K,�, 1K〉 is
non-commutative.

It would be natural to define the weight of a

sentential form γ as the sum of the weights ρ(π) with S π
=⇒
lm

? γ, i.e.

ρ(γ) =
∑

π∈P ∗,S
π

=⇒
lm

?γ

ρ(π) .

However this sum might be infinite in general, and lead to weights outside K. We
therefore restrict ourselves to acyclic K-CFGs, such that A =⇒+ A is impossible for
all A in N , ensuring that there exist only finitely many derivations for each sen-
tential form. An acyclic K-CFG G then defines a formal series JGK with coefficients
〈JGK, w〉 = ρ(w).

A K-CFG G is reduced if each nonterminal A in N\{S} is useful, which means
that there exist π1, π2 in P ∗, u, v in Σ∗, and γ in V ∗ such that S π1=⇒

lm

? uAγ
π2=⇒
lm

? uv

and ρ(π1π2) 6= 0K.
A R≥0-CFG G = 〈N,Σ, P, S, ρ〉 is a probabilistic context-free grammar (PCFG)

if ρ is a mapping P → [0, 1].

Exercise 6.2. A (∗∗)right linear K-CFG G has its productions in N × (Σ∗ ∪ Σ∗ · N).
Show that a series s over Σ is K-recognizable iff there exists an acyclic right linear
K-CFG for it.

6.1.3 Probabilistic Grammars

Definition 6.1 makes no provision on the kind of probability distributions defined
by a PCFG. We define here two such conditions, properness and consistency (Booth
and Thompson, 1973).

A PCFG is proper if for all A in N ,∑
p=A→α∈P

ρ(p) = 1 , (6.1)

Logic and Linguistic Modelling 80

i.e. ρ can be seen as a mapping from N to Disc({p ∈ P | p = A → α}), where
Disc(S) denotes the set of discrete distributions over S, i.e. {p : S → [0, 1] |∑

e∈S p(e) = 1}.

Partition Functions

The partition function Z maps each nonterminal A to

Z(A) =
∑

w∈Σ∗,A
π

=⇒
lm

?w

ρ(π) . (6.2)

A PCFG is convergent if

Z(S) <∞ ; (6.3)

in particular, it is consistent if

Z(S) = 1 , (6.4)

i.e. ρ defines a discrete probability distribution over the derivations of terminal
strings. The intuition behind proper inconsistent grammars is that some of the
probability mass is lost into infinite, non-terminating derivations.

Equation (6.2) can be decomposed using commutativity of multiplication into

Z(A) =
∑

p=A→α∈P
ρ(p) · Z(α) for all A in N (6.5)

Z(a) = 1 for all a in Σ] {ε} (6.6)

Z(Xβ) = Z(X) · Z(β) for all (X,β) in V × V ∗. (6.7)

This describes a monotone system of equations with the Z(A) for A in N as vari-
ables.

Example 6.2. Properness and consistency are two distinct notions. For instance,
the PCFG

S
q−→ S S

S
1−q−−→ a

is proper for all 0 ≤ q ≤ 1, but the equation x = qx2 + 1 − q has two roots 1 and
1−q
q , and thus if q ≤ 1

2 the grammar is consistent with Z(S) = 1, but otherwise

Z(S) = 1−q
q < 1. Conversely,

S
q/(1−q)−−−−−→ A

A
q−→ AA

A
1−q−−→ a

is improper but consistent for 1
2 < q < 1.

See Booth and Thompson (1973); Gecse and Kovács (2010) for ways to check
for consistency, and Etessami and Yannakakis (2009) for ways to compute Z(A).
In general, Z(A) has to be approximated:

Logic and Linguistic Modelling 81

Remark 6.3 (Etessami and Yannakakis, 2009, Theorem 3.2). The partition func-
tion of S can be irrational even when ρ maps productions to rationals in [0, 1]:

S
1/6−−→ S S S S S

S
1/2−−→ a .

The associated equation is x = 1
6x

5 + 1
2 , which has no rational root.

Normalization

Given Z(A) for all A in N , one can furthermore normalize any reduced conver-
gent PCFG G = 〈N,Σ, P, S, ρ〉 with Z(S) > 0 into a proper and consistent PCFG
G′ = 〈N,Σ, P, S, ρ′〉. Define for this

ρ′(p = A→ α) =
ρ(p)Z(α)

Z(A)
. (6.8)

Exercise 6.3. Show (∗)that in a reduced convergent PCFG with Z(S) > 0, for each
α in V ∗, one has 0 < Z(α) <∞. (This justifies that (6.8) is well-defined.)

Exercise 6.4. Show (∗)that G′ is a proper PCFG.

Proposition 6.4. The grammar G′ defined by (6.8) is consistent if G is reduced and
convergent.

Proof. We rely for the proof on the following claim:

Claim 6.4.1. For all Y in V , π in P ∗, and w in Σ∗ with Y π
=⇒
lm

? w,

ρ′(π) =
ρ(π)

Z(Y)
. (6.9)

Proof of Claim 6.4.1. Note that, because G is reduced, Z(Y) > 0 for all Y in V , so
all the divisions we perform are well-defined.

We prove the claim by induction over the derivation π. For the base case, in an
empty derivation π = ε, ρ′(ε) = ρ(ε) = 1 and Z(Y) = 1 since Y is necessarily a
terminal, hence the claim holds. For the induction step, consider a derivation pπ

for some production p = A→ X1 · · ·Xm: A
p

=⇒
lm

X1 · · ·Xm
π

=⇒
lm

? w. This derivation

can be decomposed using a derivationXi
πi=⇒
lm

? wi for each i, such that π = π1 · · ·πn
and w = w1 · · ·wn. By induction hypothesis, ρ′(πi) = ρ(πi)/Z(Xi). Hence

ρ′(pπ) = ρ′(p) ·
m∏
i=1

ρ′(πi)

=
ρ(p)Z(X1 · · ·Xm)

Z(A)
·
m∏
i=1

ρ′(πi) (by (6.8))

=
ρ(p)

Z(A)
·
m∏
i=1

Z(Xi) ·
m∏
i=1

ρ(πi)

Z(Xi)
(by ind. hyp.)

=
ρ(p)

Z(A)
·
m∏
i=1

ρ(πi)

=
ρ(pπ)

Z(A)
. [6.4.1]

Logic and Linguistic Modelling 82

Claim 6.4.1 shows that G′ is consistent, since

Z ′(S) =
∑

w∈Σ∗,S
π

=⇒
lm

?w

ρ′(π) =
∑

w∈Σ∗,S
π

=⇒
lm

?w

ρ(π)

Z(S)
=
Z(S)

Z(S)
= 1 .

Remark 6.5. Note that Claim 6.4.1 also yields for all w in Σ∗

ρ′(w) =
∑

S
π

=⇒
lm

?w

ρ′(π) =
∑

S
π

=⇒
lm

?w

ρ(π)

Z(S)
=
ρ(w)

Z(S)
, (6.10)

thus the ratios between derivation weights are preserved by the normalization
procedure.

Example 6.6. Considering again the first grammar of Example 6.2, if q > 1
2 , then

ρ′ with ρ′(p1) = q Z(S)2

Z(S) = 1− q and ρ′(p2) = q fits.

6.2 Learning PCFGs

We rely on an annotated corpus for supervised learning. We consider for this the
Penn Treebank (Marcus et al., 1993) as an example of such an annotated corpus,
made of n trees.

Maximum Likelihood Estimation Assuming the treebank to be well-formed, i.e.
that the labels of internal nodes and those of leaves are disjoint, we can collect
all the labels of internal tree nodes as nonterminals, all the labels of tree leaves
as terminals, and all elementary subtrees (i.e. all the subtrees of height one) as
productions. Introducing a new start symbol S′ with productions S′ → S for each
label S of a root node ensures a unique start symbol. The treebank itself can then
be seen as a multiset of leftmost derivations D = {π1, . . . , πn}.

Let C(p, π) be the count of occurrences of production p inside derivation π,
and C(A, π) =

∑
p=A→α∈P C(p, π). Summing over the entire treebank, we get

C(p,D) =
∑

π∈D C(p, π) and C(A,D) =
∑

π∈D C(A, π). The estimated probabil-
ity of a production is then (see e.g. Chi and Geman, 1998)

ρ(p = A→ α) =
C(p,D)

C(A,D)
. (6.11)

Exercise 6.5. Show(∗∗) that the obtained PCFG is proper and consistent.

SmoothingThe statistical distribution of
words in corpora can be

approximated by Zipf’s law (see
Manning and Schütze, 1999,

Section 1.4.3).

Maximum likelihood estimations are accurate if there are enough
occurrences in the training corpus. Nevertheless, some valid sequences of tags
or of pairs of tags and words will invariably be missing, and be assigned a zero
probability. Furthermore, the estimations are also unreliable for observations with
low occurrence counts—they overfit the available data.

The idea of smoothingSee Jurafsky and Martin (2009,
Section 4.5) and Manning and

Schütze (1999, Chapter 6).

is to compensate data sparseness by moving some of the
probability mass from the higher counts towards the lower and null ones. This
can be performed in rather crude ways (for instance add 1 to the counts on the
numerator of (6.11) and normalize, called Laplace smoothing), or more involved
ones that take into account the probability of observations with a single occurrence
(Good-Turing discounting).

Logic and Linguistic Modelling 83

Preprocessing the Treebank The PCFG estimated from a treebank is typically
not very good: the linguistic annotations are too coarse-grained, and nonterminals
do not capture enough context to allow for a precise parsing. Refining nontermi-
nals allows to capture some hidden state information from the treebank.

Refining Nonterminals. For instance, PP attachment ambiguities are typically
resolved as high attachments (i.e. to the VP) when the verb expects a PP comple-
ment, as with the following hurled. . . into construction, and a low attachment (i.e.
to the NP) otherwise, as in the following sip of . . . construction:

[NP He] [VP[VP hurled [NP the ball]] [PP into the basket]].
[NP She] [VP took [NP[NP a sip] [PP of water]]].

A PCFG cannot assign different probabilities to the attachment choices if the ex-
tracted rules are the same.

In practice, the tree annotations are refined in two directions: from the lexi-
cal leaves by tracking the head information, and from the root by remembering
the parent or grandparent label. This greatly increases the sets of nonterminals
and rules, thus some smoothing techniques are required to compensate for data
sparseness. Figure 6.1 illustrates this idea by associating lexical head and parent
information to each internal node. Observe that the PP attachment probability is
now specific to a production

VP[S, hurled ,VBD]→ VP[VP, hurled ,VBD] PP[VP, into, IN] ,

allowing to give it a higher probability than that of

VP[S, took ,VBD]→ VP[VP, took ,VBD] PP[VP, of , IN] .

S
[>,hurled ,VBD]

NP
[S,he,PRP]

PRP
[NP,he,PRP]

He

VP
[S,hurled ,VBD]

VP
[VP,hurled ,VBD]

VBD
[VP,hurled ,VBD]

hurled

NP
[VP,ball ,NN]

DT
[NP,the,DT]

the

NN
[NP,ball ,NN]

ball

PP
[VP,into,IN]

IN
[VP,into,IN]

into

NP
[PP,basket ,NN]

DT
[NP,the,DT]

the

NN
[NP,basket ,NN]

basket

Figure 6.1: A derivation tree refined with lexical and parent information.

Binary Rules. Another issue, which is more specific to the kind of linguistic
analyses found in the Penn Treebank, is that trees are mostly flat, resulting in a
very large number of long, different rules, like

VP→ VBP PP PP PP PP PP ADVP PP

for sentence

This mostly happens because we [VP go [PP from football] [PP in the fall] [PP to
lifting] [PP in the winter] [PP to football] [ADVP again] [PP in the spring]].

Logic and Linguistic Modelling 84

The WSJ part of the Penn Treebank yields about 17,500 distinct rules, causing
important data sparseness issues in probability estimations. A solution is to trans-
form the resulting grammar into quadratic form prior to probability estimation,
for instance by having rules

VP→ VBP VP’ VP’→ PP | PP VP’ | ADVP VP’ .

Parser Evaluation The usual measure of constituent parser performance is called
PARSEVAL (Black et al., 1991). It supposes that some gold standard derivation
trees are available for sentences, as in a test subcorpus of the Wall Street Jour-
nal part of the Penn Treebank, and compares the candidate parses with the gold
ones. The comparison is constituent-based: correctly identified constituents start
and end at the expected point and are labeled with the appropriate nonterminal
symbol. The evaluation measures the

labeled recall which is the number of correct constituents in the candidate parse
of a sentence, divided by the number of constituents in the gold standard
analysis of the sentence,

labeled precision which is the number of correct constituents in the candidate
parse of a sentence divided by the number of constituents in the same can-
didate parse.

Current probabilistic parsers on the WSJ treebank obtain a bit more than 90% pre-
cision and recall. Beware however that long sentences are often parsed incorrectly,
i.e. have at least one misparsed constituent.

6.3 Probabilistic Parsing as Intersection

We generalize in this section the intersective approach of Theorem 3.7. More pre-
cisely, we show how to construct a product grammar from a weighted grammar
and a weighted automaton over a commutative semiring, and then use a general-
ized version of Dijkstra’s algorithm due to Knuth (1977) to find the most probable
parse in this grammar.

6.3.1 Weighted Product

We generalize here Theorem 3.7 to the weighted case. Observe that it also answers
Exercise 6.1 since K-automata are equivalent to right-linear K-CFGs according to
Exercise 6.2.

Theorem 6.7. Let K be a commutative semiring, G = 〈N,Σ, P, S, ρ〉 an acyclic K-
CFG, and A = 〈Q,Σ,K, δ, I, F 〉 a K-automaton. Then the K-CFG
G′ = 〈{S′}] (N ×Q×Q),Σ, P ′, S′, ρ′〉 withWe abuse notation and write

A
k−→ α for a production

p = A→ α with ρ(p) = k. P ′
def
= {S′

I(qi)�F (qf)
−−−−−−−→ (S, qi, qf) | qi, qf ∈ Q}

∪ {(A, q0, qm)
k−→ (X1, q0, q1) · · · (Xm, qm−1, qm)

| m ≥ 1, A
k−→ X1 · · ·Xm ∈ P, q0, . . . , qm ∈ Q}

∪ {(a, q, q′) k−→ a | (q, a, k, q′) ∈ δ}

See Maletti and Satta (2009) for
a version of Theorem 6.7 that

works on weighted tree automata
instead of CFGs.

is acyclic and such that, for all w in Σ∗, 〈JG′K, w〉 = 〈JGK, w〉 � 〈JAK, w〉.

Logic and Linguistic Modelling 85

As with Theorem 3.7, the construction of Theorem 6.7 works in time O(|G| ·
|Q|m+1) with m the maximal length of a rule rightpart in G. Again, this complexity
can be reduced by first transforming G into quadratic form, thus yielding a O(|G| ·
|Q|3) construction.

Exercise 6.6. Modify (∗)the quadratic form construction of Lemma 3.8 for the
weighted case.

6.3.2 Most Probable Parse

The weighted CFG G′ constructed by Theorem 6.7 can be reduced by a generaliza-
tion of the usual CFG reduction algorithm to the weighted case. Here we rather
consider the issue of finding the best parse in this intersection grammar G′, as-
suming we are working on the probabilistic semiring—we could also work on the
tropical semiring.

Non Recursive Case The easiest case is that of a non recursive K-CFG G′, i.e.
where there does not exist a derivation A =⇒+ δAγ for any A in N and δ, γ in
V ∗ in the underlying grammar. This is necessarily the case with Theorem 6.7 if
G is acyclic and A has a finite support language. Then a topological sort of the
nonterminals of G′ for the partial ordering B ≺ A iff there exists a production
A → αBβ in P ′ with α, β in V ′∗ can be performed in linear time, yielding a total
order (N ′, <): A1 < A2 < · · · < A|N ′|. We can then compute the probability M(S′)
of the most probable parse by computing for j = 1, . . . , |N ′|

M(Aj) = max
A
k−→X1···Xm

k ·M(X1) · · ·M(Xm) (6.12)

in the probabilistic semiring, with M(a) = 1 for each a in Σ. The topological sort
ensures that the maximal values M(Xi) in the right-hand side have already been
computed when we use (6.12) to compute M(Aj).

Knuth’s Algorithm In the case of a recursive PCFG, the topological sort approach
fails. We can nevertheless use an extension of Dijkstra’s algorithm to weighted
CFGs proposed by Knuth (1977): see Algorithm 6.1.

Data: G = 〈N,Σ, P, S, ρ〉
foreach a ∈ Σ do1

M(a) = 12

D ←− Σ3

while D 6= V do4

foreach A ∈ V \D do5

ν(A)←− max
A
k−→X1···Xm s.t. X1,...,Xm∈D

k ·M(X1) · · ·M(Xm)6

A←− argmaxV \D ν(A)7

M(A)←− ν(A)8

D ←− D] {A}9

return M(S)10

Algorithm 6.1: Most probable derivation.

The set D ⊆ V is the set of symbols X for which M(X), the probability of the
most probable tree rooted in X, has been computed. Using a priority queue for

Logic and Linguistic Modelling 86

extracting elements of V \D in time log |N | at line 7, and tracking which produc-
tions to consider for the computation of ν(A) at line 6, the time complexity of the
algorithm is in O(|P | log |N |+ |G|).

The correctness of the algorithm relies on the fact that M(A) = ν(A) at line 8;
assuming the opposite, there must exist a shortest derivationB π

=⇒
lm

? w with ρ(π) >

ν(A) for some B 6∈ D. We can split this derivation into B
p

=⇒
lm

? X1 · · ·Xm and

Xi
πi=⇒
lm

? wi with w = w1 · · ·wm and π = pπ1 · · ·πm, thus with ρ(π) = ρ(p) ·
ρ(π1) · · · ρ(πm). If each Xi is already in D, then M(Xi) ≥ ρ(πi) for all i, thus
ρ(π) ≤ ν(B) computed at line 6, and finally ρ(π) ≤ ν(B) ≤ ν(A) by line 8—a
contradiction. Therefore there must be one Xi not in D for some i, but in that
case ρ(πi) ≥ ρ(π) > ν(A) and πi is strictly shorter than π, a contradiction.

6.3.3 Most Probable String

Section inspired by de la Higuera
and Oncina (2011, 2013).

We have just seen that the algorithms for the Boolean case are rather easy to ex-
tend in order to handle general (commutative) semirings, including the probabilis-
tic semiring. Let us finish with an example showing that some problems become
hard.

Consider the following decision problems:

Most Probable String (MPS)

input a PCFG G over Σ with rational weights (coded in binary) and a rational p
in [0, 1] (also in binary);

question is there a string w in Σ∗ s.t. 〈JGK, w〉 ≥ p?

Bounded Most Probable String (BMPS)

input a PCFG G over Σ with rational weights (coded in binary), a length b (in
unary), and a rational p in [0, 1] (in binary);

question is there a string w in Σ≤b s.t. 〈JGK, w〉 ≥ p?

Example 6.8. Consider the following right-linear proper consistent PCFG:

S
9/10−−−→ aA S

1/10−−−→ b

A
2/3−−→ aA A

1/3−−→ aB

B
2/3−−→ aB B

1/3−−→ a .

The most probable derivations are for the strings b and aaa, with probability 1/10.
The most probable strings are actually aaaa and aaaaa, with probability (4/3) ·
(1/10).

Hardness

We show here that both problems are already hard for convergent right-linear
PCFGs. Note that, in the non convergent right-linear case, MPS is known as the
Threshold Problem for Rabin probabilistic automata and is undecidable (e.g. Blon-
del and Canterini, 2003).

Logic and Linguistic Modelling 87

Theorem 6.9 (Casacuberta and de la Higuera, 2000). MPS and BMPS for conver-
gent right-linear PCFGs are NP-hard. See also the work of Sima’an

(2002) for similar bounds.

Proof. The proof reduces from SAT. Let ϕ =
∧k
i=1Ck be a propositional formula

in conjunctive normal form, where each clause Ci is a non-empty disjunction of
literals over the set of variables {x1, . . . , xn}. Without loss of generality, we as-
sume that each variable appears at most once in each clause, be it positively or
negatively.

We construct in polynomial time an instance 〈G, p〉 of MPS or 〈G, b, p〉 of BMPS
such that ϕ is satisfiable if and only if there exists w in Σ∗ such that 〈JGK, w〉 ≥ p.

We define for this G def
= 〈N,Σ, P, S〉 where

N
def
= {S}] {Ai,j | 1 ≤ i ≤ k ∧ 0 ≤ j ≤ n}] {Bj | 1 ≤ j ≤ n}

Σ
def
= {0, 1, $} ,

P
def
= {S 1/k−−→ $Ai,0 | 1 ≤ i ≤ k}

∪ {Ai,j−1
1/2−−→ vBj , Ai,j−1

1/2−−→ (1− v)Ai,j | v ∈ {0, 1} ∧ xj 7→ v |= Ci

∧ 1 ≤ i ≤ k ∧ 1 ≤ j ≤ n}

∪ {Ai,j−1
1/2−−→ 1Ai,j , Ai,j−1

1/2−−→ 0Ai,j | xj 6∈ Ci ∧ 1 ≤ i ≤ k ∧ 1 ≤ j ≤ n}

∪ {Ai,n
0−→ $ | 1 ≤ i ≤ k}

∪ {Bj−1
1/2−−→ 0Bi, Bj−1

1/2−−→ 1Bi | 2 ≤ j ≤ n}

∪ {Bn
1−→ $}

and fix

b
def
= n+ 2 ,

p
def
= 1/2n .

First note that the construction can indeed be carried in polynomial time—remember
that p is encoded in binary. Second, G is visibly right-linear by construction, and
also convergent because every derivation is of length n + 2 and every string has
finitely many derivations.

It remains to show that ϕ is satisfiable if and only if there exists w in Σ∗ such
that 〈JGK, w〉 ≥ p. Note that any string w with 〈JGK, w〉 > 0 is necessarily of form
$v1 · · · vn$ with each vj in {0, 1}, i.e. describes a valuation for ϕ.

Observe that, for each clause Ci and each string w = $v1 · · · vn$, w describes a
valuation Vw:xj 7→ vj that

• either satisfies Ci, and then the corresponding string w has a single deriva-

tion πw (the one that uses Ai,j−1
1/2−−→ vjBj for the lowest index j such that

xj 7→ vj |= Ci); this derivation has probability ρ(πw) = 1/(k2n),

• or does not satisfies Ci, and there is a single derivation, which must use the
production Ai,n

0−→ $, and is thus of probability 0.

Therefore, if ϕ is satisfiable, i.e. if there exists V that satisfies all the clauses, then
the corresponding string wV has probability

∑k
i=1 1/(k2n) = p. Conversely, if ϕ is

not satisfiable, then any w with 〈JGK, w〉 > 0 is of form $v1 · · · vn$ and describes an
assignment Vw:xj 7→ vj that does not satisfy at least one of the clauses, thus has a
total probability ρ(w) < p.

Logic and Linguistic Modelling 88

Corollary 6.10. MPS and BMPS for proper and consistent right-linear PCFGs are
NP-hard.

Proof. If suffices to reduce and normalize the PCFG constructed in Theorem 6.9.
Because every derivation is of bounded length, the computation of the partition
function for G converges in polynomial time, and the grammar can be normalized
in polynomial time.

Let us nevertheless perform those computations by hand as an exercise. For
instance, for all 1 ≤ j ≤ n,

Z(Bj) = 1 , (6.13)

Z(S) =
1

k

k∑
i=1

Z(Ai,0) . (6.14)

We need to introduce some notation in order to handle the computation of
Z(Ai,j). For each clause Ci, and each 0 ≤ j ≤ n, let qi,j be the number of variables
x` with j < ` ≤ n that occur (positively or negatively) in Ci:

qi,j
def
= |{x` ∈ Ci | j < ` ≤ n}| . (6.15)

Claim 6.10.1. For all 1 ≤ i ≤ k and 0 ≤ j ≤ n,

Z(Ai,j) = 1− 1

2qi,j
.

Proof of Claim 6.10.1. Fix some 1 ≤ i ≤ k; we proceed by induction over n − j.
For the base case, Z(Ai,n) = 0 since the only production available is Ai,n

0−→ $. For
the induction step, two cases arise:

1. qi,j = qi,j+1, i.e. when xj+1 does not appear in Ci. Then Z(Ai,j) = 1/2 ·
Z(Ai,j+1) + 1/2 · Z(Ai,j+1) by (6.5), and thus Z(Ai,j) = Z(Ai,j+1) = 1 −
1/2qi,j+1 = 1− 1/2qi,j by induction hypothesis.

2. qi,j = 1+qi,j+1, i.e. when xj+1 appears in Ci. Then Z(Ai,j) = 1/2·Z(Ai,j+1)+
1/2·Z(Bj+1), hence by (6.13) and the induction hypothesis, Z(Ai,j) = 1/2−
1/2qi,j+1+1 + 1/2 = 1− 1/2qi,j . [6.10.1]

In particular, if we reduce from a 3SAT instance instead of any SAT instance, then
Z(Ai,0) = 7/8 for all i, and thus Z(S) = 7/8.

Any nonterminal with probability mass 0 can be disposed of during the reduction
phase, which can be performed in polynomial time. We use next (6.8) to normalize
the grammar of Theorem 6.9, thereby obtaining a proper and consistent right-
linear PCFG G′ in polynomial time.

There remains the issue of computing an appropriate bound p′ for this new
grammar. By Remark 6.5, for any word w in Σ∗, 〈JGK, w〉 ≥ p if and only if
〈JG′K, w〉 ≥ p/Z(S): we define therefore

p′
def
=

p

Z(S)
. (6.16)

Upper Bounds

Bounded Case Deciding BMPS is mostly straightforward: guess a string w in
Σ≤b, compute the PCFG G′ for w using Theorem 6.7 in polynomial time, and com-
pute the partition function Z for G′—which is non-recursive since G is acyclic—,
which can be performed in polynomial time: then 〈JGK, w〉 = Z(S′). Hence:

Proposition 6.11. BMPS is NP-complete.

Logic and Linguistic Modelling 89

Right-Linear Case The case of MPS is more involved: there is no reason for the
most probable string to be short.

Example 6.12 (Long Strings). De la Higuera and Oncina (2011) exhibit a right-
linear grammar, for which the most probable string is of exponential length. Let m
be a natural number and q a rational in (0, 1), then the right-linear grammar with
axiom Aq,m,0 and productions

Aq,m,0
q−→ ε Aq,m,0

1−q−−→ aAq,m,1 Aq,m,i
1−→ aAq,m,i+1 mod m

for all 1 ≤ i < m assigns a probability ρ(akm) = q(1 − q)k to a string of a’s whose
length is a multiple of m, and probability 0 to any other string. Consider now a set
of primes {m1, . . . ,mn} and add the production

S
1/n−−→ Aq,mj ,0

for each mj . This grammar has a size in O(
∑n

j=1mj).

On the one hand, the probability of the string aM of length M
def
=
∏n
i=jmj

(which is exponential in
∑n

j=1mj) is

ρ(aM) =

n∑
j=1

1

n
q(1− q)

M
mj

≥ q

n

n∑
j=1

(1− q)M (since
M

mj
≤M)

= q(1− q)M .

On the other hand, a string a` of length ` < M is not accepted by at least one of
the subgrammars, therefore its probability is at most

ρ(a`) ≤ qn− 1

n
.

Hence, a choice of q such that

q ≤ 1− M

√
n− 1

n

ensures that no shorter string can have probability higher than ρ(aM).

Fortunately, we are also provided with a probability p in an instance of MPS.
When taking this threshold into account, de la Higuera and Oncina (2013) can
then provide a polynomial bound on the length of the most probable strings. The
following proposition uses a normal form on right-linear PCFGs:

Definition 6.13. A right-linear PCFG G = 〈N,Σ, P, S, ρ〉 is in ε-free form if P ⊆
N × (Σ ∪ ΣN).

Exercise 6.7. Show (∗∗)that any (acyclic) right linear convergent PCFG can be put in
ε-free form in polynomial time.

Proposition 6.14 (Probable Strings are Short). Let G = 〈N,Σ, P, S, ρ〉 be a right-
linear reduced convergent PCFG in ε-free form and w be a sequence in Σ∗ with ρ(w) ≥
p. Then |w| ≤ Z(S)|N |2

p + |N |.

Logic and Linguistic Modelling 90

Proof. Let w = a1 · · · a` be a string of length ` with ρ(w) ≥ p (with ai in Σ for
every i). Any derivation for w in the ε-free grammar G is necessarily of the form

S = A1
p1
=⇒
lm

a1A2
p2
=⇒
lm

a1a2A3
p3
=⇒
lm
· · · p`=⇒

lm
a1 · · · a` (6.17)

using the productions pi = Ai → aiAi+1 for 1 ≤ i < ` − 1 and p` = A` → a`.
Define

Dw
def
= {π ∈ P ∗ | S π

=⇒
lm

? w} (6.18)

the set of derivations of w. Assuming some total ordering ≺ over the nonterminals
in N , we write DA

w for the subset of Dw where A is the nonterminal that occurs as
left-hand side the most often, using ≺ to choose between ties. Then

Dw =
⊎
A∈N

DA
w , ρ(w) =

∑
π∈Dw

ρ(π) ≥ p , (6.19)

hence there exists A in N such that∑
π∈DAw

ρ(π) ≥ p

|N |
. (6.20)

In any derivation π = p1 · · · p` in DA
w , A appears as left-hand side at least `/|N |

times. By removing a subderivation between two such occurrences, we obtain a
derivation for a shorter sequence with at least the same probability. We call such
shorter sequences alternatives for π; there are at least `/|N | − 1 alternatives, that
we gather in a set Alt(π,A). Hence∑

π′∈Alt(π,A)

ρ(π′) ≥
(

`

|N |
− 1

)
ρ(π) . (6.21)

We want to sum the probability mass of alternatives over all π in DA
w ; however,

there might be common alternatives for different derivations π1 and π2. This is
not an issue, as shown by the following claim:

Claim 6.14.1. Let π1 and π2 be two different derivations in DA
w , and let π be a

derivation in Alt(π1, A) ∩Alt(π2, A). Then ρ(π) ≥ ρ(π1) + ρ(π2).

Hence∑
π∈DAw

∑
π′∈Alt(π,A)

ρ(π′) ≥
∑
π∈DAw

(
`

|N |
− 1

)
ρ(π) ≥

(
`

|N |
− 1

)
p

|N |
. (6.22)

The probability mass on the left side of the previous inequality is contributed by
strings different from w; hence, summing with the probability of w, we obtain(

`

|N |
− 1

)
p

|N |
+ p ≤ Z(S)

thus

` ≤ (Z(S)− p)|N |2

p
+ |N | ,

from which we deduce the desired bound since Z(S) ≥ ρ(w) ≥ p.

Proof of Claim 6.14.1. [6.14.1]

Chapter 7

Categorial Grammars

The See the lecture notes of Retoré
(2005) for a more detailed
treatment of categorial
grammars.

last approach to formal syntax we will consider in these notes is also one of
the oldest: categorial grammars were indeed introduced by Bar-Hillel in 1953,
based on earlier ideas of Ajdukiewicz (1935).

In their barest form, categorial grammars are defined using residuation types,
which are usually called syntactic types or categories. Consider a finite set of
primitive types Γ. We define syntactic types over C as terms γ defined by the
abstract syntax

C ::= p | C \ C | C / C (syntactic types)

where p is in Γ; let C(Γ) be the set of syntactic types over Γ. The second part of the
course will better emphasize the interest of categorial grammars for semantics rep-
resentation. Indeed, one can apply the Curry-Howard isomorphism and associate
lambda terms (modeling semantics) to syntactic types (modeling syntax).

The interpretation of sequences of syntactic types over the free semigroup
〈Σ+, ·〉 relies on a finite lexical relation ` between Σ and C(Γ), mapping words
to set of syntactic types, so that the interpretation of JCK` a syntactic type C given
` is a subset of Σ+:

JpK` = `−1(p)

JC1 \ C2K` = (JC1K`)−1 · JC2K`
JC1 / C2K` = JC1K` · (JC2K`)−1 .

Having a distinguished axiom type S then allows to define a language over Σ as
the interpretation JSK`. The set of operators {\, /} itself

can be expanded; for instance it is
quite common to introduce an
associative product • with
interpretation
JC1 • C2K` = JC1K` · JC2K` (we
will see it in the full Lambek
calculus in Section 7.2). Thus we
are considering a product-free
fragment. (See also Morrill,
1994; Steedman, 2000;
Moortgat, 1997, for further
extended sets of operators.)

Categorial grammars are interested in quasi orderings `
of derivability between sequences of types, such that if γ ` γ′ is derivable then
JγK` ⊆ Jγ′K`.

Definition 7.1. A (product-free) categorial grammar C = 〈Σ,Γ, S,`, `〉 comprises
a finite alphabet Σ, a finite set of primitive types Γ, a distinguished syntactic type S
in C(Γ), a derivability quasi ordering ` over (C(Γ))+, and a finite lexical relation
` in Σ× C(Γ).

The language of C is defined as

L(C) = {a1 · · · an ∈ Σ+ | n > 0, ∃C1 ∈ `(a1), . . . ,∃Cn ∈ `(an), C1 · · ·Cn ` S} .

We present two different systems to define derivability quasi orderings in sec-
tions 7.1 and 7.2.

91

Logic and Linguistic Modelling 92

7.1 AB Categorial Grammars

The derivability quasi ordering for AB categorial grammars (named after Ajdukiewicz
and Bar-Hillel) can be defined by a string rewrite system R over the free semi-
group 〈C(Γ)+, ·〉 with the two cancellation rule schemata

B · (B \ A)→ A (\E)

(A / B) ·B → A (/E)

for all A,B in C(Γ), so that ` is the reflexive transitive closure of the single-step

rewrite relation R
=⇒—which is by definition a quasi ordering.

Example 7.2. Let Γ = {n, s} and let us consider the following lexical relation:

Σ C(Γ)

Bill , John, Mary , mushrooms n
the, white n / n
works n \ s
likes (n \ s) / n
thinks (n \ s) / s
tells ((n \ s) / s) / n
really (n \ s) / (n \ s)
who (n \ n) / (n \ s)

We can derive sentences such as

Bill really likes mushrooms.
John thinks Bill likes mushrooms.
Bill who likes mushrooms likes white mushrooms.
John tells Mary Bill likes mushrooms.

Observe that the principles of lexicalization put forward in Section 5.1 for TAGs
are also at work here: the syntactic types associated to works, likes, thinks, and
tells reflect their subcategorization frames (only a subject, a subject and a nominal
object, a subject and a clausal object, and a subject and both a nominal and a
clausal object resp.).

7.1.1 Alternative Views

Axiomatic View Other definitions are possible; for instance by algebraic laws
over (C(Γ))+, where the laws left implicit in the string rewrite definition have to be
expressed. More precisely, by definition of a semigroup, the rules are taken modulo
associativity of ·, and by definition of a string rewrite system, ` is monotone wrt.
concatenation:

A ` A (reflexivity)

A ` B and B ` C imply A ` C (transitivity)

A · (B · C) ` (A ·B) · C (associativity)

(A ·B) · C ` A · (B · C) (associativity)

A ` B implies A · C ` B · C (left monotonicity)

A ` B implies C ·A ` C ·B (right monotonicity)

for all A,B,C in (C(Γ))+.

Logic and Linguistic Modelling 93

Proof-Theoretic View Yet another presentation would be as a natural deduction
sequent calculus: a sequent γ ` C pairs up a non empty sequence γ in (C(Γ))+

with a syntactic type C in C(Γ). The derivability quasi ordering is then defined by
the following substructural proof system

C ` C
(Id)

β ` B α ` B \ A
βα ` A

(\E)
α ` A / B β ` B

αβ ` A
(/E)

where the two rules (\E) and (/E) are non-commutative versions of the traditional
modus ponens rule (which we will recall later as rule (→E)).

7.1.2 Equivalence with Context-Free Grammars

The equivalence of AB categorial grammars and context-free grammars is origi-
nally due to Bar-Hillel et al. (1960).

From AB Categorial Grammars to CFGs The encoding relies on a subformula
property for the cancellation rules: the resulting types are always subtypes of the
left-hand types. Thus, given an AB categorial grammar C = 〈Σ,Γ, S,`, `〉, the set
of types that can appear during a derivation is in sub(`(Σ))+. A second property is

a context-freeness one: a derivation of form β
R
=⇒n A1 · · ·Am can be decomposed

into m subderivations βi
R
=⇒ni Ai with n = n1 + · · ·+ nm and β = β1 · · ·βm.

Using these two properties, it is straightforward to check that the CFG G =
〈sub(`(Σ)),Σ, P, S〉 with

P = {A→ B (B \ A) | (B \ A) ∈ sub(`(Σ))}
∪ {A→ (A / B) B | (A / B) ∈ sub(`(Σ))}
∪ {A→ a | (a,A) ∈ `}

encodes C.

From CFGs to AB Categorial Grammars Recall that any CFG can be trans-
formed into an equivalent CFG in (quadratic) Greibach normal form (GNF, Greibach,
1965), i.e. such that all its productions are of form

S → ε S the axiom

A→ aα a ∈ Σ, α ∈ (N\{S})≤2

This yields a straightforward encoding of a CFG G with ε 6∈ L(G) in GNF into an
AB categorial grammar C = 〈N,Σ,`, S, `〉 with

` = {(a, (A / C) / B) | A→ aBC ∈ P}
∪ {(a,A / B) | A→ aB ∈ P}
∪ {(a,A) | A→ a ∈ P} .

Exercise 7.1. Fill out (∗∗)the missing details of the proof of equivalence between AB
categorial grammars and context-free grammars.

Exercise 7.2. The (∗∗)Dyck languageDn over n pairs of parentheses ai, āi is generated
by the CFG with productions {S → aiSāi | 1 ≤ i ≤ n}∪{S → SS}∪{S → ε}. Give
an AB categorial grammar for the language Dn$ where $ is an endmarker distinct
from all the ai, āi.

Logic and Linguistic Modelling 94

7.1.3 Structural Limitations

There exist some structural limitations to AB categorial grammars. Consider for
instance that introducing a subordination as in the mushrooms that Bill likes; in
this frame the type for that would be (n \ n) / (s / n) since Bill likes is intu-
itively of type s / n. However, we cannot derive n · ((n \ s) / n) ` s / n using
only the cancellation rules, although it would be correct wrt. the free semigroup
interpretation.

Several extensions were defined in order to circumvent the limitations of AB cat-
egorial grammars (often sparked by semantic rather than syntactic motivations):

type raising B → (A / B) \ A and B → A / (B \ A),

composition (A / B)(B / C)→ A / C and (C \ B)(B \ A)→ C \ A,

Geach rules A / B → (A / C) / (B / C) and B \ A→ (C \ B) \ (C \ A).

All these extensions are captured by the Lambek calculus.

7.2 Lambek Grammars

The Lambek calculus (Lambek, 1958) generalizes all the extensions of AB cat-
egorial rules by proposing instead to add introduction rules to the intuitionistic
fragment of Section 7.1.1.

7.2.1 Background: Substructural Proof Systems

Let us first recall the implicative and conjunctive fragment of propositional cal-
culus, with a presentation based on natural deduction for intuitionistic logic. A
proposition C is defined in this fragment as

C ::= p | C → C | C ∧ C (propositions)

where p is taken from a set Γ of atomic propositions. An assumption a sequence
of propositions, and a judgement has the form γ ` C, meaning that from assump-
tions γ one can conclude proposition C. A version of the propositional calculus is
then defined by the rules

C ` C
(Id)

αβ ` A
βα ` A

(Ex)
αAA ` B
αA ` B

(Con)
α ` B
αA ` B

(W)

αB ` A
α ` B → A

(→ I)
β ` B α ` B → A

βα ` A
(→E)

α ` A β ` B
αβ ` A ∧B

(∧I)
α ` A ∧B βAB ` C

αβ ` C
(∧E)

where (Ex), (Con), and (W) are the structural rules of exchange, contraction, and
weakening, respectively.

Logic and Linguistic Modelling 95

There exists a rich literature on substructural logics, in particular linear logic
(Girard, 1987) See e.g. Troelstra (1992) for a

textbook on linear logic, and the
course MPRI 2-1.

allows to restrict the use of the (Con) and (W) rules. If we com-
pletely forbid these two rules, then the fragment of propositional calculus we just
saw corresponds to the multiplicative fragment of intuitionistic linear logic, which
displays linear implication(instead of implication, and tensor product ⊗ instead
of conjunction.

One can go a step further and also forbid the exchange rule (Ex). One can go one more step further
and define a non-associative
calculus, where sequents left parts
are terms instead of sequences.
This results in a variant called
the non-associative Lambek
calculus (Lambek, 1961).

It has however
the effect of refining the implication rules (→ I) and (→E) into left and right im-
plications, while conjunction becomes a form of concatenation, which we denote
by •:

C ` C
(Id)

Bα ` A
α ` B \ A

(\ I), α 6= ε
β ` B α ` B \ A

βα ` A
(\E)

αB ` A
α ` A / B

(/ I), α 6= ε
α ` A / B β ` B

αβ ` A
(/E)

α ` A β ` B
αβ ` A • B

(• I)
β ` A • B αABγ ` C

αβγ ` C
(•E)

Note that this system simply adds insertion counterparts to (\E) and (/E) and
product rules to the system of Section 7.1.1. What we have just defined is a natural
deduction version of the Lambek calculus.

Example 7.3. Here is a derivation of a type raising rule from Section 7.1.3:

(Id)
A / B ` A / B

(Id)
B ` B

(/E)
(A / B)B ` A

(\ I)
B ` (A / B) \ A

Exercise 7.3. Show (∗)that the composition and Geach rules from Section 7.1.3 are
also derivable in this natural deduction version of the Lambek calculus.

7.2.2 Lambek Calculus

Lambek (1958) actually presents his calculus in Gentzen sequent style, with rules

C ` C
(Id)

β ` B αBγ ` A
αβγ ` A

(Cut)

Bα ` A
α ` B \ A

(\R), α 6= ε
β ` B αAγ ` C
αβ(B \ A)γ ` C

(\L)

αB ` A
α ` A / B

(/R), α 6= ε
αAγ ` C β ` B
α(A / B)βγ ` C

(/L)

α ` A β ` B
αβ ` A • B

(•R)
αABβ ` C

α(A • B)β ` C
(•L)

http://mpri.master.univ-paris7.fr/C-2-1.html

Logic and Linguistic Modelling 96

Again, one can recognize a non-commutative variation of the multiplicative frag-
ment of intuitionistic linear logic.

Cut Elimination The Lambek calculus enjoys cut elimination, i.e. for any proof
in the sequent calculus, there exists a proof that does not employ the (Cut) rule. A
byproduct of cut elimination is that cut-free proofs have the subformula property,The Lambek calculus is in fact

NP-complete (Pentus, 2006). in the following strong sense: each application of the rules besides (Cut) adds one
symbol from {\, /, •} to the sequent. Thus working our way backward from a
sequent γ ` C to be proven, there are only finitely many cut-free proofs possible:
the calculus is decidable.

Exercise 7.4. Show(∗) that the decision procedure sketched above is in NP.

Let us prove the cut elimination property. Suppose both β ` B and αBγ ` A are
provable in the cut-free calculus; we want to show that αβγ ` A is also provable.
The proof proceeds by induction on the sum of the sizes of the sequents—defined
as their number of symbols from {\, /, •}—and consists mostly of a large case
analysis depending on the last rule employed to obtain the sequents before the
cut:

1. if either sequent is the result of (Id), then the other is already the result of
the cut,

2. if β ` B is the result of a rule that did not introduce the main connective
of B, i.e. rule (\L), (/L), or (•L), then there is a premise of form β′ ` B
of smaller size, which by induction hypothesis yields αβ′γ ` A in the cut-
free calculus, and later αβγ ` A by the same rule application that lead from
β′ ` B to β ` B,

3. if αBγ ` A is the result of a rule that did not introduce the main connective
of B, then there is a premise of form α′Bγ′ ` A′ of smaller size, which by
induction hypothesis yields a cut-free proof of α′βγ′ ` A′, and an application
of the rule that lead from α′Bγ′ ` A′ to αBγ ` A yields the result,

4. if B = C • D is the result of (•R) and (•L), and we can replace

β′ ` C β′′ ` D
(•R)

β′β′′ ` C • D
αCDγ ` A

(•L)
α(C • D)γ ` A

(Cut)
αβ′β′′γ ` A

by the proof

β′ ` C
β′′ ` D αCDγ ` A

(Cut)
αCβ′′γ ` A

(Cut)
αβ′β′′γ ` A

with both (Cut) applications are on smaller sequents, thus provable in the
cut-free calculus by induction hypothesis,

5. if B = C / D is the result of (/R) and (/L), and we can replace

β′D ` C
(/R)

β′ ` C / D

αCγ ` A β′′ ` D
(/L)

α(C / D)β′′γ ` A
(Cut)

αβ′β′′γ ` A

Logic and Linguistic Modelling 97

by the proof

β′′ ` D
β′D ` C αCγ ` A

(Cut)
αβ′Dγ ` A

(Cut)
αβ′β′′γ ` A

where both (Cut) applications are on smaller sequents, thus provable in the
cut-free calculus by induction hypothesis,

6. if B = C \ D is the result of (\R) and (\L), the case is symmetric to case 5.

Encoding Natural Deduction The natural deduction rules (\E), and (•E) can
be obtained as (the case of (/E) being symmetric to that of (\E)):

α ` B \ A
β ` B

(Id)
A ` A

(\L)
β(B \ A) ` A

(Cut)
βα ` A

β ` A • B
αABγ ` C

(•L)
α(A • B)γ ` C

(Cut)
αβγ ` C

Conversely, one can prove that the Lambek calculus is actually equivalent to its
natural deduction presentation (see e.g. Retoré, 2005, Section 2.6).

7.2.3 Equivalence with Context-Free Grammars

Although the Lambek calculus is strictly more expressive than the two cancellation
rules (\E) and (/E) of AB categorial grammars, Lambek grammars, i.e. the cate-
gorial grammars that employ the (product-free) Lambek calculus for the derivabil-
ity quasi ordering `, are not more expressive: they define exactly the context-free
languages. This result was conjectured by Chomsky in the 1960s but remained
open until the 1992 proof of Pentus.

We merely give a taste of the proof in the product-free case (Pentus, 1997). It
defines the norm ‖γ‖ of a product-free type sequence γ in (C(Γ))+ as its number
of atomic type occurrences, i.e.

‖p‖ = 1 ‖C \ C ′‖ = ‖C / C ′‖ = ‖C‖+ ‖C ′‖ ‖C1 · · ·Cn‖ = ‖C1‖+ · · ·+ ‖Cn‖,

and uses it to define the finite sets of types and type sequences

Cm(Γ) = {C ∈ C(Γ) | ‖C‖ ≤ m} Lm(Γ) = {γ ∈ (C(Γ))+ | ‖γ‖ ≤ 2m}

for all m ≥ 0. The (m,Γ)-bounded Lambek calculus is then defined by the two
rules

γ ` C
(Ax)

β ` B αBγ ` A
αβγ ` A

(Cut)

where γ ` C in (Ax) is any sequent in Lm(Γ)×Cm(Γ) provable in the product-free
Lambek calculus (thus there are only finitely many such axioms for a fixed (m,Γ)
pair).

Theorem 7.4 (Pentus, 1997). Let B1, . . . , Bn, A be types in Cm(Γ). If B1 · · ·Bn ` A
is provable in the product-free Lambek calculus, then it is also provable in the (m,Γ)-
bounded Lambek calculus.

Logic and Linguistic Modelling 98

Thus, given a Lambek categorial grammar C = 〈Σ,Γ, S,`, `〉, there exist m ≥ 0
and Γ′ ⊆ Γ s.t. S ∈ Cm(Γ′) and `(Σ) ⊆ Cm(Γ′). We can construct a context-free
grammar G = 〈Cm(Γ′),Σ, P, S〉 with

P = {C → γ | C ∈ Cm(Γ′), γ ∈ Lm(Γ′), γ ` C provable}
∪ {A→ a | (a,A) ∈ `} .

Context-free derivations then simulate the action of the (Cut) rule in the (m,Γ′)-
calculus.

Exercise 7.5. Prove(∗∗) using Theorem 7.4 the equivalence of C and G as defined
above.

Chapter 8

First-Order Semantics

See Chapter 17 of Jurafsky and
Martin (2009) for more examples
of meaning representations.

In this chapter and the next two chapters, we survey a few aspects of compu-
tational semantics. Many formalisms can be used to define meaning represen-
tations of linguistic expressions. Here we focus on first-order representations,
along with a few related ones.

8.1 Formal Semantics

Concrete applications of computational semantics include for instance weeding
out syntactic representations that map to unsatisfiable sentences, checking whether
some form of entailment holds between two sentences (for instance for sum-
marisation tasks), or querying databases with natural language interfaces (think
airline reservation or weather forecasts), etc. The algorithmic aspects of these ap-
plications turn around the usual decision problems in model-theoretic aspects of
logic: satisfiability, model-checking (i.e. satisfiability in presence of a database),
and querying (an existing database).

Here by “database” we simply mean a (not necessarily finite) relational structure
M = 〈W, (Ri)i〉 where W is a domain of the various possible entities, and (R

(ki)
i)i

is a vocabulary, where each R
(ki)
i is interpreted as a ki-ary relation Ri over W ,

ki > 0. We also allow for constants and denote them using nullary symbols like
R(0); they are interpreted as single points in W . The first-order language thus
allows to reason about truths regarding entities and their relations.

Example 8.1. For instance, assume our vocabulary includes John(0) as a constant
denoting John, along with apple(1), red (1), and eat (2), we can associate the sen-
tence

∃x.apple(1)(x) ∧ red (1)(x) ∧ eat (2)(John(0), x) (8.1)

to the sentence John eats a red apple. Our interpretation might be s.t.

a, j ∈W a ∈ red a ∈ apple

j = John (j, a) ∈ eat ,

in which case the sentence is satisfiable using the assignment {x 7→ a}.
An interesting consequence of this analysis is that paraphrases are typically as-

sociated with the same semantics: (8.1) could for instance be the formalisation
of

John eats a red apple.
A red apple is eaten by John.
An apple that John eats is red.

99

Logic and Linguistic Modelling 100

8.1.1 Event Semantics

The kind of modelling that underlies Example 8.1 is a rather straightforward one:
named entities (e.g. John, or the President) are interpreted as constants, properties
(e.g. red, apple) as unary relations, and verbs as relations with an arity equal to
the number of arguments present in their subcategorisation frames.

This however leads to some issues when determining the number of arguments
for a particular instance of a verb, and drawing the appropriate inferences from
our representations. Consider for instance the sentences

John eats.
John eats a red apple.
John eats an apple in a park.
John eats in a park.
John slowly eats a red apple in a park.

Using the approach of Example 8.1, we need to introduce several relations eat (i)

largely beyond the simple choice between the intransitive eat
(1)
1 and transitive

eat
(2)
2 forms of eat:

eat
(1)
1 (John(0)) (8.2)

∃x.eat
(2)
2 (John(0), x) ∧ red (1)(x) ∧ apple(1)(x) (8.3)

∃xy.eat
(3)
3 (John(0), x, y) ∧ apple(1)(x) ∧ park (1)(y) (8.4)

∃y.eat
(2)
4 (John(0), y) ∧ park (1)(y) (8.5)

∃xy.eat
(4)
5 (John(0), x, y, slowly(0)) ∧ red (1)(x) ∧ apple(1)(x) ∧ park (1)(y) (8.6)

where basically any extra modifier also necessitates a new variant of eat.
How can we relate all the variations of eat so that e.g. (8.6) entails each of

(8.2–8.5)? One possibility is to add explicit meaning postulates like

∀jxy.eat
(3)
3 (j, x, y) ⊃ eat

(2)
2 (j, x) (8.7)

∀jx.eat
(2)
2 (j, x, y) ⊃ eat

(1)
1 (j) (8.8)

. . . (8.9)

Similarly, we could treat slowly and the locative in as modal operators and rewrite
(8.6) as

∃xy.in(2)(slowly(1)(eat
(2)
2 (John(0), x)), y) ∧ red (1)(x) ∧ apple(1)(x) ∧ park (1)(y)

(8.10)

along with the schemata

∀Py.in(2)(P, y) ⊃ P (8.11)

∀P.slowly(1)(P) ⊃ P (8.12)

where P ranges over formulæ. Of course there is no particular reason not to
choose

∃xy.slowly(1)(location(2)(eat
(2)
2 (John(0), x), y)) ∧ red (1)(x) ∧ apple(1)(x) ∧ park (1)(y)

(8.13)

Logic and Linguistic Modelling 101

instead, and proving the equivalence of (8.10) and (8.13) would require yet more
machinery. (We will however return to modal operators later in Section 8.3.)

As we can see, this solution scales rather poorly. Another possibility is to pick
a very general version of eat, like eat5, and express the simpler versions with
existentially quantified arguments:

eat
(1)
1 (j)

def
= ∃xya.eat

(4)
5 (j, x, y, a) (8.14)

eat
(2)
2 (j, x)

def
= ∃ya.eat

(4)
5 (j, x, y, a) (8.15)

eat
(3)
3 (j, x, y)

def
= ∃a.eat

(4)
5 (j, x, y, a) (8.16)

eat
(2)
4 (j, y)

def
= ∃ya.eat

(4)
5 (j, x, y, a) . (8.17)

However, while it seems reasonable that the event denoted by John eats has an
implicit object and location, there is no particular reason for it to be performed
slowly or quickly, and it could also occur at noon or at dawn, necessitating yet
another argument slot.

A solution is to use a two-sorted domain that differentiates between events and
entities, and to add an explicit event argument to verbs:

∃e.eat
(2)
1 (e, John(0)) (8.18)

∃ex.eat
(3)
2 (e, John(0), x) ∧ red (1)(x) ∧ apple(1)(x) (8.19)

∃exy.eat
(3)
2 (e, John(0), x) ∧ apple(1)(x) ∧ park (1)(y) ∧ location(2)(e, y) (8.20)

∃ey.eat
(2)
1 (e, John(0)) ∧ park (1)(y) ∧ location(2)(e, y) (8.21)

∃exy.eat
(3)
2 (e, John(0), x) ∧ red (1)(x) ∧ apple(1)(x) ∧ park (1)(y) ∧ location(2)(e, y)

∧ slowly(1)(e) (8.22)

See Davidson (1967).This Davidsonian analysis succeeds in reducing the variations to the two main
forms of eat. It also yields a rather more natural way of handling time and aspects
modifiers like slowly. Note that the distinction between intransitive and transitive
forms of verbs are better motivated than the ones between say (8.2) and (8.5):
contrast for instance

I sank the Bismark.
I sank.

where the transitive usage does not imply the intransitive one.

8.1.2 Thematic Roles

This is known as a
neo-Davidsonian analysis
(Parsons, 1990).

The Davidsonian analysis can be further refined by employing thematic roles:

instead of seeing the intransitive form eat
(2)
1 and the transitive one eat

(3)
2 as two

wholly different relations, we can further refine them using a fixed set of thematic
relations between events and entities:

∃e.eat (1)(e) ∧ agent (2)(e, John(0)) (8.23)

∃ex.eat (1)(e) ∧ agent (2)(e, John(0)) ∧ patient (2)(e, x) ∧ apple(1)(x) (8.24)

correspond to the two sentences John eats and John eats an apple respectively. The
earlier issue with sank is avoided by changing the nature of the relation between

Logic and Linguistic Modelling 102

Role Typical use
agent John eats
patient John eats an apple.
experiencer John regrets his actions.

The crisis worries John.
cause The crisis worries John.

John regrets his behaviour.
theme John asks a question.

John gives Mary a kiss.
beneficiary John gives Mary a kiss.

Table 8.1: A basic set of thematic roles.

the subject and the verb:

∃e.sink (1)(e) ∧ agent (2)(e, I (0)) ∧ patient (2)(e,Bismark (0)) (8.25)

∃e.sink (1)(e) ∧ patient (2)(e, I (0)) (8.26)

The definition of a fixed set of thematic roles and how to classify the different
uses are of course problematic; Table 8.1 proposes a very simple account.

For the sake of simplicity, we will not explicitly use event semantics and thematic
roles in the remainder of the notes; the reader might convince herself that it is
always possible.

8.2 A Dip into Description Logics

Section based on (Baader et al.,
2007).

Let us make a short detour through a family of logics primarily developed for
knowledge representation. Basic description logics, similarly to the modal logics
we will see in Section 8.3, can be translated into first-order logic, so their use does
not yield any additional expressive power. Their interest is rather that they force
us into well-behaved fragments of FO, where we are able to draw inferences and
reason automatically.

8.2.1 A Basic Description Logic

See Schmidt-Schauß and Smolka
(1991).

We will confine our interest to one of the most basic logics: ALC the “attributive
concept language with complements.” We describe the models of ALC as struc-
tures M = 〈W,A,R〉 where W is a domain, A is a finite set of atomic concepts
a ⊆W , and R is a finite set of roles r ⊆W 2.

An ALC concept definition C is defined by the syntax

C ::= > | a | C u C | ¬C | ∃r.C

where a ranges over A and r over R. This syntax can be enriched by ⊥ def
= ¬>,

C tD def
= ¬(¬C u ¬D), and ∀rj .C

def
= ¬∃rj .¬C. A concept defines a subset JCKM

of a model M:

J>KM def
= W JaKM def

= a

JC uDKM def
= JCKM ∩ JDKM J¬CKM def

= W \ JCKM

J∃r.CKM def
= r−1(JCKM) .

Logic and Linguistic Modelling 103

The basic questions one might ask on concepts are consistency ones, i.e. whether
there exists a model M such that JCKM is non-empty. An especially useful case is
that of an inclusion C v D, i.e. the inconsistency of C u ¬D.

Examples Consider the sentence Every man loves a woman. Its most common
semantic reading can be formalised in first-order logic as

∀y.man(1)(y) ⊃ ∃x.woman(1)(x) ∧ love(2)(y, x) (8.27)

It can also be formalised as a consistency question in ALC:
Man v ∃love.Woman (8.28)

where the binary relation love(2) is translated as a role, and the unary predicates
man(1) and woman(1) as atomic concepts. The sentence A man eats an apple is
captured by the consistency of

Man u ∃eat.Apple (8.29)

Extensions There are many extensions of ALC in the literature. For instance,
description logics often allow for names in the form of nominals i, which are
atomic concepts interpreted as singleton sets in the model. The syntax of concept
definitions is then extended to allow {i}.

For instance, the sentence John eats a red apple can be checked by

{John} v ∃eat.(Apple u Red) (8.30)

and the sentence Helen of Troy is loved by every man in Greece by

(Man u ∃inhabit.{Greece}) v ∃love.{Helen of Troy} (8.31)

8.2.2 Translation into First-Order Logic

As hinted by the first-order and ALC formalisations in (8.27)–(8.28), there is a
translation of ALC into first-order logic. Every nominal i is associated with a
constant symbol i(0), every atomic concept a with a unary predicate a(1), and every
role r with a binary relation r(2). Then, a concept definition C is translated into a
first-order formula STx(C) with a single free variable x:

STx(>)
def
= x = x STx(a)

def
= a(1)(x)

STx({i}) def
= x = i(0) STx(¬C)

def
= ¬STx(C)

STx(C uD)
def
= STx(C) ∧ STx(D) STx(∃r.C)

def
= ∃y.r(2)(x, y) ∧ STy(C)

This satisfies JCKM = {w ∈ W | M |=x 7→w STx(C)}. Consistency questions are
then translated into first-order sentences:

ST(C)
def
= ∃x.STx(C) ST(C v D)

def
= ∀x.STx(C) ⊃ STx(D)

These definitions result for instance in the following first-order semantics for (8.31):

∀y.(man(1)(y) ∧ inhabit (2)(y,Greece(0))) ⊃ love(2)(y,Helen of Troy(0)) (8.32)

Two important remarks can be made regarding this translation:

1. it only requires two distinct variables, and

2. every first-order quantifier is guarded by a binary relation symbol (corre-
sponding to the ALC role).

Each of these conditions is enough to yield decidability of ALC; see Section 8.4.

Logic and Linguistic Modelling 104

8.3 Modal Semantics

Modalities are a means of qualifying truth judgements. Modal operators capture
the linguistic concepts of tense, mood, and aspect, and more generally modifiers:
in

John is happy.

we can insert instead of the blank any of necessarily, possibly, known by me to be,
now, then, . . . Modal logic offer a unified framework to study such modifiers.

8.3.1 Background: Modal Logic

See (Blackburn et al., 2001). A frame is a couple F = 〈W,R〉 where W is a non-empty set of worlds and R a
binary relation over W . A model is a couple M = 〈F, V 〉 = 〈W,R, V 〉 where F is a
frame and V is a valuation from a set of atomic propositions A to subsets of W .

Basic Modal Language Given a set A of atomic propositions, a (basic) modal
formula ϕ is defined by the syntax

ϕ ::= p | > | ¬ϕ | ϕ ∨ ϕ | ♦ϕ

where p ranges over A. The � modality is defined as the dual of ♦:

�ϕ
def
= ¬♦¬ϕ .

A formula satisfies a model M in a world w of W , written M, w |= ϕ, in the
following inductive cases:

M, w |= > always

M, w |= p iff w ∈ V (p)

M, w |= ¬ϕ iff M, w 6|= ϕ

M, w |= ϕ ∨ ϕ′ iff M, w |= ϕ or M, w |= ϕ′

M, w |= ♦ϕ iff ∃w′, w R w′ and M,w′ |= ϕ .

Logics The diamond ♦ and box � modalities can take many different interpreta-
tions. For instance,

• in alethic logic, we reason about possible truths: ♦ϕ denotes that “possibly
ϕ” and �ϕ “necessarily ϕ”. If we follow Leibniz and imagine multiple “possi-
ble worlds” in an universe W , something “possible” is one holding in at least
one possible world, and something “necessary” holds in all possible worlds.
In order to obtain such semantics, we should work on total frames where
w R w′ for all w,w′ in W .

• In epistemic logic, we reason about knowledge of agents (mind the differ-
ence with beliefs): instead of writing �ϕ to denote the fact that “the agent
knows ϕ”, we write Kϕ. Epistemic logic is typically interpreted over transi-
tive, symmetric, and reflexive frames, i.e. whereR is an equivalence relation.
If the knowledge of several agents is to be modelled, we can introduce mul-
tiple relations Ra and modalities Ka, one for each agent a.

Logic and Linguistic Modelling 105

• In branching frames, the ♦
modality becomes similar to the
EF modality of CTL (thus � is
similar to AG). A similar
distinction between linear past
and branching past can be made
(Kupfermana et al., 2012).

In the basic temporal logic, ♦ϕ denotes that “at some future point, ϕ holds”,
written Fϕ. Its dualGϕmeans that in all future points, ϕ holds. Its converse
P allows to reason about the past, and is defined by M, w |= Pϕ iff there
exists w′ R w s.t. M, w′ |= ϕ, with dual H. One expects R to be a transitive,
irreflexive relation. An important distinction arises between linear time and
branching time frames: in the first case, there is a unique possible future,
while in the second case there exist multiple different futures.

Exercise 8.1 (Basic Axiom). (∗)Show that K : �(ϕ ⊃ ψ) ⊃ (�ϕ ⊃ �ψ) is valid, i.e.
for any model M and any world w of W , M, w |= K.

Exercise 8.2 (Transitive Frames). (∗)Show that, if R is transitive, then 4 : ♦♦ϕ ⊃ ♦ϕ
is valid.

Exercise 8.3 (Epistemic Frames). (∗)Prove the following implications for all modal
formulæ ϕ when R is an equivalence relation:

T : �ϕ ⊃ ϕ—in epistemic logic, if indeed an agent really knows something,
then it must be true—,

4 : �ϕ ⊃ ��ϕ—in epistemic logic again, an agent has introspection about its
own knowledge—,

B : ϕ ⊃ �♦ϕ—in epistemic logic again, a truth is known by the agent as
possibility compatible with her knowledge.

Modal Languages As seen with our examples, the basic modal language can
be extended to multiple modalities and underlying relations; in particular PDL
defined in Section 4.2 is a modal language with an unbounded number of binary
relations. A modal similarity type O is a ranked alphabet of modal operators 4
of arity r(4). A modal formula is then defined as

ϕ ::= p | > | ¬ϕ | ϕ ∨ ϕ | 4(ϕ1, . . . , ϕr(4))

where p ranges over A and 4 over O. Its semantics are defined over O-frames
F = 〈W, (R4)4∈O〉 where each R4 relation is of arity r(4) + 1, by

M, w |= 4(ϕ1, . . . , ϕr(4)) iff ∃w1, . . . , wr(4) ∈W.(w,w1, . . . , wr(4)) ∈ R4
and ∀1 ≤ i ≤ r(4).M, wi |= ϕi .

Exercise 8.4 (ALC as a Modal Language). Provide (∗)a consistency-preserving trans-
lation from ALC concepts into modal formulæ.

Standard Translation Modal languages have a standard translation into first-
order logic over the vocabulary 〈(R4)4∈O, (Pp)p∈A〉 where Pp = V (p):

STx(p)
def
= Pp(x)

STx(>)
def
= (x = x)

STx(¬ϕ)
def
= ¬STx(ϕ)

STx(ϕ ∨ ϕ′) def
= STx(ϕ) ∨ STx(ϕ′)

STx(4(ϕ1, . . . , ϕr(4)))
def
= ∃x1 . . . xr(4).R4(x, x1, . . . , xr(4)) ∧

r(4)∧
i=1

STxi(ϕi)

Logic and Linguistic Modelling 106

is a FO formula with a free variable x equivalent to ϕ: M, w |= ϕ iff M |=x 7→w
STx(ϕ). By reusing variables in the standard translation, we can use only (n + 1)
first-order variables if max4∈O(r(4)) = n.

Bisimulations and Modal InvarianceSee Blackburn et al. (2001,
Chapter 2).

Definition 8.2 (Bisimulations). Let O be a modal similarity type and let M =
〈W, (R4)4∈O, V 〉 and M′ = 〈W, (R′4)4∈O, V

′〉 be two O-models. A non-empty
relation Z ⊆ W × W ′ is a bisimulation between M and M′ if for all w,w′ s.t.
w Z w′,

1. {p ∈ A | w ∈ V (p)} = {p′ ∈ A | w′ ∈ V ′(p′)},

2. if (w,w1, . . . , wr(4)) ∈ R4, then there are w′1, . . . , w
′
r(4) in W ′ s.t. wiZ w′i for

all 1 ≤ i ≤ r(4) and (w′, w′1, . . . , w
′
r(4)) ∈ R

′
4, and

3. if (w′, w′1, . . . , w
′
r(4)) ∈ R

′
4, then there are w1, . . . , wr(4) in W s.t. wiZ w′i for

all 1 ≤ i ≤ r(4) and (w,w1, . . . , wr(4)) ∈ R4.

We say that w and w′ are bisimilar, noted w ↔ w′, if there exists a bisimulation Z
s.t. w Z w′.

Proposition 8.3 (Invariance for Bisimulation). Let O be a modal similarity type,
and M and M′ be O-models. Then, for every w in W and w′ in W ′ with w ↔ w′,
and every modal formula ϕ, M, w |= ϕ iff M, w′ |= ϕ.

Proof. The proof proceeds by induction on ϕ. The case where ϕ is an atomic
proposition is a consequence of (1) in Definition 8.2, the case where ϕ is > is
trivial, and the cases of Boolean connectives follow from the induction hypothesis.
For a formula of form 4(ϕ1, . . . , ϕr(4)):

M, w |= 4(ϕ1, . . . , ϕr(4))

implies ∃w1, . . . , wr(4) ∈W.(w,w1, . . . , wr(4)) ∈ R4 ∧ ∀1 ≤ i ≤ r(4).M, wi |= ϕi

implies ∃w′1, . . . , w′r(4) ∈W
′.(w′, w′1, . . . , w

′
r(4)) ∈ R4 ∧ ∀1 ≤ i ≤ r(4).M′, w′i |= ϕi

(by ind. hyp. and (2))

implies M′, w′ |= 4(ϕ1, . . . , ϕr(4)) ,

and the converse implication holds symmetrically thanks to (3) and the induction
hypothesis.

It is worth mentioning that the converse does not hold in general: there exist
models which are undistinguishable by modal formulæ but not bisimilar. In the
case of models with finite image however, where for every R4 and w

{(w1, . . . , wr(4)) | (w,w1, . . . , wr(4)) ∈ R4}

is finite, the converse holds: let us define the modal equivalence relation w! w′

as holding iff w and w′ are indistinguishable, i.e.

{ϕ |M, w |= ϕ} = {ϕ′ |M′, w′ |= ϕ′} .

Theorem 8.4 (Hennessy-Milner Theorem). Let O be a modal similarity type, and
M and M′ be O-models with finite image. If w! w′, then w ↔ w′.

Logic and Linguistic Modelling 107

Proof. Let us prove that modal equivalence is a bisimulation relation. Condi-
tion (1) holds since a difference in labelling would be witnessed by propositional
formulæ. For condition (2), assume w ! w′ and (w,w1, . . . , wr(4)) ∈ R4,
and assume that there do not exist w′1, . . . , w

′
r(4) satisfying (2). The image set

S′ = {(w′1, . . . , w′r(4)) | (w′, w′1, . . . , w
′
r(4)) ∈ R

′
4} is finite, and non empty since

otherwise M, w |= 4(>, . . . ,>) but M′, w′ 6|= 4(>, . . . ,>). Thus S′ is a finite
set {(w′1,1, . . . , w′1,r(4)), . . . , (w

′
n,1, . . . , w

′
n,r(4))} where, by assumption, for every

1 ≤ j ≤ n, there exists 1 ≤ i ≤ r(4) s.t. wi 6! w′j,i, i.e. there exists a formula ϕj,i
s.t. M, wi |= ϕj,i but M′, w′j,i 6|= ϕj,i. But then

M, w |= 4

 ∧
1≤j≤n

ϕj,1, . . . ,
∧

1≤j≤n
ϕj,r(4)

M′, w′ 6|= 4

 ∧
1≤j≤n

ϕj,1, . . . ,
∧

1≤j≤n
ϕj,r(4)

 ,

in contradiction with w! w′. The argument for condition (3) is symmetric.

The van Benthem Characterisation Theorem We saw earlier that any modal
formula has a standard translation into first-order. A converse statement holds for
a semantically restricted class of first-order formulæ.

Let us say that a first-order formula ψ(x) in FO((R4)4∈O, (Pp)p∈A) with one
free variable x is invariant for bisimulation if for all models M and M′, all states
w in M and w′ in M′ in bisimulation, we have M |=x 7→w ψ(x) iff M |=x 7→w′ ψ(x).

Theorem 8.5 (van Benthem Characterisation Theorem). See Otto (2004).Let ψ(x) be a first-order
formula in FO((R4)4∈O, (Pp)p∈A) with one free variable x. Then ψ(x) is invariant
for bisimulation iff it is equivalent to the standard translation of a modal formula.

Decision Problems See Blackburn et al. (2001,
Chapter 6).

Many classes of frames yield modal logics with decidable sat-
isfiability and model-checking problems, even when the corresponding first-order
theory is undecidable, or suffers from much larger decision complexities. Many
logics have NP-complete satisfaction problems, while the basic modal language is
PSPACE-complete. Model-checking of finite models is usually P-complete.

8.3.2 First-Order Modal Logic

In order to work with both modal operators and first-order semantics as in Sec-
tion 8.1, we introduce a mixed logic, first-order modal logic (FOML). For simplic-
ity we give the definitions for the basic modal operator and not the fully general
modal logic. The syntax of the logic over a vocabulary 〈(Ri)i〉 of ki-ary symbols is

ϕ ::= x = y | Ri(x1, . . . , xki) | ¬ϕ | ϕ ∧ ϕ | ♦ϕ | ∃x.ϕ

with x, x1, . . . , xki , y ranging over an infinite countable set of variables X .
We consider structures M = 〈W,R,D, I〉 where 〈W,R〉 is a frame, D is a domain

function from W to non-empty sets, and I is an interpretation function mapping
each Ri with arity ki > 0 and world w from W into a ki-ary relation I(Ri)(w)
over D(w) (constants are handled similarly). The domain of the model is D =⋃
w∈W D(w). A valuation is a partial mapping from variables in X to the domain

Logic and Linguistic Modelling 108

D. The satisfaction of a formula by a model M at a world w for a valuation ν is
defined inductively by

M, w |=ν x = y iff ν(x) = ν(y)

M, w |=ν Ri(x1, . . . , xki) iff (ν(x1), . . . , ν(xn)) ∈ I(Ri)(w)

M, w |=ν ¬ϕ iff M, w 6|=ν ϕ

M, w |=ν ϕ ∧ ϕ′ iff M, w |=ν ϕ and M, w |=ν ϕ
′

M, w |=ν ♦ϕ iff ∃w′ ∈W.w R w′ and M, w′ |=ν ϕ

M, w |=ν ∃x.ϕ iff ∃e ∈ D(w).M, w |=ν[x←e] ϕ .

See also the entry on actualism in
the Stanford Encyclopedia of

Philosophy.

The domain D(w) denotes the set of objects in the world w; this set is allowed
to vary from world to world, i.e. the semantics allows a varying domain. Because
we restrict the domain of quantified variables to the current domain, we take an
actualist quantification. A constant domain semantics instead considersD(w) =
D for all w in W ; the resulting semantics is also called possibilist quantification.

Unlike the domain, valuations are rigid in this semantics: the value of a variable
does not depend on the current world. In the case of varying domains, it can
potentially refer to an object from another world but not existing in the current
one (but cannot do much with it). In the following we will use constant domains.

Example 8.6 (First-order temporal logic). Let us consider some very simple ex-
amples in the temporal extension of first-order logic: we can model the meaning
of the following sentence

John will eat an apple.

as

∃a.apple(1)(a) ∧ F (eat
(2)
2 (John(0), a)) . (8.33)

Observe however that, in an actualist view, this reading implies the existence of
the apple John will eventually eat in the current instant; the formula might not be
satisfied by the model if no appropriate object a on which apple(a) holds can be
found. Another reading would be

F (∃a.apple(1)(a) ∧ eat
(2)
2 (John(0), a)) . (8.34)

8.4 Decidability

See Börger et al. (1997). In moderns terms, the Entscheidungsproblem or classical decision problem of
Hilbert asks, given a first-order formula ψ, whether it is satisfiable. Church and
Turing famously proved in the 1930s that the problem is undecidable, and a long
line of research has established the decidability status of many fragments of first-
order logic. Notably, the decidability status is known for all the prefix classes for
formulæ in prenex normal form.

For instance, the semantic reading

∃x.woman(1)(x) ∧ ∀y.man(1)(y) ⊃ love(2)(y, x) (8.35)

for Every man loves a woman—to be contrasted with (8.27)—belongs to the ∃∗∀∗
class shown decidable by Bernays and Schönfinkel and NEXPTIME-complete by
Lewis (1980). It also belongs to the two-variable fragment FO2, which was shown
decidable by Mortimer and NEXPTIME-complete by Grädel, Kolaitis, and Vardi
(1997). The standard translations of ALC and of basic modal logic also yield FO2

formulæ, and they are therefore decidable (they are actually PSPACE-complete).

http://plato.stanford.edu/entries/actualism/

Logic and Linguistic Modelling 109

8.4.1 The Guarded Fragment

The section follows Grädel
(2002). The guarded fragment
has been advanced by Andréka,
van Benthem, and Németi (1998)
as an explanation for the good
model- and complexity-theoretic
properties of modal logics.

We are going to look more closely at one of the decidable fragments of first-order
logic, called the k-variable guarded fragment (GFOk). The satisfiability problem
in GFOk is EXPTIME-complete (Grädel and Walukiewicz, 1999); in fact this com-
plexity also holds for the fixed-point extension of GFOk.

Let X def
= {x1, . . . , xk} be the set of variables. A guarded formula over a vocabu-

lary (R
(ki)
i)i is defined syntactically by

ψ ::= x = y | R(ki)
i (z) | ¬ψ | ψ ∧ ψ | ∃y.α(x,y).ψ(y)

where x, y are variables in X , R(ki)
i is a relation symbol of arity ki, z is a ki-tuple of

variables in X , and x,y denote tuples of variables in X , α(x,y) a positive atomic
formula, and ψ(x,y) a GFOk formula with FV(ψ) ⊆ FV(α) = x ∪ y. Guarded
universal quantification ∀y.α(x,y) ⊃ ψ(x,y) is defined by duality.

For example, the formula (8.27) is in GFO2: man(1)(y) guards the universal
quantification and love(2)(y, x) guards the existential quantification. By contrast,
(8.35) is not in GFO2: the universal quantification ∀y.man(1)(y) ⊃ love(2)(y, x) is
not guarded. Observe more generally that the standard translations of ALC or
basic modal formulæ are in GFO2.

Guarded Bisimulations

Let M = 〈W, (Ri)i〉 be a relational structure. A set X = {w1, . . . , wn} ⊆ W is
guarded in M if there exists a positive atomic formula α(x1, . . . , xn) such that
M |=x1 7→w1,...,xn 7→wn α(x1, . . . , xn). In particular, every singleton {w} is guarded
by x = x and every hyperedge 〈w1, . . . , wki〉 in the relation Ri is guarded by
R

(ki)
i (x1, . . . , xki).
A guarded-k-bisimulation between two structures M and M′ is a non-empty

set I of partial isomorphisms f :X → X ′ from M to M′, where X ⊆ W and
X ′ ⊆W ′ are guarded sets of cardinal at most k, such that the following condition
is satisfied: for every f :X → X ′ in I,

1. for every guarded set Y ⊆ W in M of size at most k, there exists g:Y → Y ′

in I such that f and g agree on X ∩ Y , and

2. for every guarded set Y ′ ⊆W ′ in M′ of size at most k, there exists g:Y → Y ′

in I such that f−1 and g−1 agree on X ′ ∩ Y ′.

As in the modal case, we write M↔k M
′ if there exists a guarded-k-bisimulation

between M and M′. We also write M!k M
′ if for all GFOk sentences ψ, M |= ψ

iff M′ |= ψ. Proposition 8.3 can be extended to the case of guarded-k-bisimilarity:

Proposition 8.7. Let M and M′ be two relational structures over the vocabulary
(Ri)i. If M↔k M

′, then M!k M
′.

Proof. Let I be a guarded-k-bisimulation between M and M′. We show by induc-
tion on ψ in GFOk that, if ψ(x) has n free variables and there exist two n-tuples a
in M and a′ in M′ such that M |=x7→a ψ(x) but M′ 6|=x 7→a′ ψ(x), then there is no
partial isomorphism f in I with f : a 7→ a′. This will entail that I is empty when
n = 0, i.e. in the case of a sentence ψ in GFOk, thus contradicting M↔k M

′.
For an atomic formula ψ(x) = α(x) where M |=x 7→a α(x) but M′ 6|=x 7→a′ α(x),

assume that there exists f in I mapping a to a′. Then by condition (1), there must

Logic and Linguistic Modelling 110

exist g in I with domain a that agrees with f on a, i.e. g: a 7→ a′. This would entail
M′ 6|=x 7→a′ α(x), a contradiction.

For a conjunction ψ(x1,x2) = ψ1(x1)∧ψ2(x2) where M |=x1 7→a1,x2 7→a′1
ψ(x1,x2)

but M′ 6|=x1 7→a′1,x2 7→a′2
ψ(x1,x2), for some j in {1, 2}, M′ 6|=xj 7→a′j

ψj(xj) and by
induction hypothesis there is no fj in I that maps aj to a′j , and therefore no f in
I that maps aj to a′j for all j ∈ {1, 2}. The case of a negated formula is similarly
immediate by induction hypothesis.

The interesting case is that of an existential quantification ψ(x) = ∃y.α(x,y) ∧
ϕ(x,y). Since M |=x 7→a ψ(x), there exists b in M such that M |=x 7→a,y 7→b α(x,y)∧
ϕ(x,y). Suppose toward a contradiction that there exists f in I that maps a to a′.
By condition (1), since a ∪ b is guarded by α(x,y), there exists g in I that maps
a to a′ and b to b′. Then M′ |=x 7→a′,y 7→b′ α(x,y) since g is a partial isomorphism,
which entails that M′ 6|=x 7→a′,y 7→b′ ϕ(x,y), which together with the existence of g
contradicts the induction hypothesis on ϕ.

Models of Bounded Treewidth

An important model-theoretic property of ALC and the basic modal language is
that they enjoy the tree model property: if a formula is satisfiable, then it has a tree
model. In the case of GFOk, we can generalise this idea to models of treewidth
bounded by k − 1, see Proposition 8.8. In the case where k = 2 (which is the case
of ALC and the basic modal logic), we find again the tree model property.

See Robertson and Seymour
(1986).

On an intuitive level, the treewidth of a structure tells how close to a tree the
structure looks like. Trees and forests have treewidth 1, cycles have treewidth 2,
etc. An example of a class of structures with unbounded treewidth is the class
of n × n grids, each with treewidth n. Formally, the treewidth of a structure
M = 〈W, (R(ki)

i)i〉 is the minimal k such that there exists a tree t labelled by bags
in {X ⊆W | |X| ≤ k + 1}, such that

1. for every guarded setX in M there exists a position u in dom twithX ⊆ t(u),
and

2. for every element a in M, the set of nodes {u ∈ dom t | b ∈ t(u)} is connected
in t using the child relation ↓.

For each u in dom t, t(u) induces a substructure T(u) ⊆ M of cardinality at most
k + 1. The tree t is called a tree decomposition of M =

⋃
u∈dom t T(u).

Consider a structure M. We are going to construct a guarded-k-bisimilar unrav-
elling M′ with treewidth at most k − 1. We construct for this two trees t and t′

with the same domain dom t = dom t′ such that for each position u, t(u) induces
a guarded substructure T(u) ⊆M and t′(u) a substructure T′(u) ⊆M′ isomorphic
to T(u); then t′ will be a tree decomposition of M′.

The root ε is labelled ∅ in both t and t′. Inductively, given a position uwith t(u) =
{a1, . . . , ar} and t′u = {a′1, . . . , a′r}, we create for every guarded set {b1, . . . , bs} of
size s ≤ k in M a child node v of u such that t(v) = {b1, . . . , bs} and t′(v) =
{b′1, . . . , b′s} defined for all 1 ≤ i ≤ s by b′i = a′j if bi = aj for some 1 ≤ j ≤ r and
b′i is a fresh element otherwise. Define accordingly the induced substructure T′(v)
to be isomorphic to the induced substructure T(v), giving rise to a partial isomor-

phism fv: t(v)→ t′(v) when setting fv(bi)
def
= b′i. Finally, let M′ def

=
⋃
u∈dom t′ T

′(u).
Observe that the tree t′ is a tree decomposition of M′. This entails that M′ has

treewidth at most k − 1. Furthermore, {fu | u ∈ dom t} is a non-empty (note
that the root ε gives rise to the empty isomorphism) set of partial isomorphisms

Logic and Linguistic Modelling 111

a
man

b
woman

c
man

d
woman

M : M′ : a′
man

b′

woman

lo
v
e

lo
v
e

lo
v
e

Figure 8.1: Two structures which are not guarded-2-bisimilar over the vocabulary
man(1),woman(1), love(2).

between M and M′, which satisfies the conditions of a guarded-k-bisimulation:
M↔k M

′. Hence, by Proposition 8.7:

Proposition 8.8. If a sentence ψ in GFOk has a model, then it has a model of
treewidth at most k − 1.

Proposition 8.8 is instrumental in the proof of Grädel and Walukiewicz (1999)
that the satisfiability problem for GFOk is in EXPTIME. More precisely, the idea is
to reduce the problem to a modal µ-calculus satisfiability question over (infinite,
countable) trees: given a GFOk formula ψ, one can construct a modal µ-calculus
formula ϕ which describes a tree decomposition of a model of ψ of treewidth at
most k − 1. The complexity then follows by adapting the results of Vardi (1998)
on the emptiness problem for 2ATAs over infinite trees.

Limitations & Extensions

There are extensions on the
guarded fragment that retain
most of its model- and
complexity-theoretic properties,
e.g. the guarded negation
fragment of Bárány, ten Cate,
and Segoufin (2011). Those
extensions do not solve the issues
pointed here.

Although the guarded fragment includes many formulæ of interest in formal se-
mantics, it is not comprehensive: (8.35) is an example of an unguarded formula.
We can furthermore show that there is no equivalent formula in GFO. Observe that
the two structures depicted in Figure 8.1 are guarded-2-bisimilar for the following
set I of partial isomorphisms

fab: a 7→ a′, b 7→ b′ fa: a 7→ a′ fb: b 7→ b′

fcd: c 7→ a′, d 7→ b′ fc: c 7→ a′ fd: d 7→ b′

Because every guarded set in M is in the domain of one of the partial isomorphisms
in I, every guarded set in M′ is in the range of at least one of the partial isomor-
phisms in I, and all the partial isomorphisms in I agree, this is indeed a guarded-
2-bisimulation. Therefore by Proposition 8.7 M and M′ are undistinguishable
through guarded formulæ over the vocabulary {man(1),woman(1), love(2)}. How-
ever, M 6|= ∃x.woman(1)(x)∧(∀y.man(1)(y) ⊃ love(2)(y, x)) but M′ |= ∃x.woman(1)(x)∧
(∀y.man(1)(y) ⊃ love(2)(y, x)). In particular, no ALC formula can express (8.35).

Another issue with the guarded fragment is that the axiom for transitivity of a
binary relation R, which can be expressed by

∀xyz.R(2)(x, y) ∧R(2)(y, z) ⊃ R(2)(x, z) (8.36)

or by

∀xy.R(2)(x, y) ⊃ (∀z.R(2)(y, z) ⊃ R(2)(x, z)) (8.37)

is not guarded—nor in FO2. In fact, the two-variable guarded fragment with-
out equality and only a handful of transitive relations is already undecidable

Logic and Linguistic Modelling 112

(Ganzinger et al., 1999). This is an issue when considering epistemic or temporal
modal logics, where transitivity is assumed; thankfully, decidability can be recov-
ered when restricting transitive relations to occur solely in guards (e.g. Ganzinger
et al., 1999; Michaliszyn, 2009).

Chapter 9

Tree Patterns

In this chapter, we consider formulæ called patterns from severely restricted frag-
ments of first-order logic over trees. These provide concise means to define tree
languages while avoiding the non-elementary complexity of full first-order logic
over finite trees (e.g. Reinhardt, 2002). More precisely, we use patterns to define
finite tree languages, which are then used as elementary trees in a grammar (Sec-
tion 9.2) or as possible semantic readings in ambiguous sentences (Section 9.3).

9.1 Background: Existential First-Order Logic

When describing finite structures, existential sentences of first-order logic pop-up
naturally: given a structure M = 〈W, (Ri)i〉 over a finite domainW = {w1, . . . , wn}
and a finite relational vocabulary (Ri)i (with no constants), the canonical sen-
tence associated with M is

ϕM
def
= ∃x1 . . . xn.χ

+
M(x1, . . . , xn) (9.1)

where the formula χ+
M is its positive diagram and consists of the conjunction of

all the positive relational atomic formulæ true of M:

χ+
M(x1, . . . , xn)

def
=
∧
i

∧
(wi1 ,...,wik)∈Ri

R(ik)(xi1 , . . . , xik) . (9.2)

Observe that M |= ϕM, and more precisely M |=ν χ
+
M(x1, . . . , xn) using the valu-

ation ν:xi 7→ wi. The canonical sentence ϕM only uses existential quantification
and conjunction.

EFO and its Fragments More generally, existential first-order logic (EFO) over
a vocabulary σ is defined syntactically by

α ::= x = y | R(k)(x1, . . . , xk) (atomic formulæ)

ϕ ::= α | ¬α | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃x.ϕ (existential formulæ)

where x, y, x1, . . . , xk range over X the set of variables, and R over the vocabulary
σ.

• If both negated atoms ¬ϕ and disjunctions ϕ ∨ ϕ are forbidden, we obtain
primitive positive formulæ (E+CFO), which are equivalent to conjunctive
queries used in the database literature.

113

Logic and Linguistic Modelling 114

• If negated atoms ¬ϕ are forbidden, we obtain existential positive formulæ
(E+FO), which are equivalent to unions of conjunctive queries used in the
database literature.

• Finally, if disjunctions ϕ∨ϕ are forbidden, we obtain existential conjunctive
formulæ (ECFO).

Normal Forms When putting an existential formula ϕ in disjunctive normal
form, we see that it is equivalent to a finite disjunction of existential conjunctive
formulæ ψi

ϕ ≡
∨
i

ψi (9.3)

where in turn each existential conjunctive formula ψ can be put in prenex form

ψ ≡ ∃x.
∧
j

βj(xj) (9.4)

where the βj ’s are atoms or negated atoms and xj is a subvector of x. (If addi-
tionally ϕ was positive, then each ψi is primitive positive and the βj ’s are atoms.)
Observe finally that any atom of the form x = y in some ψ can be eliminated by
identifying the two variables x and y in ψ:

∃x1x2 . . . xn.χ ∧ x1 = x2 ≡ ∃x2 . . . xn.χ{x1 ← x2} (9.5)

so that the βj ’s are necessarily relational or of the form x 6= y.

Small Models Given an existential conjunctive sentence ψ = ∃x1 . . . xn.χ, we
can look at its models with at most n elements:

Mod≤n(ψ)
def
= {M = 〈W,σ〉 | |W | ≤ n ∧M |= ψ} . (9.6)

If ψ is positive, and positive equality atoms of the form x = y have been elim-
inated as explained just before (thus only positive relational atoms appear in
ψ), then ψ has a canonical model Mψ with domain {w1, . . . , wn} and a tuple
(wi1 , . . . , wik) in a k-ary relation R iff R(k)(xi1 , . . . , xik) is an atom in ψ. Clearly,
Mψ |= ψ, and furthermore the canonical sentence associated with Mψ is ψ itself.

Exercise 9.1 (Canonical Model). Given(∗) an existential conjunctive sentence ψ
without positive equality atoms (but possibly with some negated atom of the form
¬R(k)(xi1 , . . . , xik) or xi 6= xj), we distinguish its positive part ψ+, which con-
tains only the positive relational atoms of ψ. Show that, if ψ is satisfiable, then
Mψ+ |= ψ.

9.1.1 Characterisations over Finite Models

Fix some finite vocabulary σ = (Ri)i. Given two structures M = 〈W, (Ri)i〉 and
M′ = 〈W ′, (R′i)i〉, M is an induced substructure of M′ if W ⊆ W ′ and Ri =
R′i∩W ki for each ki-ary relation. In that case, we also say that M′ is an extension
of M and write M ⊆i M′. A sentence ϕ in FO is preserved under extensions if
M |= ϕ and M ⊆i M′ together imply M′ |= ϕ.

The Łoś-Tarski theorem fails over
the class of all finite

structures (e.g. Ebbinghaus and
Flum, 1999, Section 3.5). See

Asterias et al. (2008) for classes
of finite structures where it holds.

The Łoś-Tarski theorem states that a first-order sentence is preserved under
extensions over the class of all (finite and infinite) structures if and only if it is
equivalent to an existential sentence. If we work on a particular class of structures,
the theorem might fail, but one direction remains correct:

Logic and Linguistic Modelling 115

Proposition 9.1. Let C be a class of structures. If ϕ is equivalent to an existential
sentence over C, then it is preserved under extensions over C.

Proof. Let M = 〈W, (Ri)i〉 and M′ = 〈W ′, (R′i)i〉 be two structures in C with M |=
ϕ and M ⊆i M′. Write ϕ as a finite disjunction of ECFO sentences as in (9.3): there
exists a disjunct ψ such that M |= ψ. More precisely, ψ can be put in prenex normal
form as ψ ≡ ∃x1 . . . xn.χ where χ is a conjunction of atoms and negated atoms,
and M |=ν χ for some valuation ν: {x1, . . . , xn} → W . Consider the substructure
Mν (not necessarily in C) induced by the subset ν({x1, . . . , xn}) ⊆ W in M: then
Mν |=ν χ and Mν ⊆i M ⊆i M′. We can easily check that M′ |=ν χ and the result
follows.

In our applications, we will be especially interested in the (induced-)minimal
models of existential sentences: given a class C of structures and a first-order
sentence ϕ, M in C is a minimal model of ϕ if M |= ϕ and, if M′ (i M, then
M′ 6|= ϕ.

Lemma 9.2. Let C be a class of finite structures closed under induced substructures.
If ϕ is equivalent to an existential sentence over C, then ϕ has finitely many minimal
models in C.

Proof. Using again the disjunctive normal form equivalent to ϕ, it suffices to show
that there are finitely many minimal models for a disjunct ψ in ECFO. Let ψ ≡
∃x1 . . . xn.χ, M be a minimal model of ψ and ν be a valuation such that M |=ν χ.
Then ν induces as in the proof of Proposition 9.1 a substructure Mν ⊆i M with
Mν |=ν χ. Because C is closed under induced substructures, Mν also belongs to
C, and because M was assumed minimal, this in turn entails that Mν and M are
isomorphic, and thus that M has at most n elements.

In other words, if M is a minimal model in C, then

M ∈ Mod≤n(ψ) . (9.7)

(Note that this is not directly implied by Exercise 9.1, because Mψ+ might not be
in C.) We conclude by noting that Mod≤n(ψ) is finite for every n, and that n itself
is bounded by the quantifier depth of ϕ.

Exercise 9.2 (Diagrams). Let (∗)M = 〈W, (Ri)i〉 be a finite structure with W =
{w1, . . . , wn}. We define its diagram as the conjunction of the atomic and negated
atomic formulæ it satisfies under the valuation ν:xj 7→ wj:

χM
def
=
∧

1≤j≤k≤n
xj 6= xk∧

∧
i

(∧
(wi1 ,...wik)∈Ri

R
(ik)
i (xi1 , . . . , xik)∧

∧
(wi1 ,...wik)6∈Ri

¬R(ik)
i (xi1 , . . . , xik)

)
(9.8)

Show that, for any structure M′, M′ |= ∃x1 . . . xn.χM iff M ⊆i M′ (up to isomor-
phism).

Exercise 9.3 (Converse of Lemma 9.2). Let (∗)C be a class of finite structures and let
ϕ be a first-order sentence preserved under extensions on C. Show that, if ϕ has
finitely many minimal models in C, then it is equivalent to an existential sentence
over C.

Somewhat similar ideas can be worked out for existential positive sentences (in-
stead of existential sentences) and homomorphisms between structures (instead
of induced substructures), see Asterias et al. (2006); Rossman (2008); Dawar
(2010).

Logic and Linguistic Modelling 116

9.1.2 Tree Models

Unranked TreesSee Hidders (2004); Björklund
et al. (2011) for related results

on tree patterns and XPath
fragments.

Let us consider finite ordered unranked trees, with labels taken
from some finite set A; note that for our applications we assume that each tree
position is labelled by a single symbol from A. Because first-order logic cannot
express transitive closures, we explicitly add the transitive reflexive closures ↓∗ of
↓ and→∗ of→ to our signature. In other words, we work over the relational sig-
nature 〈↓, ↓∗,→,→∗, (Pa)a∈A〉, and our class of models is restricted to trees, where
the interpretation of ↓∗ (resp.→∗) must coincide with the transitive reflexive clo-
sure of the interpretation of ↓ (resp.→).

An issue with the class of trees is that it is not closed under induced substruc-
tures. For instance, the proof of Lemma 9.2 is incorrect for trees, e.g. the sentence

∃xyz.Pa(x) ∧ Pb(y) ∧ Pc(z) ∧ x ↓∗ y ∧ x 6 ↓ y ∧ x ↓∗ z ∧ x 6 ↓ z (9.9)

has minimal models of size 4 of the following form, for any label $ in A:

a

$

b c

Ranked Trees Another vocabulary of interest is 〈(↓i)i<k, ↓∗, (Pa)a∈A〉 where A is
a finite ranked alphabet and k is the maximal arity in A. Again, the class of ranked
trees is not closed under induced substructures.

Theorem 9.3 (Koller et al., 2001). Satisfiability of ECFO((↓i)i<k, ↓∗, (Pa)a∈A) sen-
tences is NP-complete.

9.2 Meta-Grammars

In order to cope with the difficulty of hand-writing grammars with an adequate
coverage of a natural language, it turns out to be quite convenient to see the gram-
mar itself as the result of a compilation from a higher-level formalism. There exist
many ways to define such a meta-grammar. Here we will focus on a simple for-
malism where the low-level grammar is the set of minimal models of an existential
first-order formula on trees.

9.2.1 Diathesis Alternation

Section based on Crabbé et al.
(2013).

One of the difficulties in competence grammars is to account for the many possible
subcategorisation frames each lemma might allow. For instance, a transitive verb
like eat allows for the sentences

John eats an apple.
Who eats an apple?
What does John eat?
An apple is eaten by John.

This not only leads to an explosion in the number of elementary tree structures
in a context-free or tree-adjoining grammar, but also makes the semantic mapping
(with adequate thematic roles) more cumbersome.

Logic and Linguistic Modelling 117

CanonicalSubject

S

NP VP

Wh-NP-Subject

S

WhNP S

NP

ε

VP

CanonicalObject

VP

VBZ NP

Wh-NP-Object

S

WhNP S

VBZ

does

VP NP

ε

→+

CanonicalByObject

VP

VP PP

IN

by

NP

ActiveVerb

S

VP

VBZ

PassiveVerb

S

VP

VBZ

is

VP

VBN

Figure 9.1: Basic tree fragments.

S

WhNP S

VBZ

does

NP VP NP

ε

Figure 9.2: A minimal model of (9.10).

By allowing to factor some common patterns in elementary trees, we gain in
succinctness. Moreover, by identifying linguistically-motivated atomic construc-
tions, we obtain a more readable, easier to maintain description of the syntax.
For instance, various elementary trees for transitive verbs can be described by the
formulæ (number agreement could be handled through feature structures):

TransitiveVerb def
= ActiveTransitiveVerb ∨ PassiveTransitiveVerb

ActiveTransitiveVerb def
= Subject ∧ ActiveVerb ∧ (CanonicalObject ∨Wh-NP-Object)

PassiveTransitiveVerb def
= CanonicalSubject ∧ PassiveVerb ∧ CanonicalByObject

Subject def
= CanonicalSubject ∨Wh-NP-Subject

where each of the basic formulæ ActiveVerb, PassiveVerb, etc. is the canonical pos-
itive primitive formula of the corresponding tree in Figure 9.1. For instance, the
conjunction

CanonicalSubject ∧ ActiveVerb ∧Wh-NP-Object (9.10)

gives rise to the unique minimal model of Figure 9.2.

9.2.2 Complexity

Section based on Björklund et al.
(2011).

Observe that we only used the ↓,→, and→+ axes in our examples in Section 9.2.
One might hope that this fragment of E+FO would have a polynomial-time sat-

Logic and Linguistic Modelling 118

isfiability problem, but it turns out to be NP-hard already for primitive positive
sentences with only→ and→+:

Proposition 9.4. Satisfiability of E+CFO(→,→+, (Pa)a) sentences is NP-complete.

Proof. By ??, satisfiability is in NP, thus we only need to prove hardness.
We reduce for this from the Shortest Common Supersequence Problem (SSSP), c.f.

(Räihä and Ukkonen, 1981). An instance of SSSP is an integer k in unary and a
set of strings S = {si = ai1 · · · ai`i}1≤i≤p over some finite alphabet Σ. The instance
is positive if there exists a string s of length at most k, which is simultaneously a
supersequence of every string in S, i.e. for every i, there exist strings s′0, . . . , s

′
i`+1

s.t. s = s′0ai1s
′
1ai2 · · · ai`s′i`+1. Importantly, if s is such a witness, then any super-

sequence of s over some alphabet that includes Σ and of length exactly k is also a
witness.

Given an instance 〈k, S〉 of SSSP, we build an existential positive sentence ϕ,
which is satisfiable iff the instance is positive. The idea is to find a sequence of
children that spells out a witness s for the SSSP instance. In order to isolate this
sequence, we add a fresh symbol # to Σ and make sure that we work between two
nodes labelled with #:

ϕ
def
= ∃zz′.P#(z) ∧ P#(z′) ∧ ϕ=k(z, z

′) ∧ ϕS(z, z′)

On the one hand, our intention is for ϕ=k to make sure that the segment between
z and z′ is of length exactly k:

ϕ=k(z, z
′)

def
= ∃x1 . . . xk.z → x1 ∧ xk → z′ ∧

(∧
1≤j<k

xj → xj+1

)
.

On the other hand, ϕS(z, z′) should ensure that the segment between z and z′ is
indeed a supersequence of every si = ai1 · · · ai`i :

ϕS(z, z′)
def
=

∧
1≤i≤p

∃y1 . . . y`i .z →
+ y1 ∧ y`i →

+ z′ ∧
(∧

1≤j≤`i

Paij (yj)
)

∧
(∧

1≤r<`i

yr →+ yj+1

)
.

9.3 Underspecified Semantics

9.3.1 Scope Ambiguities

An pervasive issue in semantic representations is related to scope ambiguities.
Linguistic expressions are often semantically ambiguous (i.e. they have several
possible readings that are mapped to different meaning representations) but fail
to reflect this ambiguity syntactically (e.g. they have a single syntactic analysis).
For instance, the sentence Every man loves a woman accepts two readings

∃y.woman(y) ∧ ∀x.man(x) ⊃ ∃e.love(e) ∧ agent(e, x) ∧ patient(e, y) (9.11)

∀x.man(x) ⊃ ∃y.woman(y) ∧ ∃e.love(e) ∧ agent(e, x) ∧ patient(e, y) (9.12)

depending on whether we are talking about one single woman or not; there is no
clear reason why we should provide the sentence with different syntactic analyses.

Assuming we view meaning construction as a relation from one syntactic repre-
sentation to several semantic ones, the number of readings can grow exponentially

Logic and Linguistic Modelling 119

with the number of scope-bearing operators (quantifiers, modal operators, etc.),
and simply enumerating the possible readings quickly turns impossible.

For instance, the sentence

A politician can fool most voters on most issues most of the time, but
no politician can fool every voter on every issue all of the time.

(Poesio, 1994)

is reputed as having several thousand readings. Arguably, not all these readings
are born equal: some might be implied by others (just like (9.11) implies (9.12)),
and some downright impossible. However there can still remain a considerable
number of incomparable readings. A naive approach to counting the number of
possible readings is to consider all the permutations of quantifiers in a sentence:
for a sentence with n quantifiers this will yield n! different readings. Hobbs and
Shieber (1987) for instance refine this approach and show how the sentence

Every representative of a company saw most samples.

has actually 5 distinct readings instead of 3! = 6: they argue that the reading
where “for each representative there is a group of most samples which he saw, and
furthermore, for each sample he saw, there was a company he was a representative
of” is impossible.

A broadly adopted solution to the problems raised by scope ambiguities is to
employ underspecified representations for semantics, which allow to represent
several readings with a single representation. One might think such a trick, while
computationally useful, defeats the very purpose of compositionality, but it does
not if we view the underspecified representation as the actual meaning of the sen-
tence. . .

There exist several such formalisms (e.g. Bos, 1996; Egg et al., 2001; Althaus
et al., 2003; Copestake et al., 2005) but we will focus on one in particular: the
hole semantics of Bos. The idea of hole semantics is to take as a semantic repre-
sentation language (SRL) the logic we use for semantic representation (in our case
FO) and build on top of it an underspecified representation language (URL), which
describes the set of desired SRLs. As the latter are terms, the URL can be a formula
s.t. the SRLs are its ranked tree models, i.e. we can reuse classical model-theoretic
methods.

9.3.2 Hole Semantics

Our ECFO presentation of hole
semantics follows Blackburn and
Bos (2005, Chapter 3) rather
than the original definition of Bos
(1996).

The syntax of hole formulæ is a restricted fragment of ECFO((↓i)i<k, ↓∗, (Pa)a∈A).
We distinguish between two sorts of variables: labels l in L and holes h in H
so that dominance relations ↓∗ can only go from holes to labels, and holes can
only appear as unlabeled leaves; furthermore, immediate children relations and
labelling predicates Pa are combined in a construct l : a(r)(x1, . . . , xr) that enforces
the correct arity of a:

γ ::= l : a(r)(x1, . . . , xr) | h ↓∗ l | γ ∧ γ | ∃x.γ (hole formulæ)

where l ranges over L, a(r) over Ar, x, x1, . . . , xr over L] H, and h over H. As
with ECFO formulæ, hole formulæ γ can be put in prenex normal form

γ ≡ ∃l1 . . . lnh1 . . . hm.
∧
p

γp . (9.13)

Logic and Linguistic Modelling 120

Hole formulæ γ are interpreted in ECFO((↓i)i<k, ↓∗, (Pa)a∈A) by associating a for-
mula [γ]

[γ] = ∃l1 . . . lnh1 . . . hm.
∧

1≤i<j≤n
li 6= lj ∧

∧
p

γp (9.14)

where we interpret

l : a(r)(x1, . . . , xr)
def
= Pa(l) ∧

r∧
i=1

l ↓i−1 xi . (9.15)

A variable x in a hole formula is a root if there does not exist x0, . . . , xr and a(r)

s.t. x0 : a(r)(x1, . . . , xr) is a subformula of γ where x = xj for some 1 ≤ j ≤ r. A
hole formula is normal if

1. in every h ↓∗ l subformula, l is a root of γ,

2. every hole appears exactly once as a child of a l : a(r)(x1, . . . , xr) subformula,
and thus cannot be a root,

3. every label should appear at most once as a parent and at most once as
a child in a l : a(r)(x1, . . . , xr) subformula. This excludes for instance l′ :
f (2)(l, l), l : f (2)(l1, l2) ∧ l : f (2)(l′1, l

′
2), or l1 : g(1)(l) ∧ l2 : g(1)(l).

Normal hole formulæ with this interpretation into ECFO give rise to normal dom-
inance constraints, which are known to be efficiently testable for satisfiability:

Theorem 9.5 (Althaus et al., 2003). Satisfiability of normal hole formulæ is in P.

Constructive Satisfiability

The issue with our interpretation of hole formulæ into ECFO is that not every
model M over A is suitable as a SRL formula. For instance, there could be extra
points in the model not constrained by γ, or conversely several labels could be
mapped to a single node. An alternative notion of model is needed in practice.

Consider a hole formula in prenex conjunctive normal form as in (9.13). Then a
plugging P is an injective function from holes {h1, . . . , hm} to labels {l1, . . . , ln}.
A model M = 〈dom(t), (↓i)i<k, ↓∗, (Pa)a∈A〉 of γ is a plugged model for a plugging
P if its domain is in bijection with the set of labels (we write dom(t) = {l̂1, . . . , l̂n})
and M |=ν γ where the valuation ν is defined by

ν(x)
def
=

{
x̂ if x ∈ L
P̂ (x) if x ∈ H .

(9.16)

The structure M is a constructive model for γ if there exists a plugging P s.t. it is
a plugged model for P .

Example 9.6. Let us extend the syntax of hole formulæ by allowing larger tree
segments:

γ ::= l : a(r)(θ1, . . . , θr) | h ↓∗ l | γ ∧ γ | ∃x.γ (hole formulæ)

θ ::= a(r)(θ1, . . . , θr) | h (tree formulæ)

Logic and Linguistic Modelling 121

∀

x ⊃

man

x

�

∃

y ∧

woman

y

�

love

x y

Figure 9.3: Underspecified formula for (9.11) and (9.12). Dominance relations
are indicated through dotted arrows and holes by boxes.

and translating back into hole formulæ by defining

xθ
def
=

{
h if θ = h

lθ ∈ L a fresh label for each θ otherwise

l : a(r)(θ1, . . . , θr)
def
= l : a(r)(xθ1 , . . . , xθr)

a(r)(θ1, . . . , θr)
def
= ∃lθ.lθ : a(r)(xθ1 , . . . , xθr) .

A hole semantic formula that models the two readings (9.11) and (9.12) is the
following (see also Figure 9.3):

∃l1l2l3h1h2.l1 : ∀(2)(x(0),man(1)(x(0)) ⊃(2) h1) ∧ l2 : ∃(2)(y(0),woman(1)(y(0)) ∧(2) h2)

∧l3 : love(2)(x(0), y(0)) ∧ h1 ↓∗ l3 ∧ h2 ↓∗ l3 .

Polynomial-time processing can
be recovered if we further restrict
hole formulæ; see Koller et al.
(2003).

Constructive satisfiability puts a higher toll on computations than basic satisfia-
bility:

Theorem 9.7. Constructive satisfiability of normal hole formulæ is NP-complete.

Proof. For the NP upper bound, deciding whether a formula γ has a constructive
model can be checked by

1. guessing both a plugging P and the corresponding model

M = 〈{l̂1, . . . , l̂n}, (↓i)i<k, (Pa)a∈A〉 ; (9.17)

this model is of polynomial size in |γ|,

2. computing the dominance relation (
⋃
i<k ↓i)? over M (this is in P) to obtain

a model
M′ = 〈{l̂1, . . . , l̂n}, (↓i)i<k, ↓∗, (Pa)a∈A〉 (9.18)

still of polynomial size, and

3. verifying that M′ is a model of the existentially conjunctive formula [γ] for
the assignment ν defined in (9.16) (this is in P).

For the NP lower bound, we exhibit a reduction from the 3-Partition Problem. An
instance of this problem is given by a finite multiset A = {a1, . . . , a3m} of integers
and a bound B, all in N and encoded in unary, such that B

4 < ai <
B
2 for all i and∑3m

i=1 ai = mB. The instance is positive if there exists a partition A1]A2]· · ·]Am

Logic and Linguistic Modelling 122

of A s.t. for all j, |Aj | = 3 and
∑

a∈Aj a = B. We can assume B > 0 (or ai = 0 for
all i).

This hardness proof from the
3-partition problem is taken from

(Althaus et al., 2003,
Theorem 10.1).

We construct from an instance 〈A,B〉 a hole formula over the ranked alphabet

{$(1), f
(ai+1)
i , g(m), b(0) | 1 ≤ i ≤ 3m}:

∃l$lf1 . . . lf3m lgl
1,1
b . . . l1,B+1

b l2,1b . . . lm,B+1
b h$h

1
g . . . h

m
g h

1
f1 . . . h

a1+1
f1

h1
f2 . . . h

a3m+1
f3m

.

$(1)(h$) ∧
∧

1≤i≤3m

lfi : f
(ai+1)
i (h1

f1 , . . . , h
ai+1
f1

)

∧ lg : g(m)(h1
g, . . . , h

m
g) ∧

∧
1≤j≤m

∧
1≤k≤B+1

lj,kb : b(0)

∧
∧

1≤i≤3m

h$ ↓∗ lfi ∧ h$ ↓∗ lg ∧
∧

1≤j≤m

∧
1≤k≤B+1

hjg ↓∗ l
j,k
b .

Assume first that there exists a partition A1] · · ·] Am of A: we plug h$ with
lg, and for each class Aj = {ax, ay, az} with ax + ay + az = B, we plug hjg

with lfx , hax+1
fx

with lfy , and h
ay+1
fy

with lfz , and the remaining B + 1 holes

h1
fx
, . . . , haxfx , h

1
fy
, . . . , h

ay
fy
, h1

fz
, . . . , haz+1

fz
by the labels lj,kb for 1 ≤ k ≤ B + 1.

Conversely, assume there is a plugging P from holes to labels and let M be the
corresponding plugged model using valuation ν. For every 1 ≤ j ≤ m, consider
the set Aj of integers ai such that fi-rooted fragments are plugged below hjg, i.e.

Aj
def
= {ai |M |=ν h

j
g ↓∗ lfi}. Note thatA1]· · ·]Am forms a partition ofA. Because

a plugging is injective from holes to labels, each fi-rooted fragment requires ai+ 1
labels, hjg requires one, and |Aj | + B + 1 are available using the fi- and b-rooted
fragments, we get that 1 + |Aj |+

∑
a∈Aj ai ≤ |Aj |+B + 1, hence

∑
a∈Aj ≤ B for

every 1 ≤ j ≤ m. Because
∑

a∈A a = mB, there is no choice and
∑

a∈Aj a = B.
Furthermore, |Aj | ≥ 3:

• |Aj | 6= 0 since B > 0, and B + 1 fragments rooted by b must be plugged
somewhere below the single hole hg;

• |Aj | 6= 1 since a single fi-rooted fragment provides ai+1 < B
2 < B+1 holes,

• |Aj | 6= 2 since a pair {ax, ay} provides ax + ay + 2− 1 < B + 1 holes.

Thus every Aj is of cardinality at least 3, and because 3m fi-rooted fragments are
available in total, this means that |Aj | = 3 for all j.

Exercise 9.4 (Tree Automata for Hole Formulæ).(∗∗∗) The set of constructive models of
a constraint is clearly a regular tree language. Provide a construction for a regular
tree automaton Aγ that recognizes exactly the constructive models of a normal
hole formula γ.
Hint: I would use 2{l1,...,ln} × {l1, . . . , ln} × 2{h1,...,hm} as state set, although there
certainly are better ways; see for instance Koller et al. (2008).

The size of the automaton constructed in Exercise 9.4 is exponential in the size
of the formula. This is unavoidable, as there exist normal formulæ γn of size O(n)
s.t. any automaton recognizing the set of plugged models of γn requires at least 2n

states: let

An
def
= {a(0), g

(1)
1 , . . . , g(1)

n } (9.19)

γn
def
= ∃ll1 . . . lnh1 . . . hn.l : a(0) ∧

n∧
i=1

li : g
(1)
i (hi) ∧ hi ↓∗ l . (9.20)

Logic and Linguistic Modelling 123

The normal formula γn has n! different models, corresponding to the possible
orderings of its n components gi(�): its set of plugged models is

Ln = {gπ(1)(�) · gπ(2)(�) · · · gπ(n)(a) | π a permutation of {1, . . . , n}} . (9.21)

Lemma 9.8. Any finite tree automaton for Ln requires at least 2n states.

Proof. Define for every subset K = {i1, . . . , i|K|} of {1, . . . , n} (where ij < ij+1)
the context

CK
def
= gi1(�) · · · gi|K|(�) (9.22)

and let K̄ = {1, . . . , n}\K. Then the tree

tK
def
= CK̄ · CK · a (9.23)

is in Ln.
Let QK be the set of states q of an automaton An for Ln s.t.

CK̄ · CK · a =⇒? CK̄ · q =⇒? qf (9.24)

for some final state qf . Since tK is in Ln, QK 6= ∅. Suppose there exist K 6= K ′ s.t.
QK ∩QK′ 6= ∅, i.e. there exists i in K\K ′ and q ∈ QK ∩QK′ . Then i belongs to K̄ ′

and
CK̄′ · CK · a =⇒? CK̄′ · q =⇒? qf (9.25)

recognizes a tree not in Ln (the pattern gi(�) appears twice). Hence the non-
empty sets QK must be disjoint for different sets K, thus An has at least 2n states.

Note that the tree automaton 〈2{1,...,n}, A, δ, {∅}〉 with δ = {(q\{i}, gi, q) | i ∈
q} ∪ {({1, . . . , n}, b)} recognizes Ln, so this bound is optimal.

Lemma 9.8 shows that there might be exponential succinctness gains from the
use of hole formulæ rather than tree automata for the description of semantic
representations. One might object that the classes of tree languages obtained at
the output of the linear higher-order tree functions of Section 10.1.4 are context-
free tree languages and not necessarily regular ones, with potential exponential
gains in succinctness. However, note that Ln is basically a string language, and
the exponential lower bounds on the size of any context-free string grammar for
permutation languages (see e.g. Filmus, 2011) also apply to CFTGs for Ln.

Logic and Linguistic Modelling 124

Chapter 10

Higher-Order Semantics

In this last chapter, we consider the use of higher-order functions in natual lan-
guage semantics. We first motivate the need for such functions in Section 10.1
in order to define the interface between syntax and semantics. We then observe
that, more generally, ‘increasing the order’ allows for elegant solutions to some
difficulties like intensionality phenomena and many-world semantics.

10.1 Compositional Semantics

We have presented several possible first-order analyses for simple sentences in the
previous chapters, but we have not touched yet the subject of how to obtain such
semantic representations from syntactic analyses. A key concept in this regard is
that of compositionality See Janssen (1997) and the

compositionality article of the
Stanford Encyclopedia of
Philosophy for extensive
discussions of compositionality.

:

The meaning of a compound expression is a function of the meanings
of its parts and of the syntactic rule by which they are combined.

(Partee et al., 1990, Chapter 13)

Let us illustrate this principle on Example 8.1: by associating a semantic repre-
sentation to each meaningful word in the sentence, i.e. if we define JJohnK, JeatsK
and so on, then the semantics of each intermediate structure like a red apple or
John eats a red apple can be systematically computed as a function of its parts,
based on the syntactic structures. Note that these structures play a crucial role,
as otherwise John loves Mary and Mary loves John would not be distinguishable as
naive ‘functions of their parts.’

You are probably familiar with this principle from programming language se-
mantics. Typical arguments in favour of this principle for natural language hinge
on productivity and systematicity of semantic construction: we are able to un-
derstand new linguistic expressions, and to understand similar expressions built
from the same blocks and syntactic processes.

Leaving these questions aside and adopting a modelling viewpoint, composition-
ality is a rather strenuous requirement: for instance, assuming JJohnK = John(0)

and Ja red appleK = ∃x.apple(1)(x) ∧ red (1)(x), it is not so clear how one should
combine everything and obtain (8.1) or more involved representations like (8.24).
Moreover any solution will be dependent on the specific syntactic analysis.

125

http://plato.stanford.edu/entries/compositionality/

Logic and Linguistic Modelling 126

10.1.1 Background: Simply Typed Lambda Calculus

See e.g. Hindley (1997). One of the best-studied ways to implement compositional semantics for natural
languages is to use lambda expressions as semantic values associated with each
component (Montague, 1970, 1973). As Church’s simple theory of types provides
an elegant setting for model-theoretic higher-order semantics (see Section 10.3),
we favour a presentation that uses the simply typed λ-calculus over the untyped
one.

Lambda Terms Given an infinite countable set X of variables, and C a countable
set of constants, the set Λ(C) of λ-terms is defined by

L ::= c | x | LL | λx.L

where c is a constant in C and x a variable in X .
The λ operator is a binding with the usual associated notion of free variables.

We draw a distinction between closed terms, which have no free variables, and
ground terms, which have no variables at all.

A λ-term L is a λI-term if in every subterm λx.M , x ∈ FV(M). If furthermore
x appears free in M exactly once, and each free variable y of L has at most one
free occurrence in L, then L is a linear λ-term; we let Λ`(C) denote the set of
linear λ-terms over C. We write by convention λxy.L for λx.λy.L and LMN for
(LM)N (i.e. we treat application as left associative).

We assume the usual definitions for α, β, and η reductions:

λx.L→α λy.(L{x← y})
(λx.L)M →β L{x←M}
λx.(Lx)→η L

(where substitutions have to avoid name clashes and x 6∈ FV(L) for η-reductions),
and recall that βη-reductions are Church-Rosser: if L⇒?

βη M and L⇒?
βη N , then

there exists L′ s.t. M ⇒?
βη L

′ and N ⇒?
βη L

′, which implies that βη reductions
define unique normal forms, noted ⇓βηL.

Types Assume we are provided with some non-empty countable set of atomic
types A; then types in TA are terms defined inductively by

τ ::= a | τ → τ

where a ranges over A. By convention we consider → to be right-associative, i.e.
we write ρ→ σ → τ for ρ→ (σ → τ). The order of a type τ is defined inductively
as

ord(a) = 1 ord(σ → τ) = max(ord(σ) + 1, ord(τ)) .

A higher-order signature is a triple Σ = 〈A,C, τ〉 where A is a set of atomic
types, C a countable set of constants and τ : C → TA a typing of the constants.
Given a higher-order signature, each λI-term of Λ(C) can be assigned a type in TA
by the deduction rules

`Σ c : τ(c)
(Cons)

x : τ `Σ x : τ
(Var)

Γ, x : σ `Σ L : τ

Γ `Σ λx.L : σ → τ
(→I)

Γ `Σ L : σ → τ ∆ `Σ M : σ Γ,∆ compatible

Γ,∆ `Σ LM : τ
(→E)

Logic and Linguistic Modelling 127

where the type contexts Γ,∆ are type assignments from free variables to TA;
in (→E) the two assignments have to be compatible, i.e. assign the same types
to common variables. For linear lambda terms, this compatibility requirement
is useless as FV(L) ∩ FV(M) = ∅. We can extend the typing system to any λ-
term instead of λI-terms if we additionally allow (→I) to work on the premise
Γ `Σ L : τ where x is not among FV(L) nor in the domain of Γ.

Example 10.1 (B combinator). Define B
def
= λxyz.x(yz). It can be typed by:

x : a→ b `Σ x : a→ b

y : c→ a `Σ y : c→ a z : c `Σ z : c

y : c→ a, z : c `Σ yz : a

x : a→ b, y : c→ a, z : c `Σ x(yz) : b

x : a→ b, y : c→ a `Σ λz.x(yz) : c→ b

x : a→ b `Σ λyz.x(yz) : (c→ a)→ c→ b

`Σ λxyz.x(yz) : (a→ b)→ (c→ a)→ c→ b

Properties Let us end this quick survey with a few important properties of the
simply typed λ calculus: See e.g. (Hindley, 1997,

Chapter 2).
The first two show that types are preserved by reductions:

Proposition 10.2 (Subject Reduction). If Γ `Σ L : τ and L⇒?
βη M then Γ `Σ M :

τ .

The converse holds for linear terms (and more generally for reductions that do not
exercise non linear variables):

Proposition 10.3 (Subject Expansion). If τ is a linear λ-term, Γ `Σ L : τ , and
M ⇒?

β L, then Γ `Σ M : τ .

Exercise 10.1. Prove (∗)Proposition 10.2 and Proposition 10.3.

The second main result about typed λ-terms is that reduction is strongly nor-
malising: every sequence of rewrites eventually terminates to a term in normal
form: The length of βη reductions can

be non elementary in the size of
the starting term (see Statman,
1979a; Schwichtenberg, 1991).

Theorem 10.4 (Strong Normalisation). If L is a typable λ-term, then every βη-
reduction starting at L is finite.

Remember that not every λ-term is typable; the typical example of a non-typable
term being λx.xx. However, every linear λ-term is typable. A related question is
the type inhabitation problem: given a simple type τ , does there exist a closed
λ-term L with type τ? This is usually formulated over an empty set of constants
C = ∅. By the Curry-Howard isomorphism (see e.g. Hindley, 1997, Chapter 6), the
type inhabitation problem is the same as provability in intuitionistic propositional
logic: The type inhabitation problem

becomes 2EXPTIME-complete for
λI-terms (Schmitz, 2014).Theorem 10.5 (Statman, 1979b). Simple type inhabitation is PSPACE-complete.

10.1.2 Ground Terms over Second-Order Signatures

Because we are typically interested in tree structures, it is worth investigating how
they can be represented in the simply-typed λ-calculus. To this end, we restrict
ourselves to second-order signatures Σ = 〈A,C, τ〉, i.e. signatures such that the
type of any constant c is of form

τ(c) = a1 → · · · → an → a0

for atomic ai’s in A.

Logic and Linguistic Modelling 128

Exercise 10.2 (Normalised Typing System). Consider(∗∗) the normalised typing sys-
tem with a single rule

τ(c) = a1 → · · · → an → a0 `′Σ t1 : a1 . . . `′Σ tn : an

`′Σ c t1 · · · tn : a0
(App)

We want to show that, for all ground terms t and atomic types a, `Σ t : a if and
only if `′Σ t : a.

1. Show that, if τ(c) = a1 → · · · → an → a0, 0 ≤ i ≤ n, and `Σ tj : aj for all
0 < j ≤ i, then `Σ c t1 · · · ti : ai+1 → · · · → an → a0. Deduce that `′Σ t : a
implies `Σ t : a if t is ground and a atomic.

2. Show that, if `Σ t : α for a ground term t and type α, then t = c t1 · · · ti for
some constant c with τ(c) = a1 → · · · → an → a0, some 0 ≤ i ≤ n, and some
ground terms t1, . . . , ti such that α = ai+1 → · · · → an → a0 and `Σ tj : aj
for 0 < j ≤ i for some atomic types aj ’s.

3. Deduce that `Σ t : a implies `′Σ t : a whenever t is a ground term and a an
atomic type.

For a second-order constant c with type τ(c) = a1 → · · · → an → a0, we call
n its arity (and thus can see C as a ranked alphabet) and associate to the ground
lambda term t = c t1 · · · tn with atomic type a0 the unique tree t̄ = c(n)(t̄1, . . . , t̄n).
Given a second-order signature Σ and a distinguished atomic type s, we define the
ground tree language

G (Σ, s)
def
= {t̄ ∈ T (C) | `Σ t : s where t is ground} .

Example 10.6. Consider the second-order signature Σ0 with atomic types A0 =
{np, s, c}, constants C0 = {Alice, believe, left, someone, that}, and typing

τ0(Alice) = np τ0(believe) = c→ np→ s

τ0(left) = np→ s τ0(someone) = np

τ0(that) = s→ c

The corresponding ranked alphabet isF0 = {Alice(0), believe(2), left(1), someone(0), that(1)}.
Then the set of trees in G (Σ0, s) is recognised by a tree automatonA = 〈Q,F0, δ, I〉
with Q = A0, I = {s}, and rules

δ = {(np,Alice(0)),

(s, believe(2), c, np)

(s, left(1), np)

(np, someone(0))

(c, that(1), s)} .

Exercise 10.3 (Local Tree Automata). Let(∗∗) F be a ranked alphabet. A deterministic
top-down tree automaton A = 〈Q,F , δ, {q0}〉 is local if there exists a function
`:F → Q such that the rules in δ are all of the form (`(f (n)), f (n), q1, . . . , qn).

1. Show that, if L is recognized by a local deterministic top-down tree automa-
ton, then there is a second order signature Σ and a distinguished atomic type
s such that L = G (Σ, s).

Logic and Linguistic Modelling 129

S

NP

NNP

John

VP

VBZ

eats

NP

DT

a

AP

JJ

red

NP

NN

apple

John eats a red apple

Figure 10.1: Constituent and dependency analyses for John eats a red apple.

2. Show that, conversely, given a second-order signature Σ and a distinguished
atomic type s, there exists a local top-down deterministic tree automaton A
such that L(A) = G (Σ, s).

By the previous exercise, not every regular tree language can be expressed as
the ground tree language of a second-order signature, e.g. the language L =
{f(g(a), g(b))} is not local.

10.1.3 Higher-Order Homomorphisms

This idea is now pretty common,
and lies at the heart of
(second-order) abstract
categorial grammars (ACG
de Groote, 2001); see also the
context-free λ-term grammar
(CFLG) formulation of Kanazawa
(2007) or the simple
presentation of Blackburn and
Bos (2005, Chapter 2).

One of the main legacies of Richard Montague’s work is the idea that semantic
representations can be obtained through the application of a homomorphism on
the syntactic structure. However tree homomorphisms are clearly too weak for the
kind of tree transductions we want to define; following Montague we use instead
higher-order homomorphisms. The idea of these homomorphisms is to translate
a syntactic tree representation (e.g. a derivation tree or a dependency tree), seen
as a typed λ-term over the input signature, into a λ-term over the output signature
and then to βη-reduce it to a λ-term in normal form.

Definition 10.7 (Higher-Order Homomorphism). A higher-order homomorphism
from a set of constants C to a set of constants C ′ is generated by a function J.K
mapping constants in C to closed λ-terms in Λ(C ′). We lift J.K to a homomorphism
from Λ(C) to Λ(C ′) by JxK = x, JLMK = JLKJMK, and Jλx.LK = λx.JLK.

Example 10.8. Continuing with Example 8.1, Figure 10.1 presents two syntactic
analyses (the dependency one could for instance be obtained from the constituent
one through head percolation analysis or as the derivation tree of a TAG). For the
constituent analysis of Figure 10.1, we have

C = {John(0), apple(0), . . . ,AP(2),NP(2), JJ(1), . . . ,S(2)}

and

C ′ = {John(0),∧(2),∃(2), . . . } .

Logic and Linguistic Modelling 130

We assign the semantics

JJohn(0)K = λx.x John(0)

Japple(0)K = λx.apple(1) x

Jred(0)K = λx.red (1) x

JAP(2)K = λx1x2x.(x1 x) ∧ (x2 x)

Ja(0)K = λxy.∃u.(xu) ∧ (y u)

JNP(2)K = λx1x2x.x1 x2 x

Jeats(0)K = λxy.∃e.(eat (1) e) ∧ x(λa.agent (2) e a)

∧ y(λp.patient (2) e p)

JVP(2)K = λx1x2x.x1 xx2

JS(2)K = λx1x2.x2 x1

(ignoring tree nodes with a single child, for which we set e.g. JNN(1)K = λx1.x1).
The first-order variables u and e could be considered as constants of arity 0 in C ′,
but this causes some naming issues; an alternative would be treat ∃x.ϕ as ∃λx.ϕ.
This definition results successively in

JAP red appleK⇒?
β λx.(red (1) x) ∧ (apple(1) x)

JNP a AP red appleK⇒?
β λx.∃u.(red (1) u) ∧ (apple(1) u) ∧ (xu)

JVP eats NP a AP red appleK⇒?
β λx.∃e.(eat (1) e) ∧ x(λa.agent (2) e a)

∧ ∃u.(red (1) u) ∧ (apple(1) u) ∧ (patient (2) e u)

JS. . . K⇒?
β ∃e.(eat (1) e) ∧ (agent (2) e John(0))

∧ ∃u.(red (1) u) ∧ (apple(1) u) ∧ (patient (2) e u) ,

which is the λ-term encoding of (8.24).

Exercise 10.4. Propose(∗) similarly a higher-order homomorphism from the depen-
dency structure of Figure 10.1 into its semantics.

10.1.4 Tree Transductions

The definition we provided for higher-order homomorphisms does not use types
explicitly; this is easy to remedy:

Definition 10.9 (Typed Homomorphism). A typed homomorphism between two
signatures Σ = 〈A,C, τ〉 and Σ′ = 〈A′, C ′, τ ′〉 extends a higher-order homomor-
phism J.K between C and C ′ by mapping each atomic type of A into a type of TA′
s.t. `Σ′ JcK : Jτ(c)K is a valid typing judgement for all c in C.

Example 10.10 (Higher-Order Tree Functions). Let us see how this definition
can be exercised to define tree transductions. We define the generic tree signa-

ture over a ranked alphabet F as ΣF
def
= 〈{o},F , τF 〉 where for every f (n) in F ,

τF (f (n))
def
= o→ · · · → o︸ ︷︷ ︸

n times

→ o = on → o.

Let ΣC and ΣC′ be two generic tree signatures over the ranked alphabets C
and C ′, and let J.K be a typed homomorphism between ΣC and ΣC′ , and s ∈ A

Logic and Linguistic Modelling 131

be a distinguished input atomic type with JsK = o. We define the corresponding
(partial) higher-order tree function T :T (C)→ T (C ′) by

T (t̄1) = t̄2 iff `Σ t1 : s ∧ Jt1K⇒?
βη t2 . (10.1)

Note that in this definition, because the bijection .̄ between λ-terms and trees is
only defined for ground λ-terms, t2 must be in βη-normal form.

The semantic construction of Example 10.8 is a higher-order tree function when
setting ΣC and ΣC′ as input and output signatures and if we consider e and v as
nullary constants in C ′.

Linear Higher-Order Tree Functions As often in linguistic applications, a case
of particular interest is the linear one: a higher-order homomorphism between C
and C ′ is linear if JcK is a linear term for every c in C.

Definition 10.11 (Abstract Categorial Grammar). See de Groote (2001).An abstract categorial gram-
mar (ACG) is a tuple G = 〈Σ,Σ′, J.K, s〉 where Σ = 〈A,C, τ〉 and Σ′ = 〈A′, C ′, τ ′〉
are two signatures, J.K is a linear typed homomorphism, and s in A is a distin-
guished atomic type. The abstract language A (G) of G is

A (G)
def
= {L ∈ Λ`(C) | `Σ L : s}

the set of closed linear λ-terms typed by s in the input signature, while its object
language O(G) is

O(G)
def
= JA (G)K

the set of linear λ-terms obtained through the application of the homomorphism
J.K to abstract terms.

A second-order ACG is an ACG with a second-order abstract signature Σ. Such
ACGs are arguably the most relevant for the linguistic applications. Note that our
objects of interest are usually the normal forms found in the object language: these
turn out to be exactly the normal forms of the images of the ground terms in A (G):

⇓βηO(G) = ⇓βη{JtK ∈ Λ`(C
′) | t ground ∈ A (G)} . (10.2)

This follows from ⇓βηJLK = ⇓βηJ⇓βηLK since J.K is a higher-order homomorphism,
and the fact that a closed term L in normal form is of atomic type s iff it is ground
(on a second-order signature).

Therefore, if the object signature is a generic tree signature ΣC′ , then a second-
order ACG can be understood as defining a linear higher-order tree function from
a local tree language (its abstract language) into the set of trees over C ′ (its object
language). The following exercise examines the simplest such situation, where the
homomorphic images of atomic types in the abstract signature are mapped to tree
types o in the object signature:

Exercise 10.5 (Tree Languages of ACG2,1). Given an (∗∗)ACG G = 〈Σ,ΣF , J.K, s〉 with
a second-order abstract signature Σ = 〈A,C, τ〉 and a generic tree signature ΣF
over some ranked alphabet F as object signature, we define its tree language as

T (G)
def
= {t̄ ∈ T (F) | t ground ∈ O(G)} . (10.3)

Assume that maxa∈A ord(JaK) = 1. Show that such ACGs generate exactly the set
of regular tree languages.

Logic and Linguistic Modelling 132

More generally, the expressiveness of second-order ACGs has been studied by
Kanazawa (2010): their object languages correspond to the tree languages of
context-free hyperedge replacement grammars, which are also equivalent to
attributed context-free grammars (Engelfriet and Heyker, 1992) and outputs
of restricted forms of MTTs (Engelfriet and Maneth, 2000). This means that we
could also implement the tree transformations defined by second-order ACGs us-
ing more classical tree transductions. However, this would be at the expense of
the ability to view the translation as one into higher-order semantics, as we will
do in Section 10.3. In that situation, we will no longer work with ground object
terms.

10.2 Intensionality

Intensional PhenomenaThis section is based on (Fitting,
2004) and the entry on

intensional logic in the Stanford
Encyclopedia of Philosophy.

deal with the difference between a meaning and its de-
notation. A classical example given by Frege is concerned about equality in math-
ematics: if a and b designate the same object, and equality is about objects and
not about their names, then there is no difference between “a = b” and “a = a”.
There is however a difference in informational content: the truth of these asser-
tions depends on the context, and there exist contexts that differentiate between
the two, namely those where a and b do not denote the same object.

Considering an example with more linguistic content, the sentence John knows
that the morning star is the evening star might have different truth values depend-
ing on the extent of the knowledge of John, but if morning star and evening star
are always mapped to the same object, namely Venus, we cannot model the case
where John is not aware of their identity. Similar intensional phenomena can oc-
cur in relation with temporal modalities instead of epistemic ones: The King of
England was the head of the Church of England holds true after King Henry VIII
separated the Church from Rome in 1534, thus in worlds after 1534 where the
King of England denotes Henry VIII or one of his successors; again an intensional
reading should be preferred. A last classical example of Montague contrasts John
finds a unicorn with John seeks a unicorn. These are structurally similar, but the
first one implies that there exists a unicorn, while the second allows both readings:
the so-called de dicto reading which does not imply the existence of unicorns, and
the de re reading from which existence of unicorns follows. These two readings
could be modelled using different scopes for the modal seeks.

Intensional Logic This reveals an issue with FOML: there is no way to map
variables to different objects depending on the world under consideration. The
solution adopted in first-order intensional logic (FOIL) is to use two sorts of
variables, intensional and extensional ones. Intensions might denote different
objects in different worlds: for instance if f is an intension and w is a world,
then f(w) would be the extension of f in w.

There is an issue with this account of intensionality. If f is an intension and P
a unary predicate, then P (f) could mean that the extension of f verifies P (de re
reading), or that the intension f itself verifies P (de dicto reading). For instance,
The morning star is the evening star would use a de re reading, but The morning
star is the last star seen in the morning would be true regardless of the actual object
denoted by the morning star. If we consider alethic modalities, ♦P (f) might either
mean that in some possible world w, P (f(w)) holds, or that in some possible

http://plato.stanford.edu/entries/logic-intensional/

Logic and Linguistic Modelling 133

world w′, P (f) holds. In order to distinguish between these alternatives, the de re
reading is noted [λx.♦P (x)](f) and the de dicto one ♦[λx.P (x)](f).

Given an infinite countable set of object variables O and an infinite countable
set of intension variables I, FOIL formulæ follow the syntax

ϕ ::= x = x′ | Ri(y1, . . . , yki) | [λx.ϕ](f) | ¬ϕ | ϕ ∧ ϕ | ♦ϕ | ∃y.ϕ

where x, x′ range overO, f over I, y, y1, . . . , yki over I]O, Ri is a ki-ary relational
symbol, and ϕ is a formula with a free object variable x, so that [λx.ϕ](f) denotes
ϕ{x← f}. We write [λxx′.ϕ](f, f ′) for [λx.[λx′.ϕ](g)](f). This last construction is
a form of abstraction limited to first-order. Fitting (2004) also adds a typing

discipline to the relations Ri to
better differentiate between
intensional and extensional
arguments.

Intensional models for FOIL are of form M = 〈W,R,DO, DI , I〉 where a dis-
tinction is drawn between the object domain DO, which is a non-empty set in our
constant semantics, and the intension domain DI , which is a non-empty set of
functions from W to DO, and I maps a relational symbols Ri with arity ki to a
mapping I(Ri) from W to relations over (DO ∪DI)ki . A valuation is now a map-
ping assigning members of DO to object variables and members of DI to intension
variables. The satisfiability relation is similar to that of FOML, with

M, w |=ν ∃f.ϕ iff ∃i ∈ DI(w).M, w |=ν[f←i] ϕ

M, w |=ν [λx.ϕ](f) iff M, w |=ν[x←ν(f)(w)] ϕ .

Example 10.12 (Morning Star). Let us consider again the sentence The morning
star is the evening star and associate f to the intension the morning star and g to the
intension the evening star. Then [λxx′.x = x′](f, g) is correct in the real word w,
where f and g are associated to the same object ν(f)(w) = ν(g)(w) in DO, namely
Venus. In an epistemic setting, the de dicto reading K[λxx′.x = x′](f, g) can be
falsified if we find another state of knowledge w′ compatible with the real world
w where this information is missing, i.e. where ν(f)(w′) 6= ν(g)(w′)—this could be
the case in the sentence John knows that the morning star is the evening star if John
is unaware of their both being Venus. By contrast, the de re reading [λxx′.K(x =
x′)](f, g) is always satisfied in w because in any state of knowledge compatible
with the real world, f and g have received the same extension ν(f)(w) = ν(g)(w).

Example 10.13 (King of England). The treatment of the sentence The King of
England was the head of the Church of England is similar: consider the intensions
f for the King of England, g for the head of the Church of England, and a point in
time w. Then P [λxx′.x = x′](f, g) could be invalidated if there is no past time
w′ < w where the denotations ν(f)(w′) and ν(g)(w′) were the same—i.e. before
the 1538 secession from the Roman Church—, but is valid in time points w after
the secession. The de re reading does not make any sense: [λxx′.P (x = x′)](f, g)
holds iff ν(f)(w) = ν(g)(w) at the time of interest, regardless of past times where
equality is evaluated.

Total Intensionality Let D(f, x) stand for [λx′.x = x′](f) where x and x′ are
distinct object variables. Then M, w |=ν D(f, x) holds iff ν(f)(w) = ν(x).

The formula ∀f∃x.D(f, x) is valid in intensional models as defined so far, since
ν(f) is a total function from W to DO. There is however no requirement for every
object to be designated by some intension, i.e. for

∀x.∃f.D(f, x) (10.4)

Logic and Linguistic Modelling 134

to hold. This is however a reasonable restriction; let us check for instance the
following equivalence under the hypothesis of (10.4):

∃x.ϕ ≡ ∃f.[λx.ϕ](f) . (10.5)

Indeed, for all M, w, ν and ϕ,

M, w |=ν ∃f.[λx.ϕ](f)

iff ∃i ∈ DI .M, w |=ν[f←i] [λx.ϕ](f)

iff ∃i ∈ DI .M, w |=ν[f←i,x←i(w)] ϕ

iff ∃e ∈ DO.M, w |=ν[x←e] ϕ (by (10.4) when choosing i(w) = e)

iff M, w |=ν ∃x.ϕ .

Exercise 10.6.(∗) Show the following equivalence when (10.4) holds:

∃f.♦[λx.ϕ](f) ≡ ♦(∃x.ϕ) . (10.6)

Example 10.14 (Unicorn). The sentence John finds a unicorn could be associated
with the semantics

∃ex.find (1)(e) ∧ agent (2)(e, John(0)) ∧ patient (2)(e, x) ∧ unicorn(1)(x) (10.7)

but it is better to treat unicorn as an intension in the formula

∃u.[λx.∃e.find (1)(e) ∧ agent (2)(e, John(0)) ∧ patient (2)(e, x) ∧ unicorn(1)(x)](u) ,
(10.8)

equivalent to (10.7) in totally intensional models according to (10.5). Then we
better see the connection with the sentence John seeks a unicorn: its de dicto
semantics would be

∃u.TRY(John(0), [λx.∃e.find (1)(e) ∧ patient (2)(e, x) ∧ unicorn(1)(x)](u)) (10.9)

≡TRY(John(0), ∃ex.find (1)(e) ∧ patient (2)(e, x) ∧ unicorn(1)(x)) (by (10.6))

and its de re semantics

∃u.[λx.TRY(John(0), ∃e.find (1)(e) ∧ patient (2)(e, x) ∧ unicorn(1)(x)](u) (10.10)

≡ ∃x.TRY(John(0), ∃e.find (1)(e) ∧ patient (2)(e, x) ∧ unicorn(1)(x)) (by (10.5))

and if the interpretation of unicorn(1) is the same in all worlds accessible through
the TRY modality,

≡ ∃x.unicorn(1)(x) ∧ TRY(John(0), ∃e.find (1)(e) ∧ patient (2)(e, x)) .

10.3 Higher-Order Logic

Most of the discussion on semantic representations can be recast in the framework
of higher-order logic. This allows in particular to view the higher-order opera-
tions of Section 10.1 not as a technical means to generate λ-terms viewed as trees
(which in turn can be interpreted in some logic), but instead to interpret these
terms directly in the higher-order logic. They become the semantics of the sen-
tences under consideration, with associated models.

10.3.1 Background: Church’s Simple Theory of Types

See Church (1940) and the entry
in the Stanford Encyclopedia of

Philosophy.

Higher-order semantics are typically expressed in simply typed lambda calculus as
defined in Section 10.1.1. As we want not just to manipulate typed λ-terms, but
also to be able to infer truths, we need to introduce a set of logical constants and
the associated logical rules.

http://plato.stanford.edu/entries/type-theory-church/

Logic and Linguistic Modelling 135

Higher-Order Signature In Church’s simple theory of types, we use a signature
Σ = 〈A,C, t〉 where A = {ι, o} is set of atomic types, where ι denotes entities and
o truths. The logical constants are C = {⊥,⊃, (∀τ)τ∈T (A)} with types t(⊥) = o,
t(⊃) = o→ o→ o, and (∀τ) = (τ → o)→ o for each type τ in T (A).

We write as usual L ⊃ M for ⊃ LM and ∀τx.L for ∀τ (λx.L). The other logical

connectives are defined as usual: ¬L def
= L ⊃ ⊥, L ∨M def

= (¬L) ⊃ M , L ∧M def
=

¬((¬L) ∨ (¬M)), etc. Equality is defined in the Leibnizian way as L = M
def
=

∀x.xL ⊃ xM , i.e. equality is defined as having L and M agree on all possible
properties x.

Logical and Conversion Rules The formal system needs two types of rules: log-
ical rules for the logical constants, and conversion rules for the λ-terms. In natural
deduction sequent style,

Γ, L L
(Ax)

Γ,¬L ⊥
Γ L

(⊥E)

Γ, L M

Γ L ⊃M
(⊃I)

Γ L ⊃M Γ L

Γ M
(⊃E)

Γ L x 6∈ FV(Γ)

Γ ∀τx.L
(∀I)

Γ ∀τL ∆ `Σ M : τ

Γ LM
(∀E)

Γ L L =β M

Γ M
(β)

The deduction system also often includes the extensionality axioms:

Γ (∀τx.Lx = M x) ⊃ (L = M)
(λX)

Γ (L ≡M) ⊃ (L = M)
(≡X)

More axioms are used in the
simple theory of types; see Church
(1940).

As their name indicates, the extensionality axioms make the simple theory of types
unable to deal with intensional phenomena directly; a solution we will see in
Section 10.3.2 will be to introduce an new atomic type s ranging over worlds.

Higher-order logic can express a form of set theory: view the set comprehension
{x | P} as λx.P , or e ∈ E as E e. In fact, Church (1940) shows how to implement
Peano’s arithmetic in the simple theory of types, from which we can deduce the
incompleteness of higher-order logic.

Standard Models See also Henkin (1950).Higher-order logic comes with a very natural model theory.
For each τ in T (A), letDτ be the domain of expressions of type τ . LetDo = {>,⊥}
and Dι be some set of entities; then Dτ→ρ denotes the set of functions from Dτ to
Dρ, so that e.g. Dι→o is the type of first-order predicates.

10.3.2 Type-Logical Semantics

We follow Muskens (2011) for
this section, itself based on Gallin
(1975). See also the entry on
Montague semantics in the
Stanford Encyclopedia of
Philosophy.

Many classical modellings of natural language semantics in higher-order logic
posit an additional type s of worlds in order to account for modalities and in-
tensionality phenomena. The idea is to always treat truth values (of type o) as
relativized with respect to a possible world of evaluation. Thus we will consider a

http://plato.stanford.edu/entries/montague-semantics/

Logic and Linguistic Modelling 136

syntactic category examples type
intransitive verbs walk, talk, eat1, . . . ι→ s→ o
transitive verbs eat2, love, . . . ι→ ι→ s→ o
common nouns apple, man, woman, . . . ι→ s→ o
adjectives red, . . . ι→ s→ o
determiners every, a, the, no, . . . (ι→ s→ o)→ (ι→ s→ o)→ s→ o
proper nouns John, Mary, . . . ι
modal adverbs necessarily, possibly, . . . (s→ o)→ s→ o
modal verbs know, believe, . . . (s→ o)→ ι→ s→ o
negation not (s→ o)→ s→ o

Table 10.1: Some constants and their possible types.

JwalkK = walk ι→s→o

Jeat2K = eat2ι→ι→s→o

JappleK = appleι→s→o

JredK = λPι→s→oxιws.red ι→s→o xw ∧ P xw
JeveryK = λPι→s→oP

′
ι→s→ows.∀ιx.(P xw ⊃ P ′ xw)

JaK = λPι→s→oP
′
ι→s→ows.∃ιx.(P xw ∧ P ′ xw)

JnoK = λPι→s→oP
′
ι→s→ows.∀ιx.(P xw ⊃ ¬P ′ xw)

JtheK = λPι→s→oP
′
ι→s→ows.∃ιx.(P ′ xw ∧ ∀ιy.(P xw ≡ x = y))

JJohnK = Johnι

JnecessarilyK = λps→ows.∀sw′.(Rs→s→oww′) ⊃ pw′

JpossiblyK = λps→ows.∃sw′.(Rs→s→oww′) ∧ pw′

JknowK = λps→oxιws.∀sw′.(Kι→s→s→o xww
′) ⊃ pw′

JbelieveK = λps→oxιws.∀sw′.(Bι→s→s→o xww′) ⊃ pw′

JnotK = λps→ows.¬ pw

Table 10.2: Examples of semantics associated with lexical elements.

higher-order signature Σ = 〈A, {⊥,⊃, (∀τ)τ∈T (A)} ∪ C, t〉 as in the simple theory
of types, where A = {s, ι, o} and C denotes additional non-logical constants. To
simplify matters, we avoid explicit events from Section 8.1.2.

Due to the relativisation wrt. worlds, a simple sentence like John walks is ex-
pected to be of type s→ o and to be associated to a logical representation like

walks John . (10.11)

Observe that we introduced an
explicit type for worlds in the

logic: this can be avoided if we
use intensional models as in
(Muskens, 2007). Recall that

Church’s simple type theory
verifies the extensionality axioms!

In order to obtain the appropriate type, a possibility is to set t(walks) = ι→ s→ o
and t(John) = ι. Looking at more complex examples (for instance Example 10.8),
we arrive at the types of Table 10.1. The semantics of a sentence can then be
computed by a higher-order homomorphism as in Section 10.1, but there will be
no need to translate back from λ-terms to first-order terms in order to reason
about the semantics: the λ-term is a meaning representation with full-fledged
model theory. See Table 10.2 for some examples of semantic values.

In this table, the semantics of alethic and epistemic modal logics have been
implemented directly using the R, K, and B constants with types s → s → o,

Logic and Linguistic Modelling 137

ι → s → s → o, and ι → s → s → o respectively. The desired properties of these
relations can also be enforced; for instance ∀sww′. R ww′ forces R to be total.

Logic and Linguistic Modelling 138

Chapter 11

References

Afanasiev, L., Blackburn, P., Dimitriou, I., Gaiffe, B., Goris, E., Marx, M., and de Rijke,
M., 2005. PDL for ordered trees. Journal of Applied Non-Classical Logic, 15(2):115–135.
doi:10.3166/jancl.15.115-135. Cited on pages 48, 55.

Aho, A.V., 1968. Indexed grammars—An extension of context-free grammars. Journal of
the ACM, 15(4):647–671. doi:10.1145/321479.321488. Cited on page 68.

Ajdukiewicz, K., 1935. Die syntaktische Konnexität. Studia Philisophica, 1:1–27. Cited
on pages 91, 92.

Althaus, E., Duchier, D., Koller, A., Mehlhorn, K., Niehren, J., and Thiel, S., 2003. An
efficient graph algorithm for dominance constraints. Journal of Algorithms, 48(1):194–
219. doi:10.1016/S0196-6774(03)00050-6. Cited on pages 119, 120, 122.

Andréka, H., van Benthem, J., and Németi, I., 1998. Modal languages and bounded
fragments of predicate logic. Journal of Philosophical Logic, 27(3):217–274. doi:10.1023/
A:1004275029985. Cited on page 109.

Asterias, A., Dawar, A., and Kolaitis, P.G., 2006. On preservation under homomorpisms
and unions of conjunctive queries. Journal of the ACM, 53(2):208–237. doi:10.1145/
1131342.1131344. Cited on page 115.

Asterias, A., Dawar, A., and Grohe, M., 2008. Preservation under extensions on well-
behaved finite structures. SIAM Journal on Computing, 38(4):1364–1381. doi:1.1137/
060658709. Cited on page 114.

Baader, F., Horrocks, I., and Sattler, U., 2007. Description Logics, volume 3 of Foun-
dations of Artificial Intelligence, chapter 3, pages 135–179. Elsevier. doi:10.1016/
S1574-6526(07)03003-9. Cited on page 102.

Backus, J.W., 1959. The syntax and semantics of the proposed international algebraic
language of the Zürich ACM-GAMM Conference. In IFIP Congress, pages 125–131. Cited
on page 10.

Bar-Hillel, Y., 1953. A quasi-arithmetical notation for syntactic description. Language, 29
(1):47–58. doi:10.2307/410452. Cited on pages 12, 91, 92.

Bar-Hillel, Y., Gaifman, C., and Shamir, E., 1960. On categorial and phrase-structure
grammars. Bulletin of the research council of Israel, 9F:1–16. Cited on page 93.

Bar-Hillel, Y., Perles, M., and Shamir, E., 1961. On formal properties of simple phrase-
structure grammars. Zeitschrift für Phonetik, Sprachwissenschaft, und Kommunikations-
forschung, 14:143–172. Cited on pages 40, 43.

139

http://hal.inria.fr/inria-00001206/
http://dx.doi.org/10.1145/321479.321488
http://dx.doi.org/10.1016/S0196-6774(03)00050-6
http://dx.doi.org/10.1023/A:1004275029985
http://dx.doi.org/10.1023/A:1004275029985
http://dx.doi.org/10.1145/1131342.1131344
http://dx.doi.org/10.1145/1131342.1131344
http://dx.doi.org/1.1137/060658709
http://dx.doi.org/1.1137/060658709
http://dx.doi.org/10.1016/S1574-6526(07)03003-9
http://dx.doi.org/10.1016/S1574-6526(07)03003-9
http://dx.doi.org/10.2307/410452

Logic and Linguistic Modelling 140

Bárány, V., ten Cate, B., and Segoufin, L., 2011. Guarded negation. In Aceto, L., Hen-
zinger, M., and Sgall, J., editors, ICALP 2011, 38th International Colloquium on Automata,
Languages and Programming, volume 6756 of Lecture Notes in Computer Science, pages
356–367. Springer. doi:10.1007/978-3-642-22012-8_28. Cited on page 111.

Berstel, J., 1979. Transductions and Context-Free Languages. Teubner Studienbücher:
Informatik. Teubner. ISBN 3-519-02340-7. http://www-igm.univ-mlv.fr/~berstel/
LivreTransductions/LivreTransductions.html. Cited on pages 19, 21.

Berstel, J. and Reutenauer, C., 2010. Noncommutative Rational Series With Applica-
tions. Cambridge University Press. http://www-igm.univ-mlv.fr/~berstel/LivreSeries/
LivreSeries.html. Cited on page 19.

Billot, S. and Lang, B., 1989. The structure of shared forests in ambiguous parsing.
In ACL’89, 27th Annual Meeting of the Association for Computational Linguistics, pages
143–151. ACL Press. doi:10.3115/981623.981641. Cited on page 40.

Björklund, H., Martens, W., and Schwentick, T., 2011. Conjunctive query contain-
ment over trees. Journal of Computer and System Sciences, 77(3):450–472. doi:
10.1016/j.jcss.2010.04.005. Cited on pages 116, 117.

Black, E., Abney, S., Flickenger, S., Gdaniec, C., Grishman, C., Harrison, P., Hindle, D.,
Ingria, R., Jelinek, F., Klavans, J., Liberman, M., Marcus, M., Roukos, S., Santorini, B.,
and Strzalkowski, T., 1991. A procedure for quantitatively comparing the syntactic cov-
erage of English grammars. In HLT ’91, Fourth Workshop on Speech and Natural Language,
pages 306–311. ACL Press. doi:10.3115/112405.112467. Cited on page 84.

Blackburn, P., Gardent, C., and Meyer-Viol, W., 1993. Talking about trees. In EACL ’93,
Sixth Meeting of the European Chapter of the Association for Computational Linguistics,
pages 21–29. ACL Press. doi:10.3115/976744.976748. Cited on page 55.

Blackburn, P., Meyer-Viol, W., and Rijke, M.d., 1996. A proof system for finite trees.
In Kleine Büning, H., editor, CSL ’95, 9th International Workshop on Computer Science
Logic, volume 1092 of Lecture Notes in Computer Science, pages 86–105. Springer. doi:
10.1007/3-540-61377-3_33. Cited on page 55.

Blackburn, P., de Rijke, M., and Venema, Y., 2001. Modal Logic, volume 53 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press. Cited on pages 56,
104, 106, 107.

Blackburn, P. and Bos, J., 2005. Representation and Inference for Natural Language: A
First Course in Computational Semantics. CSLI Studies in Computational Linguistics. CSLI
Publications. ISBN 1-57586-496-7. Cited on pages 119, 129.

Blondel, V.D. and Canterini, V., 2003. Undecidable problems for probabilistic automata
of fixed dimension. 36(3):231–245. doi:10.1007/s00224-003-1061-2. Cited on page 86.

Booth, T.L. and Thompson, R.A., 1973. Applying probability measures to ab-
stract languages. IEEE Transactions on Computers, C-22(5):442–450. doi:10.1109/
T-C.1973.223746. Cited on pages 79, 80.

Boral, A. and Schmitz, S., 2013. Model checking parse trees. In LICS 2013, Twenty-
Eighth Annual IEEE Symposium on Logic in Computer Science, pages 153–162. IEEE Press.
doi:10.1109/LICS.2013.21. Cited on page 62.

Börger, E., Grädel, E., and Gurevich, Y., 1997. The Classical Decision Problem. Perspectives
Mathematical Logic. Springer. Cited on page 108.

Bos, J., 1996. Predicate logic unplugged. In Dekker, P. and Stokhof, M., editors, AC ’96,
Tenth Amsterdam Colloquium, pages 133–143. ILLC/Department of Philosophy, Univer-
sity of Amsterdam. Cited on page 119.

Brants, T., 2000. TnT – a statistical part-of-speech tagger. In ANLP 2000, 6th Conference
on Applied Natural Language Processing, pages 224–231. doi:10.3115/974147.974178.
Cited on page 26.

http://dx.doi.org/10.1007/978-3-642-22012-8_28
http://www-igm.univ-mlv.fr/~berstel/LivreTransductions/LivreTransductions.html
http://www-igm.univ-mlv.fr/~berstel/LivreTransductions/LivreTransductions.html
http://www-igm.univ-mlv.fr/~berstel/LivreSeries/LivreSeries.html
http://www-igm.univ-mlv.fr/~berstel/LivreSeries/LivreSeries.html
http://www.aclweb.org/anthology/P89-1018
http://dx.doi.org/10.1016/j.jcss.2010.04.005
http://dx.doi.org/10.1016/j.jcss.2010.04.005
http://www.aclweb.org/anthology/H91-1060.pdf
http://www.aclweb.org/anthology/E93-1004.pdf
http://dx.doi.org/10.1007/3-540-61377-3_33
http://dx.doi.org/10.1007/3-540-61377-3_33
http://dx.doi.org/10.1007/s00224-003-1061-2
http://dx.doi.org/10.1109/T-C.1973.223746
http://dx.doi.org/10.1109/T-C.1973.223746
http://arxiv.org/abs/1211.5256
http://www.aclweb.org/anthology/A00-1031.pdf

Logic and Linguistic Modelling 141

Brill, E., 1992. A simple rule-based part of speech tagger. In ANLP ’92, third Confer-
ence on Applied Natural Language Processing, pages 152–155. ACL Press. doi:10.3115/
974499.974526. Cited on pages 26, 27, 28.

Calvanese, D., De Giacomo, G., Lenzerini, M., and Vardi, M., 2009. An automata-
theoretic approach to Regular XPath. In Gardner, P. and Geerts, F., editors, DBPL
2009, 12th International Symposium on Database Programming Languages, volume
5708 of Lecture Notes in Computer Science, pages 18–35. Springer. doi:10.1007/
978-3-642-03793-1_2. Cited on page 58.

Casacuberta, F. and de la Higuera, C., 2000. Computational complexity of problems
on probabilistic grammars and transducers. In Oliveira, A.L., editor, ICGI 2000, 5th In-
ternational Conference on Grammatical Inference: Algorithms and Applications, volume
1891 of Lecture Notes in Artificial Intelligence, pages 15–24. Springer. doi:10.1007/
978-3-540-45257-7_2. Cited on page 87.

Charniak, E., 1997. Statistical parsing with a context-free grammar and word statistics.
In AAAI ’97/IAAI ’97, pages 598–603. AAAI Press. Cited on page 12.

Chi, Z. and Geman, S., 1998. Estimation of probabilistic context-free grammars. Compu-
tational Linguistics, 24(2):299–305. http://www.aclweb.org/anthology/J98-2005.pdf.
Cited on page 82.

Chomsky, N., 1956. Three models for the description of language. IEEE Transactions on
Information Theory, 2(3):113–124. doi:10.1109/TIT.1956.1056813. Cited on pages 10,
39.

Chomsky, N., 1957. Syntactic Structures. Mouton de Gruyter. Cited on page 77.

Chomsky, N., 1959. On certain formal properties of grammars. Information and Control,
2(2):137–167. doi:10.1016/S0019-9958(59)90362-6. Cited on page 39.

Chomsky, N. and Halle, M., 1968. The Sound Pattern of English. Harper and Row. Cited
on page 23.

Church, A., 1940. A formulation of the simple theory of types. Journal of Symbolic Logic,
5(2):56–68. doi:10.2307/2266170. Cited on pages 126, 134, 135.

Cocke, J. and Schwartz, J.T., 1970. Programming languages and their compilers. Courant
Institute of Mathematical Sciences, New York University. Cited on page 40.

Collins, M., 1999. Head-Driven Statistical Models for Natural Language Parsing. PhD
thesis, University of Pennsylvania. http://www.cs.columbia.edu/~mcollins/papers/
thesis.ps. Cited on page 52.

Collins, M., 2003. Head-driven statistical models for natural language parsing. Compu-
tational Linguistics, 29:589–637. doi:10.1162/089120103322753356. Cited on page 12.

Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Ti-
son, S., and Tommasi, M., 2007. Tree Automata Techniques and Applications. http:
//tata.gforge.inria.fr/. Cited on pages 4, 10, 41, 49, 54, 68.

Copestake, A., Flickinger, D., Pollard, C., and Sag, I., 2005. Minimal recursion semantics:
An introduction. Research on Language & Computation, 3(2):281–332. doi:10.1007/
s11168-006-6327-9. Cited on page 119.

Cousot, P. and Cousot, R., 2003. Parsing as abstract interpretation of grammar semantics.
Theoretical Computer Science, 290(1):531–544. doi:10.1016/S0304-3975(02)00034-8.
Cited on page 45.

Crabbé, B., 2005. Grammatical development with XMG. In Blache, P., Stabler, E., Bus-
quets, J., and Moot, R., editors, LACL 2005, 5th International Conference on Logical As-
pects of Computational Linguistics, volume 3492 of Lecture Notes in Computer Science,
pages 84–100. Springer. ISBN 978-3-540-25783-7. doi:10.1007/11422532_6. Cited on
page 67.

http://www.aclweb.org/anthology/A92-1021.pdf
http://www.aclweb.org/anthology/A92-1021.pdf
http://dx.doi.org/10.1007/978-3-642-03793-1_2
http://dx.doi.org/10.1007/978-3-642-03793-1_2
http://dx.doi.org/10.1007/978-3-540-45257-7_2
http://dx.doi.org/10.1007/978-3-540-45257-7_2
http://www.aclweb.org/anthology/J98-2005.pdf
http://dx.doi.org/10.1109/TIT.1956.1056813
http://dx.doi.org/10.1016/S0019-9958(59)90362-6
http://dx.doi.org/10.2307/2266170
http://www.cs.columbia.edu/~mcollins/papers/thesis.ps
http://www.cs.columbia.edu/~mcollins/papers/thesis.ps
http://aclweb.org/anthology/J03-4003.pdf
http://tata.gforge.inria.fr/
http://tata.gforge.inria.fr/
http://dx.doi.org/10.1007/s11168-006-6327-9
http://dx.doi.org/10.1007/s11168-006-6327-9
http://dx.doi.org/10.1016/S0304-3975(02)00034-8
http://dx.doi.org/10.1007/11422532_6

Logic and Linguistic Modelling 142

Crabbé, B., Duchier, D., Gardent, C., Le Roux, J., and Parmentier, Y., 2013. XMG:
eXtensible MetaGrammar. Computational Linguistics, 39(3):591–629. doi:10.1162/
COLI_a_00144. Cited on page 116.

Crochemore, M. and Hancart, C., 1997. Automata for matching patterns. In Rozenberg,
G. and Salomaa, A., editors, Handbook of Formal Languages, volume 2. Linear Modeling:
Background and Application, chapter 9, pages 399–462. Springer. ISBN 3-540-60648-3.
Cited on page 28.

Davidson, D., 1967. The logical form of action sentences. In Rescher, N., edi-
tor, The Logic of Decision and Action. University of Pittsburgh Press. doi:10.1093/
0199246270.001.0001. Cited on page 101.

Dawar, A., 2010. Homomorphism preservation on quasi-wide classes. Journal of Com-
puter and System Sciences, 76(5):324–332. doi:10.1016/j.jcss.2009.10.005. Cited on
page 115.

de Groote, P., 2001. Towards abstract categorial grammars. In ACL 2001, 39th Annual
Meeting of the Association for Computational Linguistics, pages 252–259. ACL Press. doi:
10.3115/1073012.1073045. Cited on pages 67, 129, 131.

de la Higuera, C. and Oncina, J., 2011. Finding the most probable string and the consen-
sus string: an algorithmic study. In IWPT 2011, 12th International Workshop on Parsing
Technologies, pages 26–36. ACL Press. http://www.aclweb.org/anthology/W11-2904.
Cited on pages 86, 89.

de la Higuera, C. and Oncina, J., 2013. Computing the most probable string with a
probabilistic finite state machine. In FSMNLP 2013, 11th International Conference on
Finite State Methods and Natural Language Processing, pages 1–8. ACL Press. http://
www.aclweb.org/anthology/W13-1801. Cited on pages 86, 89.

Doner, J., 1970. Tree acceptors and some of their applications. Journal of Computer
and System Sciences, 4(5):406–451. doi:10.1016/S0022-0000(70)80041-1. Cited on
page 54.

Duchier, D. and Debusmann, R., 2001. Topological dependency trees: a constraint-based
account of linear precedence. In ACL 2001, 39th Annual Meeting of the Association for
Computational Linguistics, pages 180–187. Annual Meeting of the Association for Com-
putational Linguistics. doi:10.3115/1073012.1073036. Cited on page 12.

Duchier, D., Prost, J.P., and Dao, T.B.H., 2009. A model-theoretic framework for gram-
maticality judgements. In FG 2009, 14th International Conference on Formal Grammar.
http://hal.archives-ouvertes.fr/hal-00458937/. Cited on page 47.

Earley, J., 1970. An efficient context-free parsing algorithm. Communications of the ACM,
13(2):94–102. doi:10.1145/362007.362035. Cited on pages 40, 45.

Ebbinghaus, H.D. and Flum, J., 1999. Finite Model Theory. Perspectives in Mathematical
Logic. Springer. Cited on page 114.

Egg, M., Koller, A., and Niehren, J., 2001. The constraint language for lambda struc-
tures. Journal of Logic, Language, and Information, 10(4):457–485. doi:10.1023/A:
1017964622902. Cited on page 119.

Engelfriet, J. and Vogler, H., 1985. Macro tree transducers. Journal of Computer and
System Sciences, 31:71–146. doi:10.1016/0022-0000(85)90066-2. Cited on page 73.

Engelfriet, J. and Heyker, L., 1992. Context-free hypergraph grammars have the same
term-generating power as attribute grammars. Acta Informatica, 29(2):161–210. doi:
10.1007/BF01178504. Cited on page 132.

Engelfriet, J. and Maneth, S., 2000. Tree languages generated by context-free graph
grammars. In Ehrig, H., Engels, G., Kreowski, H.J., and Rozenberg, G., editors,
TAGT ’98, 6th International Workshop on Theory and Application of Graph Transfor-
mations, volume 1764 of Lecture Notes in Computer Science, pages 15–29. Springer.
doi:10.1007/978-3-540-46464-8_2. Cited on page 132.

http://dx.doi.org/10.1162/COLI_a_00144
http://dx.doi.org/10.1162/COLI_a_00144
http://isites.harvard.edu/fs/docs/icb.topic638346.files/Davidson1967.pdf
http://isites.harvard.edu/fs/docs/icb.topic638346.files/Davidson1967.pdf
http://arxiv.org/abs/0811.4497
http://www.aclweb.org/anthology/P01-1033.pdf
http://www.aclweb.org/anthology/P01-1033.pdf
http://www.aclweb.org/anthology/W11-2904
http://www.aclweb.org/anthology/W13-1801
http://www.aclweb.org/anthology/W13-1801
http://dx.doi.org/10.1016/S0022-0000(70)80041-1
http://dx.doi.org/10.3115/1073012.1073036
http://hal.archives-ouvertes.fr/hal-00458937/
http://dx.doi.org/10.1145/362007.362035
http://hal.inria.fr/inria-00536795/
http://hal.inria.fr/inria-00536795/
http://doc.utwente.nl/69400/
http://dx.doi.org/10.1007/BF01178504
http://dx.doi.org/10.1007/BF01178504
http://dx.doi.org/10.1007/978-3-540-46464-8_2

Logic and Linguistic Modelling 143

Etessami, K. and Yannakakis, M., 2009. Recursive Markov chains, stochastic grammars,
and monotone systems of nonlinear equations. Journal of the ACM, 56(1):1–66. doi:
10.1145/1462153.1462154. Cited on pages 80, 81.

Filmus, Y., 2011. Lower bounds for context-free grammars. Information Processing Letters,
111(18):895–898. doi:10.1016/j.ipl.2011.06.006. Cited on page 123.

Fischer, M.J., 1968. Grammars with macro-like productions. In SWAT ’68, 9th Annual
Symposium on Switching and Automata Theory, pages 131–142. IEEE Computer Society.
doi:10.1109/SWAT.1968.12. Cited on pages 68, 69, 70, 73.

Fischer, M.J. and Ladner, R.E., 1979. Propositional dynamic logic of regular pro-
grams. Journal of Computer and System Sciences, 18(2):194–211. doi:10.1016/
0022-0000(79)90046-1. Cited on pages 55, 56.

Fitting, M., 2004. First-order intensional logic. Annals of Pure and Applied Logic, 127
(1–3):173–193. doi:10.1016/j.apal.2003.11.014. Cited on pages 132, 133.

Fujiyoshi, A. and Kasai, T., 2000. Spinal-formed context-free tree grammars. Theory of
Computing Systems, 33(1):59–83. doi:10.1007/s002249910004. Cited on page 70.

Gaifman, H., 1965. Dependency systems and phrase-structure systems. Information and
Control, 8(3):304–337. doi:10.1016/S0019-9958(65)90232-9. Cited on page 12.

Gallin, D., 1975. Intensional and Higher-Order Modal Logic, volume 19 of Mathematic
Studies. Elsevier. ISBN 0-444-11002-X. Cited on page 135.

Ganzinger, H., Meyer, C., and Veanes, M., 1999. The two-variable guarded fragment
with transitive relations. In LICS ’99, 14th Annual IEEE Symposium on Logic in Computer
Science, pages 24–34. IEEE Computer Society. doi:10.1109/LICS.1999.782582. Cited on
page 112.

Gardent, C. and Kallmeyer, L., 2003. Semantic construction in feature-based TAG.
In EACL 2003, Tenth Meeting of the European Chapter of the Association for Compu-
tational Linguistics, pages 123–130. ACL Press. ISBN 1-333-56789-0. doi:10.3115/
1067807.1067825. Cited on page 67.

Gecse, R. and Kovács, A., 2010. Consistency of stochastic context-free grammars. Math-
ematical and Computer Modelling, 52(3–4):490–500. doi:10.1016/j.mcm.2010.03.046.
Cited on page 80.

Gécseg, F. and Steinby, M., 1997. Tree languages. In Rozenberg, G. and Salomaa, A.,
editors, Hanbook of Formal Languages, volume 3: Beyond Words, chapter 1. Springer.
ISBN 3-540-60649-1. Cited on page 68.

Ginsburg, S. and Rice, H.G., 1962. Two families of languages related to ALGOL. Journal
of the ACM, 9(3):350–371. doi:10.1145/321127.321132. Cited on page 10.

Girard, J.Y., 1987. Linear logic. Theoretical Computer Science, 50(1):1–101. doi:10.1016/
0304-3975(87)90045-4. Cited on page 95.

Grädel, E., Kolaitis, P.G., and Vardi, M.Y., 1997. On the decision problem for two-variable
first-order logic. Bulletin of Symbolic Logic, 3(1):53–69. doi:10.2307/421196. Cited on
page 108.

Grädel, E. and Walukiewicz, I., 1999. Guarded fixed-point logic. In LICS ’99, 14th Annual
IEEE Symposium on Logic in Computer Science, pages 45–54. IEEE Computer Society. doi:
10.1109/LICS.1999.782585. Cited on pages 109, 111.

Grädel, E., 2002. Guarded fixed point logics and the monadic theory of countable trees.
Theoretical Computer Science, 288(1):129–152. doi:10.1016/S0304-3975(01)00151-7.
Cited on page 109.

Graham, S.L., Harrison, M., and Ruzzo, W.L., 1980. An improved context-free recognizer.
ACM Transactions on Programming Languages and Systems, 2(3):415–462. doi:10.1145/
357103.357112. Cited on page 40.

http://dx.doi.org/10.1145/1462153.1462154
http://dx.doi.org/10.1145/1462153.1462154
http://dx.doi.org/10.1016/j.ipl.2011.06.006
http://dx.doi.org/10.1109/SWAT.1968.12
http://dx.doi.org/10.1016/0022-0000(79)90046-1
http://dx.doi.org/10.1016/0022-0000(79)90046-1
http://dx.doi.org/10.1016/j.apal.2003.11.014
http://dx.doi.org/10.1007/s002249910004
http://dx.doi.org/10.1016/S0019-9958(65)90232-9
http://dx.doi.org/10.1109/LICS.1999.782582
http://dx.doi.org/10.3115/1067807.1067825
http://dx.doi.org/10.3115/1067807.1067825
http://dx.doi.org/10.1016/j.mcm.2010.03.046
http://dx.doi.org/10.1145/321127.321132
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.2307/421196
http://dx.doi.org/10.1109/LICS.1999.782585
http://dx.doi.org/10.1109/LICS.1999.782585
http://dx.doi.org/10.1016/S0304-3975(01)00151-7
http://dx.doi.org/10.1145/357103.357112
http://dx.doi.org/10.1145/357103.357112

Logic and Linguistic Modelling 144

Greibach, S.A., 1965. A new normal-form theorem for context-free phrase structure
grammars. Journal of the ACM, 12(1):42–52. doi:10.1145/321250.321254. Cited on
page 93.

Grune, D. and Jacobs, C.J.H., 2007. Parsing Techniques. Monographs in Computer Sci-
ence. Springer, second edition. ISBN 0-387-20248-X. Cited on page 40.

Guessarian, I., 1983. Pushdown tree automata. 16(1):237–263. doi:10.1007/
BF01744582. Cited on page 68.

Harel, D., Kozen, D., and Tiuryn, J., 2000. Dynamic Logic. Foundations of Computing.
MIT Press. Cited on page 56.

Hays, D.G., 1964. Dependency theory: A formalism and some observations. Language,
40(4):511–525. http://www.jstor.org/stable/411934. Cited on page 12.

Henkin, L., 1950. Completeness in the theory of types. Journal of Symbolic Logic, 15(2):
81–91. doi:http://dx.doi.org/10.2307/2266967. Cited on page 135.

Hidders, J., 2004. Satisfiability of XPath expressions. In Lausen, G. and Suciu,
D., editors, DBPL 2003, 9th International Conference on Database Programming Lan-
guages, volume 2921 of Lecture Notes in Computer Science, pages 21–36. Springer.
doi:10.1007/978-3-540-24607-7_3. Cited on page 116.

Hindley, J.R., 1997. Basic Simple Type Theory, volume 42 of Cambride Tracts in The-
oretical Computer Science. Cambridge University Press. ISBN 0-521-46518-4. doi:
10.1017/CBO9780511608865. Cited on pages 126, 127.

Hobbs, J.R. and Shieber, S.M., 1987. An algorithm for generating quantifier scopings.
Computational Linguistics, 13(1–2):47–63. http://aclweb.org/anthology/J87-1005.pdf.
Cited on page 119.

Janssen, T.M., 1997. Compositionality. In Benthem, J.F. and ter Meulen, A., editors,
Handbook of Logic and Language, chapter 7, pages 417–473. Elsevier. ISBN 0-444-81714-
3. doi:10.1016/B978-044481714-3/50011-4. Cited on page 125.

Jones, N.D. and Laaser, W.T., 1976. Complete problems for deterministic polynomial
time. Theoretical Computer Science, 3(1):105–117. doi:10.1016/0304-3975(76)90068-2.
Cited on page 40.

Joshi, A.K., Levy, L.S., and Takahashi, M., 1975. Tree adjunct grammars. Journal of
Computer and System Sciences, 10(1):136–163. doi:10.1016/S0022-0000(75)80019-5.
Cited on page 64.

Joshi, A.K., 1985. Tree-adjoining grammars: How much context sensitivity is required to
provide reasonable structural descriptions? In Dowty, D.R., Karttunen, L., and Zwicky,
A.M., editors, Natural Language Parsing: Psychological, Computational, and Theoretical
Perspectives, chapter 6, pages 206–250. Cambridge University Press. Cited on page 63.

Joshi, A.K., Vijay-Shanker, K., and Weir, D., 1991. The convergence of mildly context-
sensitive grammatical formalisms. In Sells, P., Shieber, S., and Wasow, T., editors, Foun-
dational Issues in Natural Language Processing. MIT Press. http://repository.upenn.edu/
cis_reports/539. Cited on page 63.

Joshi, A.K. and Schabes, Y., 1997. Tree-adjoining grammars. In Rozenberg, G. and Sa-
lomaa, A., editors, Handbook of Formal Languages, volume 3: Beyond Words, chapter 2,
pages 69–124. Springer. ISBN 3-540-60649-1. http://www.seas.upenn.edu/~joshi/
joshi-schabes-tag-97.pdf. Cited on page 64.

Jurafsky, D. and Martin, J.H., 2009. Speech and Language Processing. Prentice Hall Series
in Artificial Intelligence. Prentice Hall, second edition. ISBN 978-0-13-187321-6. Cited
on pages 13, 16, 34, 82, 99.

Kallmeyer, L. and Romero, M., 2004. LTAG semantics with semantic unification. In Ram-
bow, O. and Stone, M., editors, TAG+7, Seventh International Workshop on Tree-Adjoining
Grammars and Related Formalisms, pages 155–162. http://www.cs.rutgers.edu/TAG+7/
papers/kallmeyer-c.pdf. Cited on page 67.

http://dx.doi.org/10.1145/321250.321254
http://dx.doi.org/10.1007/BF01744582
http://dx.doi.org/10.1007/BF01744582
http://www.jstor.org/stable/411934
http://dx.doi.org/http://dx.doi.org/10.2307/2266967
http://dx.doi.org/10.1007/978-3-540-24607-7_3
http://dx.doi.org/10.1017/CBO9780511608865
http://dx.doi.org/10.1017/CBO9780511608865
http://aclweb.org/anthology/J87-1005.pdf
http://www.illc.uva.nl/Research/Reports/LP-1996-03.text.pdf
http://dx.doi.org/10.1016/0304-3975(76)90068-2
http://dx.doi.org/10.1016/S0022-0000(75)80019-5
http://repository.upenn.edu/cis_reports/539
http://repository.upenn.edu/cis_reports/539
http://www.seas.upenn.edu/~joshi/joshi-schabes-tag-97.pdf
http://www.seas.upenn.edu/~joshi/joshi-schabes-tag-97.pdf
http://www.cs.rutgers.edu/TAG+7/papers/kallmeyer-c.pdf
http://www.cs.rutgers.edu/TAG+7/papers/kallmeyer-c.pdf

Logic and Linguistic Modelling 145

Kallmeyer, L. and Kuhlmann, M., 2012. A formal model for plausible dependen-
cies in lexicalized tree adjoining grammar. In TAG+11, 11th International Work-
shop on Tree-Adjoining Grammars and Related Formalisms, pages 108–116. http://
user.phil-fak.uni-duesseldorf.de/~kallmeyer/papers/KallmeyerKuhlmann-TAG+11.pdf.
Cited on page 67.

Kanazawa, M., 2007. Parsing and generation as Datalog queries. In ACL 2007, 45th
Annual Meeting of the Association for Computational Linguistics, pages 176–183. An-
nual Meeting of the Association for Computational Linguistics. http://www.aclweb.org/
anthology/P07-1023. Cited on page 129.

Kanazawa, M., 2009. The pumping lemma for well-nested multiple context-free lan-
guages. In Diekert, V. and Nowotka, D., editors, DLT 2009, 13th International Conference
on Developments in Language Theory, volume 5583 of Lecture Notes in Computer Science,
pages 312–325. Springer. doi:10.1007/978-3-642-02737-6_25. Cited on page 73.

Kanazawa, M., 2010. Second-order abstract categorial grammars as hyperedge re-
placement grammars. Journal of Logic, Language, and Information, 19(2):137–161.
doi:10.1007/s10849-009-9109-6. Cited on page 132.

Kaplan, R.M. and Kay, M., 1994. Regular models of phonological rule systems. Compu-
tational Linguistics, 20(3):331–378. http://www.aclweb.org/anthology/J94-3001.pdf.
Cited on page 25.

Karttunen, L., 1983. KIMMO: a general morphological processor. In Dalrymple, M.,
Doron, E., Goggin, J., Goodman, B., and McCarthy, J., editors, Texas Linguistic Fo-
rum, volume 22, pages 165–186. Department of Linguistics, The University of Texas
at Austin. http://www2.parc.com/istl/members/karttune/publications/archive/kimmo/
kimmo-gmp.pdf. Cited on page 22.

Karttunen, L., Chanod, J.P., Grefenstette, G., and Schiller, A., 1996. Regular ex-
pressions for language engineering. Natural Language Engineering, 2:305–328. doi:
10.1017/S1351324997001563. Cited on page 16.

Kasami, T., 1965. An efficient recognition and syntax analysis algorithm for context free
languages. Scientific Report AF CRL-65-758, Air Force Cambridge Research Laboratory,
Bedford, Massachussetts. Cited on page 40.

Kepser, S. and Mönnich, U., 2006. Closure properties of linear context-free tree languages
with an application to optimality theory. Theoretical Computer Science, 354(1):82–97.
doi:10.1016/j.tcs.2005.11.024. Cited on page 74.

Kepser, S., 2004. Querying linguistic treebanks with monadic second-order logic in lin-
ear time. Journal of Logic, Language, and Information, 13(4):457–470. doi:10.1007/
s10849-004-2116-8. Cited on page 51.

Kepser, S. and Rogers, J., 2011. The equivalence of tree adjoining grammars and monadic
linear context-free tree grammars. Journal of Logic, Language, and Information, 20(3):
361–384. doi:10.1007/s10849-011-9134-0. Cited on pages 70, 73.

Knuth, D.E., 1965. On the translation of languages from left to right. Information and
Control, 8(6):607–639. doi:10.1016/S0019-9958(65)90426-2. Cited on page 40.

Knuth, D.E., 1977. A generalization of Dijkstra’s algorithm. Information Processing Letters,
6(1):1–5. doi:10.1016/0020-0190(77)90002-3. Cited on pages 84, 85.

Koller, A., Niehren, J., and Treinen, R., 2001. Dominance constraints: Algorithms and
complexity. In Moortgat, M., editor, LACL 1998, Third International Conference on Logical
Aspects of Computational Linguistics, volume 2014 of Lecture Notes in Computer Science,
pages 106–125. doi:10.1007/3-540-45738-0_7. Cited on page 116.

Koller, A., Niehren, J., and Thater, S., 2003. Bridging the gap between underspecification
formalisms: Hole semantics as dominance constraints. In EACL 2003, 10th Meeting of the
European Chapter of the Association for Computational Linguistics, pages 195–202. ACL
Press. doi:10.3115/1067807.1067834. Cited on page 121.

http://user.phil-fak.uni-duesseldorf.de/~kallmeyer/papers/KallmeyerKuhlmann-TAG+11.pdf
http://user.phil-fak.uni-duesseldorf.de/~kallmeyer/papers/KallmeyerKuhlmann-TAG+11.pdf
http://www.aclweb.org/anthology/P07-1023
http://www.aclweb.org/anthology/P07-1023
http://dx.doi.org/10.1007/978-3-642-02737-6_25
http://research.nii.ac.jp/~kanazawa/publications/soacgahrg_jolli.pdf
http://www.aclweb.org/anthology/J94-3001.pdf
http://www2.parc.com/istl/members/karttune/publications/archive/kimmo/kimmo-gmp.pdf
http://www2.parc.com/istl/members/karttune/publications/archive/kimmo/kimmo-gmp.pdf
http://dx.doi.org/10.1017/S1351324997001563
http://dx.doi.org/10.1017/S1351324997001563
http://dx.doi.org/10.1016/j.tcs.2005.11.024
http://dx.doi.org/10.1007/s10849-004-2116-8
http://dx.doi.org/10.1007/s10849-004-2116-8
http://dx.doi.org/10.1007/s10849-011-9134-0
http://dx.doi.org/10.1016/S0019-9958(65)90426-2
http://dx.doi.org/10.1016/0020-0190(77)90002-3
http://dx.doi.org/10.1007/3-540-45738-0_7
http://www.aclweb.org/anthology/E03-1024.pdf

Logic and Linguistic Modelling 146

Koller, A., Regneri, M., and Thater, S., 2008. Regular tree grammars as a formalism
for scope underspecification. In ACL 2008:HLT, 46th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies, pages 218–226. ACL Press.
http://www.aclweb.org/anthology/P08-1026. Cited on page 122.

Koskenniemi, K. and Church, K.W., 1988. Complexity, two-level morphology and Finnish.
In CoLing ’88, 12th International Conference on Computational Linguistics, pages 335–340.
ACL Press. doi:10.3115/991635.991704. Cited on page 23.

Kracht, M., 1995. Syntactic codes and grammar refinement. Journal of Logic, Language
and Information, 4(1):41–60. doi:10.1007/BF01048404. Cited on page 55.

Kroch, A.S. and Joshi, A.K., 1985. The linguistic relevance of tree adjoining gram-
mars. Technical Report MS-CIS-85-16, University of Pennsylvania, Department of Com-
puter and Information Science. http://repository.upenn.edu/cis_reports/671/. Cited on
page 66.

Kroch, A.S. and Santorini, B., 1991. The derived constituent structure of the West Ger-
manic verb-raising construction. In Freidin, R., editor, Principles and Parameters in Com-
parative Grammar, chapter 10, pages 269–338. MIT Press. Cited on page 63.

Kuhlmann, M., 2013. Mildly non-projective dependency grammar. 39(2):355–387. doi:
10.1162/COLI_a_00125. Cited on page 73.

Kupfermana, O., Pnueli, A., and Vardi, M.Y., 2012. Once and for all. Journal of Computer
and System Sciences, 78(3):981–996. doi:10.1016/j.jcss.2011.08.006. Cited on page 105.

Kurki-Suonio, R., 1969. Notes on top-down languages. BIT Numerical Mathematics, 9
(3):225–238. doi:10.1007/BF01946814. Cited on page 40.

Lai, C. and Bird, S., 2010. Querying linguistic trees. Journal of Logic, Language, and
Information, 19(1):53–73. doi:10.1007/s10849-009-9086-9. Cited on page 56.

Lambek, J., 1958. The mathematics of sentence structure. American Mathematical
Monthly, 65(3):154–170. doi:10.2307/2310058. Cited on pages 13, 94, 95.

Lambek, J., 1961. On the calculus of syntactic types. In Jakobson, R., editor, Structure of
Language and its Mathematical Aspects, volume 12 of Proceedings of Symposia in Applied
Mathematics, pages 166–178. AMS. ISBN 0-8218-1312-9. Cited on page 95.

Lang, B., 1974. Deterministic techniques for efficient non-deterministic parsers. In
Loeckx, J., editor, ICALP’74, 2nd International Colloquium on Automata, Languages and
Programming, volume 14 of Lecture Notes in Computer Science, pages 255–269. Springer.
doi:10.1007/3-540-06841-4_65. Cited on page 40.

Lang, B., 1994. Recognition can be harder than parsing. Computational Intelligence, 10
(4):486–494. doi:10.1111/j.1467-8640.1994.tb00011.x. Cited on page 43.

Lee, L., 2002. Fast context-free grammar parsing requires fast boolean matrix multiplica-
tion. Journal of the ACM, 49(1):1–15. doi:10.1145/505241.505242. Cited on page 40.

Leo, J.M.I.M., 1991. A general context-free parsing algorithm running in linear time
on every LR(k) grammar without using lookahead. Theoretical Computer Science, 82(1):
165–176. doi:10.1016/0304-3975(91)90180-A. Cited on page 46.

Lewis, H.R., 1980. Complexity results for classes of quantificational formulas. Journal
of Computer and System Sciences, 21(3):317–353. doi:10.1016/0022-0000(80)90027-6.
Cited on page 108.

Lombardy, S. and Sakarovitch, J., 2006. Sequential? Theoretical Computer Science, 356
(1):224–244. doi:10.1016/j.tcs.2006.01.028. Cited on page 37.

Maletti, A. and Satta, G., 2009. Parsing algorithms based on tree automata. In
IWPT 2009, 11th International Workshop on Parsing Technologies, pages 1–12. ACL Press.
http://www.aclweb.org/anthology/W09-3801.pdf. Cited on page 84.

http://www.aclweb.org/anthology/P08-1026
http://www.aclweb.org/anthology/C88-1069.pdf
http://dx.doi.org/10.1007/BF01048404
http://repository.upenn.edu/cis_reports/671/
http://dx.doi.org/10.1162/COLI_a_00125
http://dx.doi.org/10.1162/COLI_a_00125
http://dx.doi.org/10.1016/j.jcss.2011.08.006
http://dx.doi.org/10.1007/BF01946814
http://dx.doi.org/10.1007/s10849-009-9086-9
http://dx.doi.org/10.2307/2310058
http://dx.doi.org/10.1007/3-540-06841-4_65
http://pauillac.inria.fr/~lang/papers/harder/harder.pdf
http://arxiv.org/pdf/cs/0112018
http://dx.doi.org/10.1016/0304-3975(91)90180-A
http://dx.doi.org/10.1016/0022-0000(80)90027-6
http://dx.doi.org/10.1016/j.tcs.2006.01.028
http://www.aclweb.org/anthology/W09-3801.pdf

Logic and Linguistic Modelling 147

Maneth, S., Perst, T., and Seidl, H., 2007. Exact XML type checking in polynomial time.
In Schwentick, T. and Suciu, D., editors, ICDT 2007, 11th International Conference on
Database Theory, volume 4353 of Lecture Notes in Computer Science, pages 254–268.
Springer. doi:10.1007/11965893_18. Cited on page 75.

Manning, C.D. and Schütze, H., 1999. Foundations of Statistical Natural Language Pro-
cessing. MIT Press. ISBN 978-0-262-13360-9. Cited on pages 10, 13, 34, 82.

Marcus, M.P., Marcinkiewicz, M.A., and Santorini, B., 1993. Building a large annotated
corpus of English: the Penn Treebank. Computational Linguistics, 19(2):313–330. http:
//www.aclweb.org/anthology/J93-2004.pdf. Cited on pages 17, 18, 26, 82.

Martin, W.A., Church, K.W., and Patil, R.S., 1987. Preliminary analysis of a breadth-
first parsing algorithm: Theoretical and experimental results. In Bolc, L., editor,
Natural Language Parsing Systems, Symbolic Computation, pages 267–328. Springer.
doi:10.1007/978-3-642-83030-3_8. Cited on page 9.

Marx, M., 2005. Conditional XPath. ACM Transactions on Database Systems, 30(4):929–
959. doi:10.1145/1114244.1114247. Cited on pages 55, 61.

Marx, M. and de Rijke, M., 2005. Semantic characterizations of navigational XPath.
SIGMOD Record, 34(2):41–46. doi:10.1145/1083784.1083792. Cited on page 55.

Maryns, H. and Kepser, S., 2009. MonaSearch — a tool for querying linguistic tree-
banks. In Van Eynde, F., Frank, A., De Smedt, K., and van Noord, G., editors,
TLT 7, 7th International Workshop on Treebanks and Linguistic Theories, pages 29–40.
http://lotos.library.uu.nl/publish/articles/000260/bookpart.pdf. Cited on page 51.

Matiyasevicha, Y. and Sénizergues, G., 2005. Decision problems for semi-Thue sys-
tems with a few rules. Theoretical Computer Science, 330(1):145–169. doi:10.1016/
j.tcs.2004.09.016. Cited on page 24.

McCarthy, J.J., 1982. Prosodic structure and expletive infixation. Language, 58(3):574–
590. doi:10.2307/413849. Cited on page 16.

McNaughton, R., 1995. Well behaved derivations in one-rule semi-Thue systems. Tech-
nical Report 95-15, Department of Computer Science, Rensselaer Polytechnic Institute.
http://www.cs.rpi.edu/research/ps/95-15.ps. Cited on page 24.

Mel’čuk, I.A., 1988. Dependency syntax: Theory and practice. SUNY Press. Cited on
page 11.

Meyer, A., 1975. Weak monadic second order theory of successor is not elementary-
recursive. In Parikh, R., editor, Logic Colloquium ’75, volume 453 of Lecture Notes in
Mathematics, pages 132–154. Springer. doi:10.1007/BFb0064872. Cited on pages 48,
54.

Michaliszyn, J., 2009. Decidability of the guarded fragment with the transitive closure.
In Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., and Thomas, W.,
editors, ICALP 2009, 36th International Colloquium on Automata, Languages and Pro-
gramming, volume 5556 of Lecture Notes in Computer Science, pages 261–272. Springer.
doi:10.1007/978-3-642-02930-1_22. Cited on page 112.

Mohri, M. and Sproat, R., 1996. An efficient compiler for weighted rewrite rules. In ACL
’96, 34th Annual Meeting of the Association for Computational Linguistics, pages 231–238.
ACL Press. doi:10.3115/981863.981894. Cited on page 25.

Mohri, M., 1997. Finite-state transducers in language and speech processing. Compu-
tational Linguistics, 23(2):269–311. http://www.cs.nyu.edu/~mohri/pub/cl1.pdf. Cor-
rected version from the author’s webpage. Cited on page 37.

Mönnich, U., 1997. Adjunction as substitution: An algebraic formulation of regular,
context-free and tree adjoining languages. In FG ’97, Second Conference on Formal Gram-
mar. arXiv:cmp-lg/9707012. Cited on page 70.

http://dx.doi.org/10.1007/11965893_18
http://www.aclweb.org/anthology/J93-2004.pdf
http://www.aclweb.org/anthology/J93-2004.pdf
http://publications.csail.mit.edu/lcs/specpub.php?id=829
http://dx.doi.org/10.1145/1114244.1114247
http://dx.doi.org/10.1145/1083784.1083792
http://lotos.library.uu.nl/publish/articles/000260/bookpart.pdf
http://dx.doi.org/10.1016/j.tcs.2004.09.016
http://dx.doi.org/10.1016/j.tcs.2004.09.016
http://dx.doi.org/10.2307/413849
http://www.cs.rpi.edu/research/ps/95-15.ps
http://dx.doi.org/10.1007/BFb0064872
http://dx.doi.org/10.1007/978-3-642-02930-1_22
http://www.aclweb.org/anthology/P96-1031.pdf
http://www.cs.nyu.edu/~mohri/pub/cl1.pdf
http://arxiv.org/abs/cmp-lg/9707012

Logic and Linguistic Modelling 148

Montague, R., 1970. Universal grammar. Theoria, 36(3):373–398. doi:10.1111/
j.1755-2567.1970.tb00434.x. Cited on page 126.

Montague, R., 1973. The proper treatment of quantification in ordinary English. In
Hintikka, J., Moravcsik, J., and Suppes, P., editors, Approaches to Natural Language,
pages 221–242. Reidel. https://www.blackwellpublishing.com/content/BPL_Images/
Content_store/Sample_chapter/0631215417/Portner.pdf. Cited on pages 126, 129.

Moore, R.C., 2004. Improved left-corner chart parsing for large context-free gram-
mars. In New Developments in Parsing Technology, pages 185–201. Springer. doi:
10.1007/1-4020-2295-6_9. Cited on pages 9, 41.

Moortgat, M., 1997. Multimodal linguistic inference. Journal of Logic, Language and
Information, 5(3–4):349–385. doi:10.1007/BF00159344. Cited on page 91.

Morrill, G.V., 1994. Type Logical Grammar. Kluwer Academic Publishers. ISBN 0-7923-
3095-1. Cited on page 91.

Muskens, R., 2007. Intensional models for the theory of types. Journal of Symbolic Logic,
72(1):98–118. doi:10.2178/jsl/1174668386. Cited on page 136.

Muskens, R., 2011. Type-logical semantics. In Craig, E., editor, Routledge Encyclopedia of
Philosophy Online. Routledge. http://let.uvt.nl/general/people/rmuskens/pubs/rep.pdf.
(to appear). Cited on page 135.

Nederhof, M.J. and Satta, G., 2004. Tabular parsing. In MartÃ n-Vide, C., Mitrana,
V., and Paun, G., editors, Formal Languages and Applications, volume 148 of Studies in
Fuzziness and Soft Computing, pages 529–549. Springer. arXiv:cs.CL/0404009. Cited on
page 43.

Nederhof, M.J. and Satta, G., 2008. Probabilistic parsing. In Bel-Enguix, G., Jiménez-
López, M., and Martín-Vide, C., editors, New Developments in Formal Languages and Ap-
plications, volume 113 of Studies in Computational Intelligence, pages 229–258. Springer.
doi:10.1007/978-3-540-78291-9_7. Cited on page 79.

Otto, M., 2004. Modal and guarded characterisation theorems over finite transi-
tion systems. Annals of Pure and Applied Logic, 130(1–3):173–205. doi:10.1016/
j.apal.2004.04.003. Cited on page 107.

Palm, A., 1999. Propositional tense logic of finite trees. In MOL 6, 6th Biennial Conference
on Mathematics of Language. http://www.phil.uni-passau.de/linguistik/palm/papers/
mol99.pdf. Cited on page 55.

Parikh, R.J., 1966. On context-free languages. Journal of the ACM, 13(4):570–581.
doi:10.1145/321356.321364. Cited on page 63.

Parsons, T., 1990. Events in the Semantics of English: A Study in Sub-
atomic Semantics, volume 19 of Current Studies in Linguistics. MIT Press.
ISBN 0-262016120-6. http://www.humnet.ucla.edu/humnet/phil/faculty/tparsons/
EventSemantics/download.htm. Cited on page 101.

Partee, B.H., ter Meulen, A.G., and Wall, R.E., 1990. Mathematical Methods in Linguistics,
volume 30 of Studies in Linguistics and Philosophy. Springer. Cited on page 125.

Pentus, M., 1997. Product-free Lambek calculus and context-free grammars. Journal of
Symbolic Logic, 62(2):648–660. doi:10.2307/2275553. Cited on page 97.

Pentus, M., 2006. Lambek calculus is NP-complete. Theoretical Computer Science, 357:
186–201. doi:10.1016/j.tcs.2006.03.018. Cited on page 96.

Pereira, F.C.N. and Warren, D.H.D., 1983. Parsing as deduction. In ACL ’83, 21st Annual
Meeting of the Association for Computational Linguistics, pages 137–144. ACL Press. doi:
10.3115/981311.981338. Cited on page 45.

Pereira, F., 2000. Formal grammar and information theory: together again? Philosophical
Transactions of the Royal Society A, 358(1769):1239–1253. doi:10.1098/rsta.2000.0583.
Cited on pages 10, 77.

http://dx.doi.org/10.1111/j.1755-2567.1970.tb00434.x
http://dx.doi.org/10.1111/j.1755-2567.1970.tb00434.x
https://www.blackwellpublishing.com/content/BPL_Images/Content_store/Sample_chapter/0631215417/Portner.pdf
https://www.blackwellpublishing.com/content/BPL_Images/Content_store/Sample_chapter/0631215417/Portner.pdf
http://dx.doi.org/10.1007/1-4020-2295-6_9
http://dx.doi.org/10.1007/1-4020-2295-6_9
http://dx.doi.org/10.1007/BF00159344
http://arxiv.org/abs/math/0608571
http://let.uvt.nl/general/people/rmuskens/pubs/rep.pdf
http://arxiv.org/abs/cs.CL/0404009
http://www.cs.st-andrews.ac.uk/~mjn/publications/2008a.pdf
http://dx.doi.org/10.1016/j.apal.2004.04.003
http://dx.doi.org/10.1016/j.apal.2004.04.003
http://www.phil.uni-passau.de/linguistik/palm/papers/mol99.pdf
http://www.phil.uni-passau.de/linguistik/palm/papers/mol99.pdf
http://dx.doi.org/10.1145/321356.321364
http://www.humnet.ucla.edu/humnet/phil/faculty/tparsons/Event Semantics/download.htm
http://www.humnet.ucla.edu/humnet/phil/faculty/tparsons/Event Semantics/download.htm
http://dx.doi.org/10.2307/2275553
http://dx.doi.org/10.1016/j.tcs.2006.03.018
http://www.aclweb.org/anthology/P83-1021
http://www.aclweb.org/anthology/P83-1021
http://www.cis.upenn.edu/~pereira/papers/rsoc.pdf

Logic and Linguistic Modelling 149

Pesetsky, D., 1985. Morphology and logical form. Linguistic Inquiry, 16(2):193–246.
http://www.jstor.org/stable/4178430. Cited on page 22.

Poesio, M., 1994. Ambiguity, underspecification and discourse interpretation. In IWCS-1,
First International Workshop on Computational Semantics. Cited on page 119.

Pullum, G.K., 1986. Footloose and context-free. Natural Language & Linguistic Theory, 4
(3):409–414. doi:10.1007/BF00133376. Cited on page 63.

Pullum, G.K. and Scholz, B.C., 2001. On the distinction between model-theoretic and
generative-enumerative syntactic frameworks. In de Groote, P., Morrill, G., and Retoré,
C., editors, LACL 2001, 4th International Conference on Logical Aspects of Computational
Linguistics, volume 2099 of Lecture Notes in Computer Science, pages 17–43. Springer.
doi:10.1007/3-540-48199-0_2. Cited on page 47.

Pullum, G.K., 2007. The evolution of model-theoretic frameworks in linguistics.
In Model-Theoretic Syntax at 10, pages 1–10. http://www.lel.ed.ac.uk/~gpullum/
EvolutionOfMTS.pdf. Cited on page 11.

Rabin, M.O., 1969. Decidability of second-order theories and automata on infinite trees.
Transactions of the American Mathematical Society, 141:1–35. doi:10.2307/1995086.
Cited on page 54.

Räihä, K.J. and Ukkonen, E., 1981. The shortest common supersequence problem
over binary alphabet is NP-complete. Theoretical Computer Science, 16(2):187–198.
doi:10.1016/0304-3975(81)90075-X. Cited on page 118.

Raney, G.N., 1958. Sequential functions. Journal of the ACM, 5(2):177–180. doi:
10.1145/320924.320930. Cited on page 20.

Reinhardt, K., 2002. The complexity of translating logic to finite automata. In Grädel,
E., Thomas, W., and Wilke, T., editors, Automata, Logics, and Infinite Games, volume
2500 of Lecture Notes in Computer Science, chapter 13, pages 231–238. Springer. doi:
10.1007/3-540-36387-4_13. Cited on pages 48, 113.

Retoré, C., 2005. The logic of categorial grammars: Lecture notes. Technical Report
RR-5703, INRIA. http://hal.inria.fr/inria-00070313/. Cited on pages 91, 97.

Robertson, N. and Seymour, P., 1986. Graph minors. II. Algorithmic aspects of tree-width.
Journal of Algorithms, 7(3):309–322. doi:10.1016/0196-6774(86)90023-4. Cited on
page 110.

Roche, E. and Schabes, Y., 1995. Deterministic part-of-speech tagging with finite-
state transducers. Computational Linguistics, 21(2):227–253. http://www.aclweb.org/
anthology/J95-2004.pdf. Cited on pages 26, 27, 28.

Rogers, J., 1996. A model-theoretic framework for theories of syntax. In ACL ’96, 34th
Annual Meeting of the Association for Computational Linguistics, pages 10–16. ACL Press.
doi:10.3115/981863.981865. Cited on page 54.

Rogers, J., 1998. A Descriptive Approach to Language-Based Complexity. Studies in Logic,
Language, and Information. CSLI Publications. http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.49.912&rep=rep1&type=pdf. Cited on page 51.

Rogers, J., 2003. wMSO theories as grammar formalisms. Theoretical Computer Science,
293(2):291–320. doi:10.1016/S0304-3975(01)00349-8. Cited on page 54.

Rosenkrantz, D.J. and Stearns, R.E., 1970. Properties of deterministic top-down gram-
mars. Information and Control, 17(3):226–256. doi:10.1016/S0019-9958(70)90446-8.
Cited on page 40.

Rossman, B., 2008. Homomorphism preservation theorems. Journal of the ACM, 55(3):
15:1–15:53. doi:10.1145/1379759.1379763. Cited on page 115.

Rounds, W.C., 1970. Mappings and grammars on trees. 4(3):257–287. doi:10.1007/
BF01695769. Cited on pages 68, 73.

http://www.jstor.org/stable/4178430
http://dx.doi.org/10.1007/BF00133376
http://dx.doi.org/10.1007/3-540-48199-0_2
http://www.lel.ed.ac.uk/~gpullum/EvolutionOfMTS.pdf
http://www.lel.ed.ac.uk/~gpullum/EvolutionOfMTS.pdf
http://www.ams.org/journals/tran/1969-141-00/S0002-9947-1969-0246760-1/S0002-9947-1969-0246760-1.pdf
http://dx.doi.org/10.1016/0304-3975(81)90075-X
http://dx.doi.org/10.1145/320924.320930
http://dx.doi.org/10.1145/320924.320930
http://dx.doi.org/10.1007/3-540-36387-4_13
http://dx.doi.org/10.1007/3-540-36387-4_13
http://hal.inria.fr/inria-00070313/
http://dx.doi.org/10.1016/0196-6774(86)90023-4
http://www.aclweb.org/anthology/J95-2004.pdf
http://www.aclweb.org/anthology/J95-2004.pdf
http://www.aclweb.org/anthology/P96-1002.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.49.912&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.49.912&rep=rep1&type=pdf
http://dx.doi.org/10.1016/S0304-3975(01)00349-8
http://dx.doi.org/10.1016/S0019-9958(70)90446-8
http://dx.doi.org/10.1145/1379759.1379763
http://dx.doi.org/10.1007/BF01695769
http://dx.doi.org/10.1007/BF01695769

Logic and Linguistic Modelling 150

Sakarovitch, J., 2009. Elements of Automata Theory. Cambridge University Press. ISBN
978-0-521-84425-3. Translated from Éléments de théorie des automates, Vuibert, 2003.
Cited on pages 19, 20, 21.

Santorini, B., 1990. Part-of-speech tagging guidelines for the Penn Treebank project
(3rd revision). Technical Report MS-CIS-90-47, University of Pennsylvania, Department
of Computer and Information Science. http://repository.upenn.edu/cis_reports/570/.
Cited on pages 17, 40.

Schabes, Y. and Shieber, S.M., 1994. An alternative conception of tree-adjoining deriva-
tion. Computational Linguistics, 20(1):91–124. http://www.aclweb.org/anthology/
J94-1004. Cited on page 67.

Schmidt-Schauß, M. and Smolka, G., 1991. Attributive concept descriptions with com-
plements. Artificial Intelligence, 48(1):1–26. doi:10.1016/0004-3702(91)90078-X. Cited
on page 102.

Schmitz, S., 2014. Implicational relevance logic is 2-ExpTime-complete. In Dowek,
G., editor, RTA-TLCA 2014, Joint 25th International Conference on Rewriting Techniques
and Applications and 12th International Conference on Typed Lambda Calculi and Appli-
cations, volume 8560 of Lecture Notes in Computer Science, pages 395–409. Springer.
doi:10.1007/978-3-319-08918-8_27. Cited on page 127.

Schützenberger, M.P., 1961. On the definition of a family of automata. Information and
Control, 4(2–3):245–270. doi:10.1016/S0019-9958(61)80020-X. Cited on pages 21, 79.

Schützenberger, M.P., 1977. Sur une variante des fonctions séquentielles. Theoretical
Computer Science, 4(1):47–57. doi:0.1016/0304-3975(77)90055-X. Cited on page 20.

Schwichtenberg, H., 1991. An upper bound for reduction sequences in the typed λ-
calculus. Archive for Mathematical Logic, 30(5–6):405–408. doi:10.1007/BF01621476.
Cited on page 127.

Seki, H., Matsumura, T., Fujii, M., and Kasami, T., 1991. On multiple context-
free grammars. Theoretical Computer Science, 88(2):191–229. doi:10.1016/
0304-3975(91)90374-B. Cited on pages 11, 63.

Seki, H. and Kato, Y., 2008. On the generative power of multiple context-free grammars
and macro grammars. IEICE Transactions on Information and Systems, E91-D(2):209–
221. doi:10.1093/ietisy/e91-d.2.209. Cited on page 73.

Sénizergues, G., 1996. On the termination problem for one-rule semi-Thue system. In
Ganzinger, H., editor, RTA ’96, 7th International Conference on Rewriting Techniques and
Applications, volume 1103 of Lecture Notes in Computer Science, pages 302–316. Springer.
doi:10.1007/3-540-61464-8_61. Cited on page 24.

Shieber, S.M., 1985. Evidence against the context-freeness of natural language. Linguis-
tics and Philosophy, 8(3):333–343. doi:10.1007/BF00630917. Cited on page 63.

Sikkel, K., 1997. Parsing Schemata - a framework for specification and analysis of parsing
algorithms. Texts in Theoretical Computer Science - An EATCS Series. Springer. ISBN
3-540-61650-0. Cited on page 45.

Sima’an, K., 2002. Computational complexity of probabilistic disambiguation. 5(2):
125–151. doi:10.1023/A:1016340700671. Cited on page 87.

Simon, I., 1994. String matching algorithms and automata. In Karhumäki, J., Maurer,
H., and Rozenberg, G., editors, Results and Trends in Theoretical Computer Science: Collo-
quium in Honor of Arto Salomaa, volume 812 of Lecture Notes in Computer Science, pages
386–395. Springer. ISBN 978-3-540-58131-4. doi:10.1007/3-540-58131-6_61. Cited on
page 28.

Sproat, R.W., 1992. Morphology and Computation. ACL–MIT Press series in natural-
language processing. MIT Press. ISBN 0-262-19314-0. Cited on page 22.

http://repository.upenn.edu/cis_reports/570/
http://www.aclweb.org/anthology/J94-1004
http://www.aclweb.org/anthology/J94-1004
http://dx.doi.org/10.1016/0004-3702(91)90078-X
http://arxiv.org/abs/1402.0705
http://igm.univ-mlv.fr/~berstel/Schutzenberger/Travaux/A/1961-4DefinitionFamilyAutInfCtl.pdf
http://igm.univ-mlv.fr/~berstel/Mps/Travaux/A/1977-3SequentiellesTcs.pdf
http://dx.doi.org/10.1007/BF01621476
http://dx.doi.org/10.1016/0304-3975(91)90374-B
http://dx.doi.org/10.1016/0304-3975(91)90374-B
http://isw3.naist.jp/IS/TechReport/report/2006007.ps
http://dx.doi.org/10.1007/3-540-61464-8_61
http://dx.doi.org/10.1007/BF00630917
http://dx.doi.org/10.1023/A:1016340700671
http://dx.doi.org/10.1007/3-540-58131-6_61

Logic and Linguistic Modelling 151

Statman, R., 1979a. The typed λ-calculus is not elementary recursive. Theoretical Com-
puter Science, 9(1):73–81. doi:10.1016/0304-3975(79)90007-0. Cited on page 127.

Statman, R., 1979b. Intuitionistic propositional logic is polynomial-space complete. The-
oretical Computer Science, 9(1):67–72. doi:10.1016/0304-3975(79)90006-9. Cited on
page 127.

Steedman, M., 2000. The Syntactic Process. MIT Press. ISBN 0-262-69268-6. Cited on
page 91.

Steedman, M., 2011. Romantics and revolutionaries. Linguistic Issues in Language Tech-
nology, 6. http://elanguage.net/journals/lilt/article/view/2587. Cited on page 10.

Sudborough, I.H., 1978. On the tape complexity of deterministic context-free languages.
Journal of the ACM, 25(3):405–414. doi:10.1145/322077.322083. Cited on page 40.

ten Cate, B. and Segoufin, L., 2010. Transitive closure logic, nested tree walk-
ing automata, and XPath. Journal of the ACM, 57(3):18:1–18:41. doi:10.1145/
1706591.1706598. Cited on pages 60, 61.

Thatcher, J.W., 1967. Characterizing derivation trees of context-free grammars through
a generalization of finite automata theory. Journal of Computer and System Sciences, 1
(4):317–322. doi:10.1016/S0022-0000(67)80022-9. Cited on page 40.

Thatcher, J.W. and Wright, J.B., 1968. Generalized finite automata theory with an appli-
cation to a decision problem of second-order logic. Theory of Computing Systems, 2(1):
57–81. doi:10.1007/BF01691346. Cited on page 54.

Tomita, M., 1986. Efficient Parsing for Natural Language. Kluwer Academic Publishers.
ISBN 0-89838-202-5. Cited on page 40.

Troelstra, A.S., 1992. Lectures on Linear Logic, volume 29 of CSLI Lecture Notes. CSLI
Publications. http://standish.stanford.edu/bin/detail?fileID=1846861073. Cited on
pages 13, 95.

Valiant, L.G., 1975. General context-free recognition in less than cubic time. Journal of
Computer and System Sciences, 10(2):308–314. doi:10.1016/S0022-0000(75)80046-8.
Cited on page 40.

Vardi, M., 1998. Reasoning about the past with two-way automata. In Larsen, K.G.,
Skyum, S., and Winskel, G., editors, ICALP ’98, 25th International Colloquium on Au-
tomata, Languages and Programming, volume 1443 of Lecture Notes in Computer Science,
pages 628–641. Springer. doi:10.1007/BFb0055090. Cited on pages 59, 111.

Weir, D.J., 1992. Linear context-free rewriting systems and deterministic tree-walking
transducers. In ACL ’92, 30th Annual Meeting of the Association for Computational Lin-
guistics, pages 136–143. ACL Press. doi:10.3115/981967.981985. Cited on page 63.

Weyer, M., 2002. Decidability of S1S and S2S. In Grädel, E., Thomas, W., and Wilke, T.,
editors, Automata, Logics, and Infinite Games, volume 2500 of Lecture Notes in Computer
Science, chapter 12, pages 207–230. Springer. doi:10.1007/3-540-36387-4_12. Cited on
page 54.

Wich, K., 2005. Ambiguity Functions of Context-Free Grammars and Lan-
guages. PhD thesis, Institut fur Formale Methoden der Informatik, Univer-
sität Stuttgart. ftp://ftp.informatik.uni-stuttgart.de/pub/library/ncstrl.ustuttgart_fi/
DIS-2005-01/DIS-2005-01.pdf. Cited on page 41.

Williams, V., 2012. Multiplying matrices faster than Coppersmith-Winograd. In
STOC 2012, 44th Symposium on Theory of Computing, pages 887–898. ACM Press.
doi:10.1145/2213977.2214056. Cited on page 40.

XTAG Research Group, 2001. A lexicalized tree adjoining grammar for English. Tech-
nical Report IRCS-01-03, University of Pennsylvania, Institute for Research in Cognitive
Science. http://www.cis.upenn.edu/~xtag/. Cited on page 66.

http://dx.doi.org/10.1016/0304-3975(79)90007-0
http://dx.doi.org/10.1016/0304-3975(79)90006-9
http://elanguage.net/journals/lilt/article/view/2587
http://dx.doi.org/10.1145/322077.322083
http://dx.doi.org/10.1145/1706591.1706598
http://dx.doi.org/10.1145/1706591.1706598
http://dx.doi.org/10.1016/S0022-0000(67)80022-9
http://dx.doi.org/10.1007/BF01691346
http://standish.stanford.edu/bin/detail?fileID=1846861073
http://dx.doi.org/10.1016/S0022-0000(75)80046-8
http://dx.doi.org/10.1007/BFb0055090
http://www.aclweb.org/anthology/P92-1018.pdf
http://dx.doi.org/10.1007/3-540-36387-4_12
ftp://ftp.informatik.uni-stuttgart.de/pub/library/ncstrl.ustuttgart_fi/DIS-2005-01/DIS-2005-01.pdf
ftp://ftp.informatik.uni-stuttgart.de/pub/library/ncstrl.ustuttgart_fi/DIS-2005-01/DIS-2005-01.pdf
http://www.cs.stanford.edu/~virgi/matrixmult-f.pdf
http://www.cis.upenn.edu/~xtag/

Logic and Linguistic Modelling 152

Younger, D.H., 1967. Recognition and parsing of context-free languages in time n3.
Information and Control, 10(2):189–208. doi:10.1016/S0019-9958(67)80007-X. Cited
on page 40.

Zimmer, K., 1964. Affixal negation in English and other languages. William Clowes.
Supplement to Word 20:2, monograph 5. Cited on page 22.

Zwicky, A.M., 1985. Clitics and particles. Language, 61(2):283–305. doi:10.2307/
414146. Cited on page 16.

Zwicky, A.M. and Pullum, G.K., 1987. Plain morphology and expressive morphology.
In Aske, J., Beery, N., Michaelis, L., and Filip, H., editors, Berkeley Linguistics Society
’87, Thirteen Annual Meeting of the Berkeley Linguistics Society, pages 330–340. http:
//www.ling.ed.ac.uk/~gpullum/bls_1987.pdf. Cited on page 17.

http://dx.doi.org/10.1016/S0019-9958(67)80007-X
http://www.stanford.edu/~zwicky/cliticsparticles.pdf
http://www.stanford.edu/~zwicky/cliticsparticles.pdf
http://www.ling.ed.ac.uk/~gpullum/bls_1987.pdf
http://www.ling.ed.ac.uk/~gpullum/bls_1987.pdf

	Introduction
	Levels of Description
	From Text to Meaning
	Ambiguity at Every Turn
	Romantics and Revolutionaries

	Models of Syntax
	Constituent Syntax
	Dependency Syntax

	Further Reading

	Morphology
	A Bit of English Morphology
	Part-of-Speech Tags

	Finite-State Morphology
	Background: Rational Transductions
	Morphological Analysis
	Phonological Rules

	Part-of-Speech Tagging
	Rule-Based Tagging
	HMM Tagging

	Context-Free Syntax
	Grammars
	The Parsing Problem
	Background: Tree Automata

	Tabular Parsing
	Parsing as Intersection
	Parsing as Deduction

	Model-Theoretic Syntax
	Model-Theoretic vs. Generative
	Tree Structures

	Monadic Second-Order Logic
	Linguistic Analyses in wMSO
	wS2S

	Propositional Dynamic Logic
	Model-Checking
	Satisfiability
	Expressiveness

	Parsing as Intersection

	Mildly Context-Sensitive Syntax
	Tree Adjoining Grammars
	Linguistic Analyses Using TAGs
	Background: Context-Free Tree Grammars
	TAGs as Context-Free Tree Grammars

	Well-Nested MCSLs
	Linear CFTGs
	Parsing as Intersection

	Probabilistic Syntax
	Weighted and Probabilistic CFGs
	Background: Semirings and Formal Power Series
	Weighted Grammars
	Probabilistic Grammars

	Learning PCFGs
	Probabilistic Parsing as Intersection
	Weighted Product
	Most Probable Parse
	Most Probable String

	Categorial Grammars
	AB Categorial Grammars
	Alternative Views
	Equivalence with Context-Free Grammars
	Structural Limitations

	Lambek Grammars
	Background: Substructural Proof Systems
	Lambek Calculus
	Equivalence with Context-Free Grammars

	First-Order Semantics
	Formal Semantics
	Event Semantics
	Thematic Roles

	A Dip into Description Logics
	A Basic Description Logic
	Translation into First-Order Logic

	Modal Semantics
	Background: Modal Logic
	First-Order Modal Logic

	Decidability
	The Guarded Fragment

	Tree Patterns
	Background: Existential First-Order Logic
	Characterisations over Finite Models
	Tree Models

	Meta-Grammars
	Diathesis Alternation
	Complexity

	Underspecified Semantics
	Scope Ambiguities
	Hole Semantics

	Higher-Order Semantics
	Compositional Semantics
	Background: Simply Typed Lambda Calculus
	Ground Terms over Second-Order Signatures
	Higher-Order Homomorphisms
	Tree Transductions

	Intensionality
	Higher-Order Logic
	Background: Church's Simple Theory of Types
	Type-Logical Semantics

	References

