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These notes cover the second part of an introductory course on computational
linguistics, also known as MPRI 2-27-1: Logical and computational structures for
linguistic modelling. The course is subdivided into two parts: the first, taught
this year by Éric Villemonte de la Clergerie, covers grammars and automata for
syntax modelling, while the second part focuses on logical approaches to syntax
and semantics. Among the prerequisites to the course are

• classical notions of formal language theory, in particular regular and context-
free languages, and more generally the Chomsky hierarchy,

• a basic command of English and French morphology and syntax, in order to
understand the examples;

• some acquaintance with logic and proof theory is also advisable.

These notes are based on numerous articles—and I have tried my best to pro-
vide stable hyperlinks to online versions in the references—, and on the excellent
material of Benoît Crabbé, Éric Villemonte de la Clergerie, and Philippe de Groote
who taught this course with me.

Several courses at MPRI provide an in-depth treatment of subjects we can only
hint at. The interested student should consider attending

MPRI 1-18: Tree automata and applications: tree languages and term rewriting
systems will be our basic tools in many models;

MPRI 2-16: Finite automata modelisation: only the basic theory of weighted au-
tomata is used in our course;

MPRI 2-26-1: Web data management: you might be surprised at how many con-
cepts are similar, from automata and logics on trees for syntax to description
logics for semantics.
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Notations

We use the following notations in this document. First, as is customary in lin-
guistic texts, we prefix agrammatical or incorrect examples with an asterisk, like
∗ationhospitalmis or ∗sleep man to is the.
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These notes also contain some exercises, and a difficulty appreciation is indi-
cated as a number of asterisks in the margin next to each exercise—a single aster-
isk denotes a straightforward application of the definitions.

Relations. We only consider binary relations, i.e. subsets of A × B for some
sets A and B. The inverse of a relation R is R−1 = {(b, a) | (a, b) ∈ R}, its
domain isR−1(B) and its range isR(A). Beyond the usual union, intersection and
complement operations, we denote the composition of two relations R1 ⊆ A×B
and R2 ⊆ B × C as R1 # R2 = {(a, c) | ∃b ∈ B, (a, b) ∈ R1 ∧ (b, c) ∈ R2}. The
reflexive transitive closure of a relation is noted R? =

⋃
iR

i, where R0 = IdA =
{(a, a) | a ∈ A} is the identity over A, and Ri+1 = R #Ri.

Terms. A ranked alphabet See Comon et al. (2007) for
missing definitions and notations.

a pair (Σ, r) where Σ is a finite alphabet and r :
Σ → N gives the arity of symbols in Σ. The subset of symbols of arity n is noted
Σn.

Let X be a set of variables, each with arity 0, assumed distinct from Σ. We write
Xn for a set of n distinct variables taken from X .

The set T (Σ,X ) of terms over Σ and X is the smallest set s.t. Σ0 ⊆ T (Σ,X ),
X ⊆ T (Σ,X ), and if n > 0, f is in Σn, and t1, . . . , tn are terms in T (Σ,X ), then
f(t1, . . . , tn) is a term in T (Σ,X ). The set of terms T (Σ, ∅) is also noted T (Σ) and
is called the set of ground terms.

A term t in T (Σ,X ) is linear if every variable of X occurs at most once in t.
A linear term in T (Σ,Xn) is called a context, and the expression C[t1, . . . , tn] for
t1, . . . , tn in T (Σ) denotes the term in T (Σ) obtained by substituting ti for xi for
each 1 ≤ i ≤ n, i.e. is a shorthand for C{x1 ← t1, . . . , xn ← tn}. We denote
Cn(Σ) the set of contexts with n variables, and C(Σ) that of contexts with a single
variable—in which case we usually write � for this unique variable.

Trees. By tree we mean a finite ordered ranked tree t over some set of labels Σ,
i.e. a partial function t : {0, . . . , k}∗ → Σ where k is the maximal rank, associating
to a finite sequence its label. The domain of t is prefix-closed, i.e. if ui ∈ dom(t)
for u in N∗ and i in N, then u ∈ dom(t), and predecessor-closed, i.e. if ui ∈ dom(t)
for u in N∗ and i in N>0, then u(i− 1) ∈ dom(t).

The set Σ can be turned into a ranked alphabet simply by building k+1 copies of
it, one for each possible rank in {0, . . . , k}; we note a(m) for the copy of a label a in
Σ with rank m. Because in linguistic applications tree node labels typically denote
syntactic categories, which have no fixed arities, it is useful to work under the
convention that a denotes the “unranked” version of a(m). This also allows us to
view trees as terms (over the ranked version of the alphabet), and conversely terms
as trees (by erasing ranking information from labels)—we will not distinguish
between the two concepts.

Term Rewriting Systems. A term rewriting system over some ranked alphabet
Σ is a set of rules R ⊆ (T (Σ,X ))2, each noted t→ t′. Given a rule r : t→ t′ (also
noted t r−→ t′), with t, t′ in T (Σ,Xn), the associated one-step rewrite relation over
T (Σ) is r

=⇒ = {(C[t{x1 ← t1, . . . , xn ← tn}], C[t′{x1 ← t1, . . . , xn ← tn}]) | C ∈
C(Σ), t1, . . . , tn ∈ T (Σ)}. We write r1r2==⇒ for r1=⇒ # r2=⇒, and R

=⇒ for
⋃
r∈R

r
=⇒.
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Chapter 1

Model-Theoretic Syntax

In contrast with the generative approaches of the first part of the course, we take
here a different stance on how to formalise constituent-based syntax. Instead of a
more or less operational description using some string or term rewrite system, the
trees of our linguistic analyses are now models of logical formulæ.

1.0.1 Model-Theoretic vs. Generative

The Most of this discussion is inspired
by Pullum and Scholz (2001).

connections between the classes of tree structures that can be singled out
through logical formulæ on the one hand and context-free grammars or finite tree
automata on the other hand are well-known, and we will survey some of these
bridges. Thus the interest of a model theoretic approach does not reside so much
in what can be expressed as in how it can be expressed.

Local vs. Global View The model-theoretic approach simplifies the specification
of global properties of syntactic analyses. Let us consider for instance the problem
of finding the head of a constituent, which can be used to lexicalise CFGs. Re-
member that the solution there was to explicitly annotate each nonterminal with
the head information of its subtree—which is the only way to percolate the head
information up the trees in a context-free grammar. On the other hand, one can
write a logic formula postulating the existence of a unique head word for each
node of a tree (see (1.19) and (1.20)).

Gradience of Grammaticality Agrammatical Practical aspects of the notion of
grammaticality gradience have
been investigated in the context of
property grammars, see e.g.
Duchier et al. (2009).

sentences can vary considerably in
their degree of agrammaticality. Rather than a binary choice between grammatical
and agrammatical, one would rather have a finer classification that would give
increasing levels of agrammaticality to the following sentences:

∗In a hole in in the ground there lived a hobbit.
∗In a hole in in ground there lived a hobbit.
∗Hobbit a ground in lived there a the hole in.

One way to achieve this finer granularity with generative syntax is to employ
weights as a measure of grammaticality. Note that it is not quite what we obtained
through probabilistic methods, because estimated probabilities are not grammat-
icality judgements per se, but occurrence-based (although smoothing techniques
attempt to account for missing events).

A natural way to obtain a gradience of grammaticality using model theoretic
methods is to structure formulæ as large conjunctions

∧
i ϕi, where each conjunct

5
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ϕi implements a specific linguistic notion. A degree of grammaticality can be
derived from (possibly weighted) counts of satisfied conjuncts.

Open Lexicon An underlying assumption of generative syntax is the presence of
a finite lexicon Σ. A specific treatment is required in automated systems in order
to handle unknown words.

This limitation is at odds with the diachronic addition of new words to lan-
guages, and with the grammaticality of sentences containing pseudo-words, as
for instance

Could you hand over the salt, please?
Could you smurf over the smurf, please?

Again, structuring formulæ in such a way that lexical information only further
constrains the linguistic trees makes it easy to handle unknown or pseudo-words,
which simply do not add any constraint.

Infinite Sentences A debatable point is whether natural language sentences
should be limited to finite ones. An example illustrating why this question is not
so clear-cut is an expression for “mutual belief” that starts with the following:

Jones believes that iron rusts, and Smith believes that iron rusts, and Jones
believes that Smith believes that iron rusts, and Smith believes that Jones
believes that iron rusts, and Jones believes that Smith believes that Jones
believes that iron rusts, and. . .

Dealing with infinite sequences and trees requires to extend the semantics of
generative devices (CFGs, PDAs, etc.) and leads to complications. By contrast,
logics are not a priori restricted to finite models, and in fact the two examples
we will see are expressive enough to force the choice of either infinite or finite
models. Of course, for practical applications one might want to restrict oneself to
finite models.

Algorithmic Costs Formulæ in the logics considered in this chapter are provably
more succinct than context-free grammars. The downfall is an algorithmic cost
increased in the same proportion, e.g. parsing can require exponential time for
PDL (Afanasiev et al., 2005), and non-elementary time for wMSO (Meyer, 1975;
Reinhardt, 2002).

1.0.2 Tree Structures

Before we turn to the two logical languages that we consider for model-theoretic
syntax, let us introduce the structures we will consider as possible models. Because
we work with constituent analyses, these will be labelled ordered trees. Given
a set A of labels, a tree structure is a tuple M = 〈W, ↓,→, (Pa)a∈A〉 where W is
a set of nodes, ↓ and→ are respectively the child and next-sibling relations over
W , and each Pa for a in A is a unary labelling relation over W . We take W to be
isomorphic to some prefix-closed and predecessor-closed subset of N∗, where ↓ and
→ can then be defined by

↓ def
= {(w,wi) | i ∈ N ∧ wi ∈W} (1.1)

→ def
= {(wi,w(i+ 1)) | i ∈ N ∧ w(i+ 1) ∈W} . (1.2)
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Note that (a) we do not limit ourselves to a single label per node, i.e. we actually

work on trees labelled by Σ
def
= 2A, (b) we do not bound the rank of our trees,

and (c) we do not assume the set of labels to be finite.

Binary Trees See Comon et al. (2007,
Section 8.3.1).

One way to deal with unranked trees is to look at their encoding
as “first child/next sibling” binary trees. Formally, given a tree structure M =
〈W, ↓,→, (Pa)a∈A〉, we construct a labelled binary tree t, which is a partial func-
tion {0, 1}∗ → Σ with a prefix-closed domain. We define for this dom(t) = fcns(W )
and t(w) = {a ∈ A | Pa(fcns−1(w))} for all w ∈ dom(t), where

fcns(ε)
def
= ε fcns(w0)

def
= fcns(w)0 fcns(w(i+ 1))

def
= fcns(wi)1 (1.3)

for all w in N∗ and i in N and the corresponding inverse mapping is

fcns−1(ε)
def
= ε fcns−1(w0)

def
= fcns−1(w)0 fcns−1(w1)

def
= fcns−1(w) + 1

(1.4)

for all w in ε ∪ 0{0, 1}∗, under the understanding that (wi) + 1 = w(i + 1) for all
w in N∗ and i ∈ N. Observe that binary trees t produced by this encoding verify
dom(t) ⊆ 0{0, 1}∗.

The tree t can be seen as a binary structure fcns(M) = 〈dom(t), ↓0, ↓1, (Pa)a∈A〉,
defined by

↓0
def
= {(w,w0) | w0 ∈ dom(t)} (1.5)

↓1
def
= {(w,w1) | w1 ∈ dom(t)} (1.6)

Pa
def
= {w ∈ dom(t) | a ∈ t(w)} . (1.7)

The domains of our constructed binary trees are not necessarily predecessor-
closed, which can be annoying. Let # be a fresh symbol not in A; given t a
labelled binary tree, its closure t̄ is the tree with domain

dom(t̄)
def
= {ε, 1} ∪ {0w | w ∈ dom(t)} ∪ {0wi | w ∈ dom(t) ∧ i ∈ {0, 1}} (1.8)

and labels

t̄(w)
def
=

{
t(w′) if w = 0w′ ∧ w′ ∈ dom(t)

{#} otherwise.
(1.9)

Note that in t̄, every node is either a node not labelled by # with exactly two
children, or a #-labelled leaf with no children, or a #-labelled root with two
children, thus t̄ is a full (aka strict) binary tree.

1.1 Monadic Second-Order Logic

See Comon et al. (2007,
Section 8.4).

We consider the weak monadic second-order logic (wMSO), over tree structures
M = 〈W, ↓,→, (Pa)a∈A〉 and two infinite countable sets of first-order variables X1

and second-order variables X2. Its syntax is defined by

ψ ::= x = y | x ∈ X | x ↓ y | x→ y | Pa(x) | ¬ψ | ψ ∨ ψ | ∃x.ψ | ∃X.ψ

where x, y range over X1, X over X2, and a over A. We write FV(ψ) for the set of
variables free in a formula ψ; a formula without free variables is called a sentence.
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First-order variables are interpreted as nodes inW , while second-order variables
are interpreted as finite subsets of W (it would otherwise be the full second-order
logic). Let ν : X1 → W and µ : X2 → Pf (W ) be two corresponding assignments;
then the satisfaction relation is defined by

M |=ν,µ x = y if ν(x) = ν(y)

M |=ν,µ x ∈ X if ν(x) ∈ µ(X)

M |=ν,µ x ↓ y if ν(x) ↓ ν(y)

M |=ν,µ x→ y if ν(x)→ ν(y)

M |=ν,µ Pa(x) if Pa(ν(x))

M |=ν,µ ¬ψ if M 6|=ν,µ ψ

M |=ν,µ ψ ∨ ψ′ if M |=ν,µ ψ or M |=ν,µ ψ
′

M |=ν,µ ∃x.ψ if ∃w ∈W,M |=ν{x←w},µ ψ

M |=ν,µ ∃X.ψ if ∃U ⊆W,U finite ∧M |=ν,µ{X←U} ψ .

As usual, we define conjunctions as ψ ∧ ψ′ def
= ¬(¬ψ ∨ ¬ψ′), implications as ψ ⊃

ψ′
def
= ¬ψ ∨ ψ′, and equivalences as ψ ≡ ψ′ def

= ψ ⊃ ψ′ ∧ ψ′ ⊃ ψ.
Given a wMSO formula ψ, we are interested in two algorithmic problems: the

satisfiability problem, which asks whether there exist M and ν and µ s.t. M |=ν,µ

ψ, and the model-checking problem, which given M asks whether there exist ν
and µ s.t. M |=ν,µ ψ. By modifying the vocabulary to have labels in A ] FV(ψ),
these questions can be rephrased on a wMSO sentence ψ′:

ψ′
def
= ∃FV(ψ).ψ ∧

 ∧
x∈X1∩FV(ψ)

Px(x) ∧ ∀y.x 6= y ⊃ ¬Px(y)


∧

 ∧
X∈X2∩FV(ψ)

∀y.y ∈ X ≡ PX(y)

 .

In practical applications of model-theoretic techniques we restrict ourselves to fi-
nite models for these questions.

Example 1.1. Here are a few useful wMSO formulæ: To allow any label in a finite
set B ⊆ A:

PB(x)
def
=
∨
a∈B

Pa(x)

PB(X)
def
= ∀x.x ∈ X ⊃ PB(x) .

To check whether we are at the root or a leaf or similar constraints:

root(x)
def
= ¬∃y.y ↓ x

leaf(x)
def
= ¬∃y.x ↓ y

internal(x)
def
= ¬leaf(x)

children(x,X)
def
= ∀y.y ∈ X ≡ x ↓ y

x ↓0 y
def
= x ↓ y ∧ ¬∃z.z → y .
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To use the monadic transitive closure of a formula ψ(u, v) with u, v ∈ FV(ψ):
such a formula ψ(u, v) defines a binary relation over the model, and [TCu,v ψ(u, v)]
then defines the transitive reflexive closure of the relation:

x [TCu,v ψ(u, v)] y
def
= ∀X.(x ∈ X ∧ ∀uv.(u ∈ X ∧ ψ(u, v) ⊃ v ∈ X) ⊃ y ∈ X)

(1.10)
For example,

x ↓? y def
= x [TCu,v u ↓ v] y

x→? y
def
= x [TCu,v u→ v] y .

1.1.1 Linguistic Analyses in wMSO

See Rogers (1998) for a complete
analysis using wMSO. Monadic
second-order logic can also be
applied to queries in treebanks
(Kepser, 2004; Maryns and
Kepser, 2009).

Let us illustrate how we can work out a constituent-based analysis using wMSO.
Following the ideas on grammaticality expressed at the beginning of the chapter,
we define large conjunctions of formulæ expressing various linguistic constraints.

Basic Grammatical Labels Let us fix two disjoint finite sets N of grammatical
categories and Θ of part-of-speech tags and distinguish a particular category S ∈
N standing for sentences, and let N ]Θ ⊆ A (we do not assume A to be finite).

Define the formula

labelsN,Θ
def
= ∀x.root(x) ⊃ PS(x) , (1.11)

which forces the root label to be S;

∧ ∀x.internal(x) ⊃
∨

a∈N]Θ

Pa(x) ∧
∧

b∈N]Θ\{a}

¬Pb(x) (1.12)

checks that every internal node has exactly one label from N ]Θ (plus potentially
others from A\(N ]Θ));

∧ ∀x.leaf(x) ⊃ ¬PN]Θ(x) (1.13)

forbids grammatical labels on leaves;

∧ ∀y.leaf(y) ⊃ ∃x.x ↓ y ∧ PΘ(x) (1.14)

expresses that leaves should have POS-labelled parents;

∧ ∀x.∃y0y1y2.x ↓? y0 ∧ y0 ↓ y1 ∧ y1 ↓ y2 ∧ leaf(y2) ⊃ PN (x) (1.15)
verifies that internal nodes at distance at least two from some leaf should have
labels drawn from N , and are thus not POS-labelled by (1.12), and thus cannot
have a leaf as a child by (1.13);

∧ ∀x.PΘ(x) ⊃ ¬∃yz.y 6= z ∧ x ↓ y ∧ x ↓ z (1.16)

discards trees where POS-labelled nodes have more than one child. The purpose
of labelsN,Θ is to restrict the possible models to trees with the particular shape we
use in constituent-based analyses.

Open Lexicon Let us assume that some finite part of the lexicon is known, as
well as possible POS tags for each known word. One way to express this in an
open-ended manner is to define a finite set L ⊆ A disjoint from N and Θ, and a
relation pos ⊆ L×Θ. Then the formula

lexiconL,pos
def
= ∀x.

∨
`∈L

P`(x) ⊃ leaf(x) ∧
∧

`′∈L\{`}

¬P`′(x) ∧ ∀y.y ↓ x ⊃ Ppos(`)(y)


(1.17)
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makes sure that only leaves can be labelled by words, and that when a word is
known (i.e. if it appears in L), it should have one of its allowed POS tag as imme-
diate parent. If the current POS tagging information of our lexicon is incomplete,
then this particular constraint will not be satisfied. For an unknown word however,
any POS tag can be used.

Context-Free Constraints It is of course easy to enforce some local constraints
in trees. For instance, assume we are given a CFG G = 〈N,Θ, P, S〉 describing the
“usual” local constraints between grammatical categories and POS tags. Assume ε
belongs to A; then the formula

grammarG
def
= ∀x.(Pε(x) ⊃ ¬PN]Θ]L(x)) ∧

∨
B∈N

PB(x) ⊃
∨

B→β∈P
∃y.x ↓0 y ∧ ruleβ(y)

(1.18)

forces the tree to comply with the rules of the grammar, where

ruleXβ(x)
def
= PX(x) ∧ ∃y.x→ y ∧ ruleβ(y) (for β 6= ε and X ∈ N ]Θ)

ruleX(x)
def
= PX(x) ∧ ¬∃y.x→ y (for X ∈ N ]Θ)

ruleε(x)
def
= Pε(x) ∧ leaf(x) .

Again, the idea is to provide a rather permissive set of local constraints, and to be
able to spot the cases where these constraints are not satisfied.

Non-Local Dependencies Implementing local constraints as provided by a CFG
is however far from ideal. A much more interesting approach would be to take
advantage of the ability to use long-distance constraints, and to model subcate-
gorisation frames and modifiers.

The following examples also show that some of the typical features used for
training statistical models can be formally expressed using wMSO. This means that
treebank annotations can be computed very efficiently once a tree automaton has
been computed for the wMSO formulæ, in time linear in the size of the treebank.

Head Percolation. The first step is to find which child is the head among its
siblings; several heuristics have been developed to this end, and a simple way to
describe such heuristics is to use a head percolation function h : N → {l, r}×(N]
Θ)∗ that describes for a given parent label A a list of potential labels X1, . . . , Xn

in N ] Θ in order of priority and a direction d ∈ {l, r} standing for “leftmost” or
“rightmost”: such a value means that the leftmost (resp. rightmost) occurrence of
X1 is the head, this unless X1 is not among the children, in which case we should
try X2 and so on, and if Xn also fails simply choose the leftmost (resp. rightmost)
child (see e.g. Collins, 1999, Appendix A). For instance, the function

h(S) = (r,TO IN VP S SBAR · · · )
h(VP) = (l,VBD VBN VBZ VB VBG VP · · · )
h(NP) = (r,NN NNP NNS NNPS JJR CD · · · )
h(PP) = (l, IN TO VBG VBN · · · )

would result in the correct head annotations in Figure 1.1.
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Given such a head percolation function h, we can express the fact that a given
node is a head:

head(x)
def
= leaf(x) ∨

∨
B∈N
∃yY.y ↓ x ∧ children(y, Y ) ∧ PB(y) ∧ headh(B)(x, Y )

(1.19)

headd,Xβ(x, Y )
def
= ¬priorityd,X(x, Y ) ⊃ (headd,β(x, Y ) ∧ ¬PX(Y ))

headl,ε(x, Y )
def
= ∀y.y ∈ Y ⊃ x→? y

headr,ε(x, Y )
def
= ∀y.y ∈ Y ⊃ y →? x

priorityl,X(x, Y )
def
= PX(x) ∧ ∀y.y ∈ Y ∧ y →? x ⊃ ¬PX(y)

priorityr,X(x, Y )
def
= PX(x) ∧ ∀y.y ∈ Y ∧ x→? y ⊃ ¬PX(y) .

where β is a sequence in (N ]Θ)∗ and X a symbol in N ]Θ.

S
[>,hurled ,VBD]

NP
[S,he,PRP]

PRP
[NP,he,PRP]

He

VP
[S,hurled ,VBD]

VP
[VP,hurled ,VBD]

VBD
[VP,hurled ,VBD]

hurled

NP
[VP,ball ,NN]

DT
[NP,the,DT]

the

NN
[NP,ball ,NN]

ball

PP
[VP,into,IN]

IN
[VP,into,IN]

into

NP
[PP,basket ,NN]

DT
[NP,the,DT]

the

NN
[NP,basket ,NN]

basket

Figure 1.1: A derivation tree refined with lexical and parent information.

Lexicalisation. Using head information, we can also recover lexicalisation in-
formation:

lexicalise(x, y)
def
= leaf(y) ∧ x [TCu,v u ↓ v ∧ head(v)] y . (1.20)

This formula recovers the lexical information in Figure 1.1.

Exercise 1.1. Propose (∗)wMSO formulæ to recover the parent and lexical POS
information in constituent trees, as illustrated in Figure 1.1.

Modifiers. Here is a first use of wMSO to extract information about a proposed
constituent tree: try to find which word is modified by another word. For instance,
for an adverb we could write something like

modifyRB(x, y)
def
= ∃x′y′z.z ↓ x ∧ PRB(z) ∧ lexicalise(x′, x) ∧ y′ ↓ x′

∧ ¬lexicalise(y′, x) ∧ lexicalise(y′, y) (1.21)

that finds a maximal head x′ and the lexical projection of its parent y′. This for-
mula finds for instance that really modifies likes in Figure 1.2.
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S

WhNP

WP

who

S

VBZ

does

S

NP

NNP

Bill

VP

VB

think

S

NP

NNP

Bill

VP

RB

really

VP

VBZ

likes

NP

ε

Figure 1.2: Derivation tree for Who does Bill think Bill really likes?

Exercise 1.2. Modify(∗) (1.21) to make sure that any leaf with a parent tagged by
the POS RB modifies either a verb or an adjective.

Exercise 1.3. Consider(∗∗) the ε node in Figure 1.2: modify (1.20) to recover that
who lexicalises the bottommost NP node.

1.1.2 wS2S

See (Doner, 1970; Thatcher and
Wright, 1968; Rabin, 1969;

Meyer, 1975) for classical results
on wS2S, and more recently

(Rogers, 1996, 2003) for
linguistic applications.

The classical logics for trees do not use the vocabulary of tree structures M,
but rather that of binary structures 〈dom(t), ↓0, ↓1, (Pa)a∈A〉. The weak monadic
second-order logic over this vocabulary is called the weak monadic second-order
logic of two successors (wS2S). The semantics of wS2S should be clear.

The interest of considering wS2S at this point is that it is well-known to have a
decidable satisfiability problem, and that for any wS2S sentence ψ one can con-
struct a tree automaton Aψ—with tower(|ψ|) as size—that recognises all the finite
models of ψ. More precisely, when working with finite binary trees and closed
formulæ ψ,See Comon et al. (2007,

Section 3.3)—their construction
is easily extended to handle

labelled trees. Using automata
over infinite trees, these can also

be handled (Rabin, 1969; Weyer,
2002).

L(Aψ) = {t̄ ∈ T (Σ ] {{#}}) | t finite ∧ t |= ψ} . (1.22)

Now, it is easy to translate any wMSO sentence ψ into a wS2S sentence ψ′ s.t.
M |= ψ iff fcns(M) |= ψ′. This formula simply has to interpret the ↓ and →
relations into their binary encodings: let

ψ′
def
= ψ ∧ ∃x.¬(∃z.z ↓0 x ∨ z ↓1 x) ∧ ¬(∃y.x ↓1 y) (1.23)

where the conditions on x ensure it is at the root and does not have any right
child, and where ψ uses the macros

x ↓ y def
= ∃x0.x ↓0 x0 ∧ (x0 [TCu,v u ↓1 v] y) (1.24)

x→ y
def
= x ↓1 y . (1.25)

The conclusion of this construction is

Theorem 1.2. Satisfiability and model-checking for wMSO are decidable.
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Exercise 1.4 (ω Successors). Show (∗)that the weak second-order logic of ω suc-

cessors (wSωS), i.e. with ↓i
def
= {(w,wi) | wi ∈ W} defined for every i ∈ N, has

decidable satisfiability and model-checking problems.

1.2 Propositional Dynamic Logic

An alternative take on model-theoretic syntax is to employ modal logics on tree
structures. Several properties of modal logics make them interesting to this end:
their decision problems are usually considerably simpler, and they allow to express
rather naturally how to hop from one point of interest to another.

Propositional dynamic logic on
ordered trees was first defined by
Kracht (1995). The name of PDL
on trees is due to Afanasiev et al.
(2005); this logic is also known
as Regular XPath in the XML
processing community (Marx,
2005). Various fragments have
been considered through the
years; see for instance Blackburn
et al. (1993, 1996); Palm
(1999); Marx and de Rijke
(2005).

Propositional dynamic logic (Fischer and Ladner, 1979) is a two-sorted modal
logic where the basic relations can be composed using regular operations: on tree
structures M = 〈W, ↓,→, (Pa)a∈A〉, its terms follow the abstract syntax

π ::= ↓ | → | π−1 | π;π | π + π | π∗ | ϕ? (path formulæ)

ϕ ::= a | > | ¬ϕ | ϕ ∨ ϕ | 〈π〉ϕ (node formulæ)

where a ranges over A.
The semantics of a node formula on a tree structure M = 〈W, ↓,→, (Pa)a∈A〉

is a set of tree nodes JϕK = {w ∈ W | M, w |= ϕ}, while the semantics of a path
formula is a binary relation over W :

JaK def
= {w ∈W | Pa(w)} J↓K def

= ↓

J>K def
= W J→K def

= →

J¬ϕK def
= W\JϕK Jπ−1K def

= JπK−1

Jϕ1 ∨ ϕ2K
def
= Jϕ1K ∪ Jϕ2K Jπ1;π2K

def
= Jπ1K # Jπ2K

J〈π〉ϕK def
= JπK−1(JϕK) Jπ1 + π2K

def
= Jπ1K ∪ Jπ2K

Jπ∗K def
= JπK?

Jϕ?K def
= IdJϕK .

Finally, a tree M is a model for a PDL formula ϕ if its root is in JϕK, written
M, root |= ϕ.

We define the classical dual operators

⊥ def
= ¬> ϕ1 ∧ ϕ2

def
= ¬(¬ϕ1 ∨ ¬ϕ2) [π]ϕ

def
= ¬〈π〉¬ϕ . (1.26)

We also define

↑ def
= ↓−1 ← def

= →−1

root
def
= [↑]⊥ leaf

def
= [↓]⊥

first
def
= [←]⊥ last

def
= [→]⊥ .

Exercise 1.5 (Converses). (∗)Prove the following equivalences:

(π1;π2)−1 ≡ π−1
2 ;π−1

1 (1.27)

(π1 + π2)−1 ≡ π−1
1 + π−1

2 (1.28)

(π∗)−1 ≡ (π−1)∗ (1.29)

(ϕ?)−1 ≡ ϕ? . (1.30)
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Exercise 1.6 (Reductions).(∗) Prove the following equivalences:

〈π1;π2〉ϕ ≡ 〈π1〉〈π2〉ϕ (1.31)

〈π1 + π2〉ϕ ≡ (〈π1〉ϕ) ∨ (〈π2〉ϕ) (1.32)

〈π∗〉ϕ ≡ ϕ ∨ 〈π;π∗〉ϕ (1.33)

〈ϕ1?〉ϕ2 ≡ ϕ1 ∧ ϕ2 . (1.34)

1.2.1 Model-Checking

As with MSO, the main
application of PDL on trees is to

query treebanks (see e.g. Lai and
Bird, 2010).

The model-checking problem for PDL is rather easy to decide. Given a model
M = 〈W, ↓,→, (Pp)p∈A〉, we can compute inductively the satisfaction sets and
relations using standard algorithms. This is a P algorithm.

1.2.2 Satisfiability

See also (Blackburn et al., 2001,
Section 6.8) for a reduction from

a tiling problem and (Harel
et al., 2000, Chapter 8) for a

reduction from alternating Turing
machines.

Unlike the model-checking problem, the satisfiability problem for PDL is rather
demanding: it is EXPTIME-complete.

Theorem 1.3 (Fischer and Ladner, 1979). Satisfiability for PDL is EXPTIME-hard.

As with wMSO, it is more convenient to work on binary trees t of the form
〈dom(t), ↓0, ↓1, (Pa)a∈A]{0,1}〉 that encode our tree structures. Compared with the
wMSO case, we add two atomic predicates 0 and 1 that hold on left and right
children respectively. The syntax of PDL over such models simply replaces ↓ and
→ by ↓0 and ↓1; as with wMSO in Section 1.1.2 we can interpret these relations in
PDL by

↓ def
= ↓0; ↓∗1 → def

= ↓1 (1.35)

and translate any PDL formula ϕ into a formula

ϕ′
def
= ϕ ∧ ([↑∗; ↓∗; ↓0]0 ∧ ¬1) ∧ ([↑∗; ↓∗; ↓1]1 ∧ ¬0) ∧ [↑∗; root?; ↓1]⊥ (1.36)

that checks that ϕ holds, that the 0 and 1 labels are correct, and verifies M, w |= ϕ
iff fcns(M), fcns(w) |= ϕ′. The conditions in (1.36) ensure that the tree we are
considering is the image of some tree structure by fcns: we first go back to the
root by the path ↑∗; root?, and then verify that the root does not have a right child.

Normal Form. Let us write

↑0
def
= ↓−1

0 ↑1
def
=↓−1

1 ;

then using the equivalences of Exercise 1.5 we can reason on PDL with a restricted
path syntax

α ::= ↓0 | ↑0 | ↓1 | ↑1 (atomic relations)

π ::= α | π;π | π + π | π∗ | ϕ? (path formulæ)

and using the dualities of (1.26), we can restrict node formulæ to be of form

ϕ ::= a | ¬a | > | ⊥ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈π〉ϕ | [π]ϕ . (node formulæ)

Lemma 1.4. For any PDL formula ϕ, we can construct an equivalent formula ϕ′ in
normal form with |ϕ′| = O(|ϕ|).

Proof sketch. The normal form is obtained by “pushing” negations and converses
as far towards the leaves as possible, and can result in the worst-case in doubling
the size of ϕ due to the extra ¬ and −1 at the leaves.
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Fisher-Ladner Closure

The equivalences found in Exercise 1.6 and their duals allow to simplify PDL for-
mulæ into a reduced normal form we will soon see, which is a form of disjunctive
normal form with atomic propositions and atomic modalities for literals. In order
to obtain algorithmic complexity results, it will be important to be able to bound
the number of possible such literals, which we do now.

The Fisher-Ladner closure of a PDL formula in normal form ϕ is the smallest
set S of formulæ in normal form s.t.

1. ϕ ∈ S,

2. if ϕ1 ∨ ϕ2 ∈ S or ϕ1 ∧ ϕ2 ∈ S then ϕ1 ∈ S and ϕ2 ∈ S,

3. if 〈π〉ϕ′ ∈ S or [π]ϕ′ ∈ S then ϕ′ ∈ S,

4. if 〈π1;π2〉ϕ′ ∈ S then 〈π1〉〈π2〉ϕ′ ∈ S,

5. if [π1;π2]ϕ′ ∈ S then [π1][π2]ϕ′ ∈ S,

6. if 〈π1 + π2〉ϕ′ ∈ S then 〈π1〉ϕ′ ∈ S and 〈π2〉ϕ′ ∈ S,

7. if [π1 + π2]ϕ′ ∈ S then [π1]ϕ′ ∈ S and [π2]ϕ′ ∈ S,

8. if 〈π∗〉ϕ′ ∈ S then 〈π〉〈π∗〉ϕ′ ∈ S,

9. if [π∗]ϕ′ ∈ S then [π][π∗]ϕ′ ∈ S,

10. if 〈ϕ1?〉ϕ2 ∈ S or [ϕ1?]ϕ2 ∈ S then ϕ1 ∈ S.

We write FL(ϕ) for the Fisher-Ladner closure of ϕ.

Lemma 1.5. Let ϕ be a PDL formula in normal form. Its Fisher-Ladner closure is of
size |FL(ϕ)| ≤ |ϕ|.

�

;

;

?

ϕ1

∗

π1

π2

ϕ2

[ϕ1?;π∗1 ;π2]ϕ2

ϕ2

[π2]ϕ2

[π∗1 ][π2]ϕ2

[π1][π∗1 ][π2]ϕ2

[ϕ1?;π∗1 ][π2]ϕ2

[ϕ1?][π∗1 ][π2]ϕ2

ϕ1

1
5

3

3

3

9

3

3

5

3
10

Figure 1.3: The surjection σ from positions in ϕ
def
= [ϕ1?;π∗1;π2]ϕ2 to FL(ϕ)

(dashed), and the rules used to construct FL(ϕ) (dotted).

Proof. We construct a surjection σ between positions p in the term ϕ and the for-
mulæ in S:

• for positions p spanning a node subformula span(p) = ϕ1, we can map to ϕ1

(this corresponds to cases 1—3 and 10 on subformulæ of ϕ′);
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• for positions p spanning a path subformula span(p) = π, we find the closest
ancestor spanning a node subformula (thus of form 〈π′〉ϕ1 or [π′]ϕ1). If π =
π′ we map p to the same 〈π′〉ϕ1 or [π′]ϕ1. Otherwise we consider the parent
position p′ of p, which is mapped to some formula σ(p′), and distinguish
several cases:

– for σ(p′) = 〈π1;π2〉ϕ2 we map p to 〈π1〉〈π2〉ϕ2 if span(p) = π1 and to
〈π2〉ϕ2 if span(p) = π2 (this matches case 4 and the further application
of 3);

– for σ(p′) = [π1;π2]ϕ2 we map p to [π1][π2]ϕ2 if span(p) = π1 and to
[π2]ϕ2 if span(p) = π2 (this matches case 5 and the further application
of 3);

– for σ(p′) = 〈π1 + π2〉ϕ2 and span(p) = πi with i ∈ {1, 2}, we map p to
〈πi〉ϕ2 (this matches case 6);

– for σ(p′) = [π1 + π2]ϕ and span(p) = πi with i ∈ {1, 2}, we map p to
[πi]ϕ2 (this matches case 7);

– for σ(p′) = 〈π∗〉ϕ2, span(p) = π and we map p to 〈π〉〈π∗〉ϕ2 (this
matches case 8);

– for σ(p′) = [π∗]ϕ2, span(p) = π and we map p to [π][π∗]ϕ2 (this matches
case 9).

The function σ we just defined is indeed surjective: we have covered every formula
produced by every rule. Figure 1.3 presents an example term and its mapping.

Reduced Formulæ

Reduced Normal Form. We try now to reduce formulæ into a form where any
modal subformula is under the scope of some atomic modality 〈α〉 or [α]. Given a
formula ϕ in normal form, this is obtained by using the equivalences of Exercise 1.6
and their duals, and by putting the formula into disjunctive normal form, i.e.

ϕ ≡
∨
i

∧
j

χi,j (1.37)

where each χi,j is of form

χ ::= a | ¬a | 〈α〉ϕ′ | [α]ϕ′ . (reduced formulæ)

Observe that all the equivalences we used can be found among the rules of the
Fisher-Ladner closure of ϕ:

Lemma 1.6. Given a PDL formula ϕ in normal form, we can construct an equivalent
formula

∨
i

∧
j χi,j where each χi,j is a reduced formula in FL(ϕ).

Two-Way Alternating Tree Automaton

The presentation follows mostly
Calvanese et al. (2009).

We finally turn to the construction of a tree automaton that recognises the models
of a normal form formula ϕ. To simplify matters, we use a powerful model for this
automaton: a two-way alternating tree automaton (2ATA) over finite ranked
trees.
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Definition 1.7. A two-way alternating tree automaton (2ATA) is a tuple A =
〈Q,Σ, qi, F, δ〉whereQ is a finite set of states, Σ is a ranked alphabet with maximal
rank k, qi ∈ Q is the initial state, and δ is a transition function from pairs of states
and symbols (q, a) in Q×Σ to positive Boolean formulæ f in B+({−1, . . . , k} ×Q),
defined by the abstract syntax

f ::= (d, q) | f ∨ f | f ∧ f | > | ⊥ ,

where d ranges over {−1, . . . , k} and q over Q. For a set J ⊆ {−1, . . . , k} × Q
and a formula f , we say that J satisfies f if assigning > to elements of J and ⊥ to
those in {−1, . . . , k}×Q\J makes f true. A 2ATA is able to send copies of itself to
a parent node (using the direction −1), to the same node (using direction 0), or
to a child (using directions in {1, . . . , k}).

Given a labelled ranked ordered tree t over Σ, a run of A is a tree ρ labelled by
dom(t)×Q satisfying

1. ε is in dom(ρ) with ρ(ε) = (ε, qi),

2. if w is in dom(ρ), ρ(w) = (u, q) and δ(q, t(u)) = f , then there exists J ⊆
{−1, . . . , k} × Q of form J = {(d0, q0), . . . , (dn, qn)} s.t. J |= f and for all
0 ≤ i ≤ n we have

wi ∈ dom(ρ) ρ(wi) = (u′i, qi) u′i =


u(di − 1) if di > 0

u if di = 0

u′ where u = u′j otherwise

with each u′i ∈ dom(t).

A tree is accepted if there exists a run for it.

Theorem 1.8 (Vardi, 1998). Given a 2ATA A = 〈Q,Σ, qi, F, δ〉, deciding the empti-
ness of L(A) can be done in deterministic time |Σ| · 2O(k|Q|3).

Automaton of a Formula Let ϕ be a formula in normal form. We want to con-
struct a 2ATA Aϕ = 〈Q,Σ, qi, δ〉 that recognises exactly the closed models of ϕ,
so that we can test the satisfiability of ϕ by Theorem 1.8. We assume wlog. that
A ⊆ Sub(ϕ). We define

Q
def
= FL(ϕ) ] {qi, qϕ, q#}

Σ
def
= {#(0),#(2)} ∪ {a(2) | a ⊆ A ] {0, 1}} .

The transitions of Aϕ are based on formula reductions. Let ϕ′ be a formula in
FL(ϕ) which is not reduced: then we can find an equivalent formula

∨
i

∧
j χi,j

where each χi,j is reduced. We define accordingly

δ(ϕ′, a)
def
=
∨
i

∧
j

(0, χi,j)
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for all such ϕ′ and all a ⊆ A, thereby staying in place and checking the various
χi,j . For a reduced formula χ in FL(ϕ), we set for all a ⊆ A ] {0, 1}

δ(p, a)
def
=

{
> if p ∈ a
⊥ otherwise

δ(¬p, a)
def
=

{
⊥ if p ∈ a
> otherwise

δ(〈↓0〉ϕ′, a)
def
= (1, ϕ′) δ([↓0]ϕ′, a)

def
= (1, ϕ′) ∨ (1, q#)

δ(〈↓1〉ϕ′, a)
def
= (2, ϕ′) δ([↓1]ϕ′, a)

def
= (2, ϕ′) ∨ (2, q#)

δ(〈↑0〉ϕ′, a)
def
= (−1, ϕ′) ∧ (0, 0) δ([↑0]ϕ′, a)

def
= ((−1, ϕ′) ∧ (0, 0)) ∨ (−1, q#) ∨ (0, 1)

δ(〈↑1〉ϕ′, a)
def
= (−1, ϕ′) ∧ (0, 1) δ([↑1]ϕ′, a)

def
= ((−1, ϕ′) ∧ (0, 1)) ∨ (−1, q#) ∨ (0, 0)

where the subformulæ 0 and 1 are used to check that the node we are coming from
was a left or a right son and q# checks that the node label is #:

δ(q#,#)
def
= > δ(q#, a)

def
= ⊥ .

The initial state qi checks that the root is labelled # and has ϕ for left son and
another # for right son:

δ(qi,#)
def
= (1, qϕ) ∧ (2, q#) δ(qi, a)

def
= ⊥

δ(qϕ, a)
def
= δ(ϕ, a) ∧ (2, q#) .

For any state q beside qi and q#

δ(q,#)
def
= ⊥ .

Corollary 1.9. Satisfiability of PDL can be decided in EXPTIME.

Proof sketch. Given a PDL formula ϕ, by Lemma 1.4 construct an equivalent for-
mula in normal form ϕ′ with |ϕ′| = O(|ϕ|). We then construct Aϕ′ with O(|ϕ|)
states by Lemma 1.5 and an alphabet of size at most 2O(|ϕ|), s.t. t̄ is accepted by
Aϕ′ iff t, root |= ϕ. By Theorem 1.8 we can decide the existence of such a tree
t̄ in time 2O(|ϕ|3). The proof carries to satisfiability on tree structures rather than
binary trees.

1.2.3 Expressiveness

Monadic Transitive Closure PDL can be expressed in FO[TC1]See ten Cate and Segoufin
(2010).

the first-order
logic with monadic transitive closure. The translation can be expressed by in-
duction, yielding formulæ STx(ϕ) with one free variable x for node formulæ and
STx,y(π) with two free variables for path formulæ, such that M |=x 7→w STx(ϕ) iff
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w ∈ JϕKM and M |=x 7→u,y 7→v STx,y(π) iff u JπKM v:

STx(a)
def
= Pa(x)

STx(>)
def
= (x = x)

STx(¬ϕ)
def
= ¬STx(ϕ)

STx(ϕ1 ∨ ϕ2)
def
= STx(ϕ1) ∨ STx(ϕ2)

STx(〈π〉ϕ)
def
= ∃y.STx,y(π) ∧ STy(ϕ)

STx,y(↓)
def
= x ↓ y

STx,y(→)
def
= x→ y

STx,y(π
−1)

def
= STy,x(π)

STx,y(π1;π2)
def
= ∃z.STx,z(π1) ∧ STz,y(π2)

STx,y(π1 + π2)
def
= STx,y(π1) ∨ STx,y(π2)

STx,y(π
∗)

def
= [TCu,v STu,v(π)](x, y)

STx,y(ϕ?)
def
= (x = y) ∧ STx(ϕ) .

It is known that wMSO is strictly more expressive than FO[TC1] (ten Cate and
Segoufin, 2010, Theorem 2). Ten Cate and Segoufin also provide an extension of
PDL with a “within” modality that extracts the subtree at the current node; they
show that this extension is exactly as expressive as FO[TC1]. It is open whether
FO[TC1] is strictly more expressive than PDL without this extension.

Exercise 1.7 (Within modality). Let M = 〈W, ↓,→, (Pa)a∈A〉 be a tree structure
and p be a point in M. We define the substructure at p, noted M � p, as the

substructure induced by W � p
def
= {w ∈ W | p ↓? w}. The semantics of a PDLW

formula Wϕ is defined by M, w |= Wϕ iff M � w,w |= ϕ.
Propose (∗∗)a translation of PDLW formulæ into FO[TC1].

Conditional PDL A particular fragment of PDL called conditional PDL (cPDL)
is equivalent to FO[↓?,→?]: See Marx (2005).

π ::= α | α∗ | π;π | π + π | (α;ϕ?)∗ | ϕ? (conditional paths)

The translation to FO[↓?,→?] is as above, with

STx,y(↓)
def
= x ↓? y ∧ x 6= y ∧ ∀z.x ↓? z ∧ x 6= z ⊃ y ↓? z

STx,y(↓∗)
def
= x ↓? y

STx,y((α;ϕ?)∗)
def
= ∀z.(STx,z(α

∗) ∧ STz,y(α
∗)) ⊃ STz(ϕ) .

An example of a PDL formula that is not first-order definable, and thus not
definable in cPDL, is [(↓; ↓)∗]a, which ensures that all the nodes situated at an even
distance from the root are labelled by a.

Exercise 1.8. Express (∗)the formulæ (1.12)–(1.21) in cPDL.
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1.3 Parsing as Intersection

TheSee Boral and Schmitz (2013) for
the complexity of PDL parsing
when the shape and labels of

trees is constrained by a CFG.

parsing as intersection framework readily applies to model-theoretic syntax.
Indeed, in both the wMSO and the PDL cases, given a formula ϕ, we can effectively
construct a non-deterministic tree automatonAϕ that recognises the exactly closed
trees that satisfy ϕ. Given a sentence w to parse, it remains to intersect this tree
language L(Aϕ) with the set of closed binary trees with w as yield to recover the
set of parses of w:

Exercise 1.9. Fix(∗) a finite word w and a finite alphabet Γ of internal nodes. Define
a non-deterministic tree automaton that recognises the set of closed binary trees
with w as yield—the yield should here be understood with the ‘#’ symbols ignored.



Chapter 2

First-Order Semantics

See Chapter 17 of Jurafsky and
Martin (2009) for more examples
of meaning representations.

In this chapter and the next two chapters, we survey a few aspects of compu-
tational semantics. Many formalisms can be used to define meaning represen-
tations of linguistic expressions. Here we focus on first-order representations,
along with a few related ones.

2.1 Formal Semantics

Concrete applications of computational semantics include for instance weeding
out syntactic representations that map to unsatisfiable sentences, checking whether
some form of entailment holds between two sentences (for instance for sum-
marisation tasks), or querying databases with natural language interfaces (think
airline reservation or weather forecasts), etc. The algorithmic aspects of these ap-
plications turn around the usual decision problems in model-theoretic aspects of
logic: satisfiability, model-checking (i.e. satisfiability in presence of a database),
and querying (an existing database).

Here by “database” we simply mean a (not necessarily finite) relational structure
M = 〈W, (Ri)i〉 where W is a domain of the various possible entities, and (R

(ki)
i )i

is a vocabulary, where each R
(ki)
i is interpreted as a ki-ary relation Ri over W ,

ki > 0. We also allow for constants and denote them using nullary symbols like
R(0); they are interpreted as single points in W . The first-order language thus
allows to reason about truths regarding entities and their relations.

Example 2.1. For instance, assume our vocabulary includes John(0) as a constant
denoting John, along with apple(1), red (1), and eat (2), we can associate the sen-
tence

∃x.apple(1)(x) ∧ red (1)(x) ∧ eat (2)(John(0), x) (2.1)

to the sentence John eats a red apple. Our interpretation might be s.t.

a, j ∈W a ∈ red a ∈ apple

j = John (j, a) ∈ eat ,

in which case the sentence is satisfiable using the assignment {x 7→ a}.
An interesting consequence of this analysis is that paraphrases are typically as-

sociated with the same semantics: (2.1) could for instance be the formalisation
of

John eats a red apple.
A red apple is eaten by John.
An apple that John eats is red.

21
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2.1.1 Event Semantics

The kind of modelling that underlies Example 2.1 is a rather straightforward one:
named entities (e.g. John, or the President) are interpreted as constants, properties
(e.g. red, apple) as unary relations, and verbs as relations with an arity equal to
the number of arguments present in their subcategorisation frames.

This however leads to some issues when determining the number of arguments
for a particular instance of a verb, and drawing the appropriate inferences from
our representations. Consider for instance the sentences

John eats.
John eats a red apple.
John eats an apple in a park.
John eats in a park.
John slowly eats a red apple in a park.

Using the approach of Example 2.1, we need to introduce several relations eat (i)

largely beyond the simple choice between the intransitive eat
(1)
1 and transitive

eat
(2)
2 forms of eat:

eat
(1)
1 (John(0)) (2.2)

∃x.eat
(2)
2 (John(0), x) ∧ red (1)(x) ∧ apple(1)(x) (2.3)

∃xy.eat
(3)
3 (John(0), x, y) ∧ apple(1)(x) ∧ park (1)(y) (2.4)

∃y.eat
(2)
4 (John(0), y) ∧ park (1)(y) (2.5)

∃xy.eat
(4)
5 (John(0), x, y, slowly(0)) ∧ red (1)(x) ∧ apple(1)(x) ∧ park (1)(y) (2.6)

where basically any extra modifier also necessitates a new variant of eat.
How can we relate all the variations of eat so that e.g. (2.6) entails each of

(2.2–2.5)? One possibility is to add explicit meaning postulates like

∀jxy.eat
(3)
3 (j, x, y) ⊃ eat

(2)
2 (j, x) (2.7)

∀jx.eat
(2)
2 (j, x, y) ⊃ eat

(1)
1 (j) (2.8)

. . . (2.9)

Similarly, we could treat slowly and the locative in as modal operators and rewrite
(2.6) as

∃xy.in(2)(slowly(1)(eat
(2)
2 (John(0), x)), y) ∧ red (1)(x) ∧ apple(1)(x) ∧ park (1)(y)

(2.10)

along with the schemata

∀Py.in(2)(P, y) ⊃ P (2.11)

∀P.slowly(1)(P ) ⊃ P (2.12)

where P ranges over formulæ. Of course there is no particular reason not to
choose

∃xy.slowly(1)(location(2)(eat
(2)
2 (John(0), x), y)) ∧ red (1)(x) ∧ apple(1)(x) ∧ park (1)(y)

(2.13)
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instead, and proving the equivalence of (2.10) and (2.13) would require yet more
machinery. (We will however return to modal operators later in Section 2.3.)

As we can see, this solution scales rather poorly. Another possibility is to pick
a very general version of eat, like eat5, and express the simpler versions with
existentially quantified arguments:

eat
(1)
1 (j)

def
= ∃xya.eat

(4)
5 (j, x, y, a) (2.14)

eat
(2)
2 (j, x)

def
= ∃ya.eat

(4)
5 (j, x, y, a) (2.15)

eat
(3)
3 (j, x, y)

def
= ∃a.eat

(4)
5 (j, x, y, a) (2.16)

eat
(2)
4 (j, y)

def
= ∃ya.eat

(4)
5 (j, x, y, a) . (2.17)

However, while it seems reasonable that the event denoted by John eats has an
implicit object and location, there is no particular reason for it to be performed
slowly or quickly, and it could also occur at noon or at dawn, necessitating yet
another argument slot.

A solution is to use a two-sorted domain that differentiates between events and
entities, and to add an explicit event argument to verbs:

∃e.eat
(2)
1 (e, John(0)) (2.18)

∃ex.eat
(3)
2 (e, John(0), x) ∧ red (1)(x) ∧ apple(1)(x) (2.19)

∃exy.eat
(3)
2 (e, John(0), x) ∧ apple(1)(x) ∧ park (1)(y) ∧ location(2)(e, y) (2.20)

∃ey.eat
(2)
1 (e, John(0)) ∧ park (1)(y) ∧ location(2)(e, y) (2.21)

∃exy.eat
(3)
2 (e, John(0), x) ∧ red (1)(x) ∧ apple(1)(x) ∧ park (1)(y) ∧ location(2)(e, y)

∧ slowly(1)(e) (2.22)

See Davidson (1967).This Davidsonian analysis succeeds in reducing the variations to the two main
forms of eat. It also yields a rather more natural way of handling time and aspects
modifiers like slowly. Note that the distinction between intransitive and transitive
forms of verbs are better motivated than the ones between say (2.2) and (2.5):
contrast for instance

I sank the Bismark.
I sank.

where the transitive usage does not imply the intransitive one.

2.1.2 Thematic Roles

This is known as a
neo-Davidsonian analysis
(Parsons, 1990).

The Davidsonian analysis can be further refined by employing thematic roles:

instead of seeing the intransitive form eat
(2)
1 and the transitive one eat

(3)
2 as two

wholly different relations, we can further refine them using a fixed set of thematic
relations between events and entities:

∃e.eat (1)(e) ∧ agent (2)(e, John(0)) (2.23)

∃ex.eat (1)(e) ∧ agent (2)(e, John(0)) ∧ patient (2)(e, x) ∧ apple(1)(x) (2.24)

correspond to the two sentences John eats and John eats an apple respectively. The
earlier issue with sank is avoided by changing the nature of the relation between
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Role Typical use
agent John eats
patient John eats an apple.
experiencer John regrets his actions.

The crisis worries John.
cause The crisis worries John.

John regrets his behaviour.
theme John asks a question.

John gives Mary a kiss.
beneficiary John gives Mary a kiss.

Table 2.1: A basic set of thematic roles.

the subject and the verb:

∃e.sink (1)(e) ∧ agent (2)(e, I (0)) ∧ patient (2)(e,Bismark (0)) (2.25)

∃e.sink (1)(e) ∧ patient (2)(e, I (0)) (2.26)

The definition of a fixed set of thematic roles and how to classify the different
uses are of course problematic; Table 2.1 proposes a very simple account.

For the sake of simplicity, we will not explicitly use event semantics and thematic
roles in the remainder of the notes; the reader might convince herself that it is
always possible.

2.2 A Dip into Description Logics

Section based on (Baader et al.,
2007).

Let us make a short detour through a family of logics primarily developed for
knowledge representation. Basic description logics, similarly to the modal logics
we will see in Section 2.3, can be translated into first-order logic, so their use does
not yield any additional expressive power. Their interest is rather that they force
us into well-behaved fragments of FO, where we are able to draw inferences and
reason automatically.

2.2.1 A Basic Description Logic

See Schmidt-Schauß and Smolka
(1991).

We will confine our interest to one of the most basic logics: ALC the “attributive
concept language with complements.” We describe the models of ALC as struc-
tures M = 〈W,A,R〉 where W is a domain, A is a finite set of atomic concepts
a ⊆W , and R is a finite set of roles r ⊆W 2.

An ALC concept definition C is defined by the syntax

C ::= > | a | C u C | ¬C | ∃r.C

where a ranges over A and r over R. This syntax can be enriched by ⊥ def
= ¬>,

C tD def
= ¬(¬C u ¬D), and ∀rj .C

def
= ¬∃rj .¬C. A concept defines a subset JCKM

of a model M:

J>KM def
= W JaKM def

= a

JC uDKM def
= JCKM ∩ JDKM J¬CKM def

= W \ JCKM

J∃r.CKM def
= r−1(JCKM) .
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The basic questions one might ask on concepts are consistency ones, i.e. whether
there exists a model M such that JCKM is non-empty. An especially useful case is
that of an inclusion C v D, i.e. the inconsistency of C u ¬D.

Examples Consider the sentence Every man loves a woman. Its most common
semantic reading can be formalised in first-order logic as

∀y.man(1)(y) ⊃ ∃x.woman(1)(x) ∧ love(2)(y, x) (2.27)

It can also be formalised as a consistency question in ALC:
Man v ∃love.Woman (2.28)

where the binary relation love(2) is translated as a role, and the unary predicates
man(1) and woman(1) as atomic concepts. The sentence A man eats an apple is
captured by the consistency of

Man u ∃eat.Apple (2.29)

Extensions There are many extensions of ALC in the literature. For instance,
description logics often allow for names in the form of nominals i, which are
atomic concepts interpreted as singleton sets in the model. The syntax of concept
definitions is then extended to allow {i}.

For instance, the sentence John eats a red apple can be checked by

{John} v ∃eat.(Apple u Red) (2.30)

and the sentence Helen of Troy is loved by every man in Greece by

(Man u ∃inhabit.{Greece}) v ∃love.{Helen of Troy} (2.31)

2.2.2 Translation into First-Order Logic

As hinted by the first-order and ALC formalisations in (2.27)–(2.28), there is a
translation of ALC into first-order logic. Every nominal i is associated with a
constant symbol i(0), every atomic concept a with a unary predicate a(1), and every
role r with a binary relation r(2). Then, a concept definition C is translated into a
first-order formula STx(C) with a single free variable x:

STx(>)
def
= x = x STx(a)

def
= a(1)(x)

STx({i}) def
= x = i(0) STx(¬C)

def
= ¬STx(C)

STx(C uD)
def
= STx(C) ∧ STx(D) STx(∃r.C)

def
= ∃y.r(2)(x, y) ∧ STy(C)

This satisfies JCKM = {w ∈ W | M |=x 7→w STx(C)}. Consistency questions are
then translated into first-order sentences:

ST(C)
def
= ∃x.STx(C) ST(C v D)

def
= ∀x.STx(C) ⊃ STx(D)

These definitions result for instance in the following first-order semantics for (2.31):

∀y.(man(1)(y) ∧ inhabit (2)(y,Greece(0))) ⊃ love(2)(y,Helen of Troy(0)) (2.32)

Two important remarks can be made regarding this translation:

1. it only requires two distinct variables, and

2. every first-order quantifier is guarded by a binary relation symbol (corre-
sponding to the ALC role).

Each of these conditions is enough to yield decidability of ALC; see Section 2.4.
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2.3 Modal Semantics

Modalities are a means of qualifying truth judgements. Modal operators capture
the linguistic concepts of tense, mood, and aspect, and more generally modifiers:
in

John is happy.

we can insert instead of the blank any of necessarily, possibly, known by me to be,
now, then, . . . Modal logic offer a unified framework to study such modifiers.

2.3.1 Background: Modal Logic

See (Blackburn et al., 2001). A frame is a couple F = 〈W,R〉 where W is a non-empty set of worlds and R a
binary relation over W . A model is a couple M = 〈F, V 〉 = 〈W,R, V 〉 where F is a
frame and V is a valuation from a set of atomic propositions A to subsets of W .

Basic Modal Language Given a set A of atomic propositions, a (basic) modal
formula ϕ is defined by the syntax

ϕ ::= p | > | ¬ϕ | ϕ ∨ ϕ | ♦ϕ

where p ranges over A. The � modality is defined as the dual of ♦:

�ϕ
def
= ¬♦¬ϕ .

A formula satisfies a model M in a world w of W , written M, w |= ϕ, in the
following inductive cases:

M, w |= > always

M, w |= p iff w ∈ V (p)

M, w |= ¬ϕ iff M, w 6|= ϕ

M, w |= ϕ ∨ ϕ′ iff M, w |= ϕ or M, w |= ϕ′

M, w |= ♦ϕ iff ∃w′, w R w′ and M,w′ |= ϕ .

Logics The diamond ♦ and box � modalities can take many different interpreta-
tions. For instance,

• in alethic logic, we reason about possible truths: ♦ϕ denotes that “possibly
ϕ” and �ϕ “necessarily ϕ”. If we follow Leibniz and imagine multiple “possi-
ble worlds” in an universe W , something “possible” is one holding in at least
one possible world, and something “necessary” holds in all possible worlds.
In order to obtain such semantics, we should work on total frames where
w R w′ for all w,w′ in W .

• In epistemic logic, we reason about knowledge of agents (mind the differ-
ence with beliefs): instead of writing �ϕ to denote the fact that “the agent
knows ϕ”, we write Kϕ. Epistemic logic is typically interpreted over transi-
tive, symmetric, and reflexive frames, i.e. whereR is an equivalence relation.
If the knowledge of several agents is to be modelled, we can introduce mul-
tiple relations Ra and modalities Ka, one for each agent a.
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• In branching frames, the ♦
modality becomes similar to the
EF modality of CTL (thus � is
similar to AG). A similar
distinction between linear past
and branching past can be made
(Kupfermana et al., 2012).

In the basic temporal logic, ♦ϕ denotes that “at some future point, ϕ holds”,
written Fϕ. Its dualGϕmeans that in all future points, ϕ holds. Its converse
P allows to reason about the past, and is defined by M, w |= Pϕ iff there
exists w′ R w s.t. M, w′ |= ϕ, with dual H. One expects R to be a transitive,
irreflexive relation. An important distinction arises between linear time and
branching time frames: in the first case, there is a unique possible future,
while in the second case there exist multiple different futures.

Exercise 2.1 (Basic Axiom). (∗)Show that K : �(ϕ ⊃ ψ) ⊃ (�ϕ ⊃ �ψ) is valid, i.e.
for any model M and any world w of W , M, w |= K.

Exercise 2.2 (Transitive Frames). (∗)Show that, if R is transitive, then 4 : ♦♦ϕ ⊃ ♦ϕ
is valid.

Exercise 2.3 (Epistemic Frames). (∗)Prove the following implications for all modal
formulæ ϕ when R is an equivalence relation:

T : �ϕ ⊃ ϕ—in epistemic logic, if indeed an agent really knows something,
then it must be true—,

4 : �ϕ ⊃ ��ϕ—in epistemic logic again, an agent has introspection about its
own knowledge—,

B : ϕ ⊃ �♦ϕ—in epistemic logic again, a truth is known by the agent as
possibility compatible with her knowledge.

Modal Languages As seen with our examples, the basic modal language can
be extended to multiple modalities and underlying relations; in particular PDL
defined in Section 1.2 is a modal language with an unbounded number of binary
relations. A modal similarity type O is a ranked alphabet of modal operators 4
of arity r(4). A modal formula is then defined as

ϕ ::= p | > | ¬ϕ | ϕ ∨ ϕ | 4(ϕ1, . . . , ϕr(4))

where p ranges over A and 4 over O. Its semantics are defined over O-frames
F = 〈W, (R4)4∈O〉 where each R4 relation is of arity r(4) + 1, by

M, w |= 4(ϕ1, . . . , ϕr(4)) iff ∃w1, . . . , wr(4) ∈W.(w,w1, . . . , wr(4)) ∈ R4
and ∀1 ≤ i ≤ r(4).M, wi |= ϕi .

Exercise 2.4 (ALC as a Modal Language). Provide (∗)a consistency-preserving trans-
lation from ALC concepts into modal formulæ.

Standard Translation Modal languages have a standard translation into first-
order logic over the vocabulary 〈(R4)4∈O, (Pp)p∈A〉 where Pp = V (p):

STx(p)
def
= Pp(x)

STx(>)
def
= (x = x)

STx(¬ϕ)
def
= ¬STx(ϕ)

STx(ϕ ∨ ϕ′) def
= STx(ϕ) ∨ STx(ϕ′)

STx(4(ϕ1, . . . , ϕr(4)))
def
= ∃x1 . . . xr(4).R4(x, x1, . . . , xr(4)) ∧

r(4)∧
i=1

STxi(ϕi)
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is a FO formula with a free variable x equivalent to ϕ: M, w |= ϕ iff M |=x 7→w
STx(ϕ). By reusing variables in the standard translation, we can use only (n + 1)
first-order variables if max4∈O(r(4)) = n.

Bisimulations and Modal InvarianceSee Blackburn et al. (2001,
Chapter 2).

Definition 2.2 (Bisimulations). Let O be a modal similarity type and let M =
〈W, (R4)4∈O, V 〉 and M′ = 〈W, (R′4)4∈O, V

′〉 be two O-models. A non-empty
relation Z ⊆ W × W ′ is a bisimulation between M and M′ if for all w,w′ s.t.
w Z w′,

1. {p ∈ A | w ∈ V (p)} = {p′ ∈ A | w′ ∈ V ′(p′)},

2. if (w,w1, . . . , wr(4)) ∈ R4, then there are w′1, . . . , w
′
r(4) in W ′ s.t. wiZ w′i for

all 1 ≤ i ≤ r(4) and (w′, w′1, . . . , w
′
r(4)) ∈ R

′
4, and

3. if (w′, w′1, . . . , w
′
r(4)) ∈ R

′
4, then there are w1, . . . , wr(4) in W s.t. wiZ w′i for

all 1 ≤ i ≤ r(4) and (w,w1, . . . , wr(4)) ∈ R4.

We say that w and w′ are bisimilar, noted w ↔ w′, if there exists a bisimulation Z
s.t. w Z w′.

Proposition 2.3 (Invariance for Bisimulation). Let O be a modal similarity type,
and M and M′ be O-models. Then, for every w in W and w′ in W ′ with w ↔ w′,
and every modal formula ϕ, M, w |= ϕ iff M, w′ |= ϕ.

Proof. The proof proceeds by induction on ϕ. The case where ϕ is an atomic
proposition is a consequence of (1) in Definition 2.2, the case where ϕ is > is
trivial, and the cases of Boolean connectives follow from the induction hypothesis.
For a formula of form 4(ϕ1, . . . , ϕr(4)):

M, w |= 4(ϕ1, . . . , ϕr(4))

implies ∃w1, . . . , wr(4) ∈W.(w,w1, . . . , wr(4)) ∈ R4 ∧ ∀1 ≤ i ≤ r(4).M, wi |= ϕi

implies ∃w′1, . . . , w′r(4) ∈W
′.(w′, w′1, . . . , w

′
r(4)) ∈ R4 ∧ ∀1 ≤ i ≤ r(4).M′, w′i |= ϕi

(by ind. hyp. and (2))

implies M′, w′ |= 4(ϕ1, . . . , ϕr(4)) ,

and the converse implication holds symmetrically thanks to (3) and the induction
hypothesis.

It is worth mentioning that the converse does not hold in general: there exist
models which are undistinguishable by modal formulæ but not bisimilar. In the
case of models with finite image however, where for every R4 and w

{(w1, . . . , wr(4)) | (w,w1, . . . , wr(4)) ∈ R4}

is finite, the converse holds: let us define the modal equivalence relation w! w′

as holding iff w and w′ are indistinguishable, i.e.

{ϕ |M, w |= ϕ} = {ϕ′ |M′, w′ |= ϕ′} .

Theorem 2.4 (Hennessy-Milner Theorem). Let O be a modal similarity type, and
M and M′ be O-models with finite image. If w! w′, then w ↔ w′.
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Proof. Let us prove that modal equivalence is a bisimulation relation. Condi-
tion (1) holds since a difference in labelling would be witnessed by propositional
formulæ. For condition (2), assume w ! w′ and (w,w1, . . . , wr(4)) ∈ R4,
and assume that there do not exist w′1, . . . , w

′
r(4) satisfying (2). The image set

S′ = {(w′1, . . . , w′r(4)) | (w′, w′1, . . . , w
′
r(4)) ∈ R

′
4} is finite, and non empty since

otherwise M, w |= 4(>, . . . ,>) but M′, w′ 6|= 4(>, . . . ,>). Thus S′ is a finite
set {(w′1,1, . . . , w′1,r(4)), . . . , (w

′
n,1, . . . , w

′
n,r(4))} where, by assumption, for every

1 ≤ j ≤ n, there exists 1 ≤ i ≤ r(4) s.t. wi 6! w′j,i, i.e. there exists a formula ϕj,i
s.t. M, wi |= ϕj,i but M′, w′j,i 6|= ϕj,i. But then

M, w |= 4

 ∧
1≤j≤n

ϕj,1, . . . ,
∧

1≤j≤n
ϕj,r(4)


M′, w′ 6|= 4

 ∧
1≤j≤n

ϕj,1, . . . ,
∧

1≤j≤n
ϕj,r(4)

 ,

in contradiction with w! w′. The argument for condition (3) is symmetric.

The van Benthem Characterisation Theorem We saw earlier that any modal
formula has a standard translation into first-order. A converse statement holds for
a semantically restricted class of first-order formulæ.

Let us say that a first-order formula ψ(x) in FO((R4)4∈O, (Pp)p∈A) with one
free variable x is invariant for bisimulation if for all models M and M′, all states
w in M and w′ in M′ in bisimulation, we have M |=x 7→w ψ(x) iff M |=x 7→w′ ψ(x).

Theorem 2.5 (van Benthem Characterisation Theorem). See Otto (2004).Let ψ(x) be a first-order
formula in FO((R4)4∈O, (Pp)p∈A) with one free variable x. Then ψ(x) is invariant
for bisimulation iff it is equivalent to the standard translation of a modal formula.

Decision Problems See Blackburn et al. (2001,
Chapter 6).

Many classes of frames yield modal logics with decidable sat-
isfiability and model-checking problems, even when the corresponding first-order
theory is undecidable, or suffers from much larger decision complexities. Many
logics have NP-complete satisfaction problems, while the basic modal language is
PSPACE-complete. Model-checking of finite models is usually P-complete.

2.3.2 First-Order Modal Logic

In order to work with both modal operators and first-order semantics as in Sec-
tion 2.1, we introduce a mixed logic, first-order modal logic (FOML). For simplic-
ity we give the definitions for the basic modal operator and not the fully general
modal logic. The syntax of the logic over a vocabulary 〈(Ri)i〉 of ki-ary symbols is

ϕ ::= x = y | Ri(x1, . . . , xki) | ¬ϕ | ϕ ∧ ϕ | ♦ϕ | ∃x.ϕ

with x, x1, . . . , xki , y ranging over an infinite countable set of variables X .
We consider structures M = 〈W,R,D, I〉 where 〈W,R〉 is a frame, D is a domain

function from W to non-empty sets, and I is an interpretation function mapping
each Ri with arity ki > 0 and world w from W into a ki-ary relation I(Ri)(w)
over D(w) (constants are handled similarly). The domain of the model is D =⋃
w∈W D(w). A valuation is a partial mapping from variables in X to the domain
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D. The satisfaction of a formula by a model M at a world w for a valuation ν is
defined inductively by

M, w |=ν x = y iff ν(x) = ν(y)

M, w |=ν Ri(x1, . . . , xki) iff (ν(x1), . . . , ν(xn)) ∈ I(Ri)(w)

M, w |=ν ¬ϕ iff M, w 6|=ν ϕ

M, w |=ν ϕ ∧ ϕ′ iff M, w |=ν ϕ and M, w |=ν ϕ
′

M, w |=ν ♦ϕ iff ∃w′ ∈W.w R w′ and M, w′ |=ν ϕ

M, w |=ν ∃x.ϕ iff ∃e ∈ D(w).M, w |=ν[x←e] ϕ .

See also the entry on actualism in
the Stanford Encyclopedia of

Philosophy.

The domain D(w) denotes the set of objects in the world w; this set is allowed
to vary from world to world, i.e. the semantics allows a varying domain. Because
we restrict the domain of quantified variables to the current domain, we take an
actualist quantification. A constant domain semantics instead considersD(w) =
D for all w in W ; the resulting semantics is also called possibilist quantification.

Unlike the domain, valuations are rigid in this semantics: the value of a variable
does not depend on the current world. In the case of varying domains, it can
potentially refer to an object from another world but not existing in the current
one (but cannot do much with it). In the following we will use constant domains.

Example 2.6 (First-order temporal logic). Let us consider some very simple ex-
amples in the temporal extension of first-order logic: we can model the meaning
of the following sentence

John will eat an apple.

as

∃a.apple(1)(a) ∧ F (eat
(2)
2 (John(0), a)) . (2.33)

Observe however that, in an actualist view, this reading implies the existence of
the apple John will eventually eat in the current instant; the formula might not be
satisfied by the model if no appropriate object a on which apple(a) holds can be
found. Another reading would be

F (∃a.apple(1)(a) ∧ eat
(2)
2 (John(0), a)) . (2.34)

2.4 Decidability

See Börger et al. (1997). In moderns terms, the Entscheidungsproblem or classical decision problem of
Hilbert asks, given a first-order formula ψ, whether it is satisfiable. Church and
Turing famously proved in the 1930s that the problem is undecidable, and a long
line of research has established the decidability status of many fragments of first-
order logic. Notably, the decidability status is known for all the prefix classes for
formulæ in prenex normal form.

For instance, the semantic reading

∃x.woman(1)(x) ∧ ∀y.man(1)(y) ⊃ love(2)(y, x) (2.35)

for Every man loves a woman—to be contrasted with (2.27)—belongs to the ∃∗∀∗
class shown decidable by Bernays and Schönfinkel and NEXPTIME-complete by
Lewis (1980). It also belongs to the two-variable fragment FO2, which was shown
decidable by Mortimer and NEXPTIME-complete by Grädel, Kolaitis, and Vardi
(1997). The standard translations of ALC and of basic modal logic also yield FO2

formulæ, and they are therefore decidable (they are actually PSPACE-complete).

http://plato.stanford.edu/entries/actualism/
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2.4.1 The Guarded Fragment

The section follows Grädel
(2002). The guarded fragment
has been advanced by Andréka,
van Benthem, and Németi (1998)
as an explanation for the good
model- and complexity-theoretic
properties of modal logics.

We are going to look more closely at one of the decidable fragments of first-order
logic, called the k-variable guarded fragment (GFOk). The satisfiability problem
in GFOk is EXPTIME-complete (Grädel and Walukiewicz, 1999); in fact this com-
plexity also holds for the fixed-point extension of GFOk.

Let X def
= {x1, . . . , xk} be the set of variables. A guarded formula over a vocabu-

lary (R
(ki)
i )i is defined syntactically by

ψ ::= x = y | R(ki)
i (z) | ¬ψ | ψ ∧ ψ | ∃y.α(x,y).ψ(y)

where x, y are variables in X , R(ki)
i is a relation symbol of arity ki, z is a ki-tuple of

variables in X , and x,y denote tuples of variables in X , α(x,y) a positive atomic
formula, and ψ(x,y) a GFOk formula with FV(ψ) ⊆ FV(α) = x ∪ y. Guarded
universal quantification ∀y.α(x,y) ⊃ ψ(x,y) is defined by duality.

For example, the formula (2.27) is in GFO2: man(1)(y) guards the universal
quantification and love(2)(y, x) guards the existential quantification. By contrast,
(2.35) is not in GFO2: the universal quantification ∀y.man(1)(y) ⊃ love(2)(y, x) is
not guarded. Observe more generally that the standard translations of ALC or
basic modal formulæ are in GFO2.

Guarded Bisimulations

Let M = 〈W, (Ri)i〉 be a relational structure. A set X = {w1, . . . , wn} ⊆ W is
guarded in M if there exists a positive atomic formula α(x1, . . . , xn) such that
M |=x1 7→w1,...,xn 7→wn α(x1, . . . , xn). In particular, every singleton {w} is guarded
by x = x and every hyperedge 〈w1, . . . , wki〉 in the relation Ri is guarded by
R

(ki)
i (x1, . . . , xki).
A guarded-k-bisimulation between two structures M and M′ is a non-empty

set I of partial isomorphisms f :X → X ′ from M to M′, where X ⊆ W and
X ′ ⊆W ′ are guarded sets of cardinal at most k, such that the following condition
is satisfied: for every f :X → X ′ in I,

1. for every guarded set Y ⊆ W in M of size at most k, there exists g:Y → Y ′

in I such that f and g agree on X ∩ Y , and

2. for every guarded set Y ′ ⊆W ′ in M′ of size at most k, there exists g:Y → Y ′

in I such that f−1 and g−1 agree on X ′ ∩ Y ′.

As in the modal case, we write M↔k M
′ if there exists a guarded-k-bisimulation

between M and M′. We also write M!k M
′ if for all GFOk sentences ψ, M |= ψ

iff M′ |= ψ. Proposition 2.3 can be extended to the case of guarded-k-bisimilarity:

Proposition 2.7. Let M and M′ be two relational structures over the vocabulary
(Ri)i. If M↔k M

′, then M!k M
′.

Proof. Let I be a guarded-k-bisimulation between M and M′. We show by induc-
tion on ψ in GFOk that, if ψ(x) has n free variables and there exist two n-tuples a
in M and a′ in M′ such that M |=x7→a ψ(x) but M′ 6|=x 7→a′ ψ(x), then there is no
partial isomorphism f in I with f :a 7→ a′. This will entail that I is empty when
n = 0, i.e. in the case of a sentence ψ in GFOk, thus contradicting M↔k M

′.
For an atomic formula ψ(x) = α(x) where M |=x 7→a α(x) but M′ 6|=x 7→a′ α(x),

assume that there exists f in I mapping a to a′. Then by condition (1), there must



Logic and Linguistic Modelling 32

exist g in I with domain a that agrees with f on a, i.e. g:a 7→ a′. This would entail
M′ 6|=x 7→a′ α(x), a contradiction.

For a conjunction ψ(x1,x2) = ψ1(x1)∧ψ2(x2) where M |=x1 7→a1,x2 7→a′
1
ψ(x1,x2)

but M′ 6|=x1 7→a′
1,x2 7→a′

2
ψ(x1,x2), for some j in {1, 2}, M′ 6|=xj 7→a′

j
ψj(xj) and by

induction hypothesis there is no fj in I that maps aj to a′j , and therefore no f in
I that maps aj to a′j for all j ∈ {1, 2}. The case of a negated formula is similarly
immediate by induction hypothesis.

The interesting case is that of an existential quantification ψ(x) = ∃y.α(x,y) ∧
ϕ(x,y). Since M |=x 7→a ψ(x), there exists b in M such that M |=x 7→a,y 7→b α(x,y)∧
ϕ(x,y). Suppose toward a contradiction that there exists f in I that maps a to a′.
By condition (1), since a ∪ b is guarded by α(x,y), there exists g in I that maps
a to a′ and b to b′. Then M′ |=x 7→a′,y 7→b′ α(x,y) since g is a partial isomorphism,
which entails that M′ 6|=x 7→a′,y 7→b′ ϕ(x,y), which together with the existence of g
contradicts the induction hypothesis on ϕ.

Models of Bounded Treewidth

An important model-theoretic property of ALC and the basic modal language is
that they enjoy the tree model property: if a formula is satisfiable, then it has a tree
model. In the case of GFOk, we can generalise this idea to models of treewidth
bounded by k − 1, see Proposition 2.8. In the case where k = 2 (which is the case
of ALC and the basic modal logic), we find again the tree model property.

See Robertson and Seymour
(1986).

On an intuitive level, the treewidth of a structure tells how close to a tree the
structure looks like. Trees and forests have treewidth 1, cycles have treewidth 2,
etc. An example of a class of structures with unbounded treewidth is the class
of n × n grids, each with treewidth n. Formally, the treewidth of a structure
M = 〈W, (R(ki)

i )i〉 is the minimal k such that there exists a tree t labelled by bags
in {X ⊆W | |X| ≤ k + 1}, such that

1. for every guarded setX in M there exists a position u in dom twithX ⊆ t(u),
and

2. for every element a in M, the set of nodes {u ∈ dom t | b ∈ t(u)} is connected
in t using the child relation ↓.

For each u in dom t, t(u) induces a substructure T(u) ⊆ M of cardinality at most
k + 1. The tree t is called a tree decomposition of M =

⋃
u∈dom t T(u).

Consider a structure M. We are going to construct a guarded-k-bisimilar unrav-
elling M′ with treewidth at most k − 1. We construct for this two trees t and t′

with the same domain dom t = dom t′ such that for each position u, t(u) induces
a guarded substructure T(u) ⊆M and t′(u) a substructure T′(u) ⊆M′ isomorphic
to T(u); then t′ will be a tree decomposition of M′.

The root ε is labelled ∅ in both t and t′. Inductively, given a position uwith t(u) =
{a1, . . . , ar} and t′u = {a′1, . . . , a′r}, we create for every guarded set {b1, . . . , bs} of
size s ≤ k in M a child node v of u such that t(v) = {b1, . . . , bs} and t′(v) =
{b′1, . . . , b′s} defined for all 1 ≤ i ≤ s by b′i = a′j if bi = aj for some 1 ≤ j ≤ r and
b′i is a fresh element otherwise. Define accordingly the induced substructure T′(v)
to be isomorphic to the induced substructure T(v), giving rise to a partial isomor-

phism fv: t(v)→ t′(v) when setting fv(bi)
def
= b′i. Finally, let M′ def

=
⋃
u∈dom t′ T

′(u).
Observe that the tree t′ is a tree decomposition of M′. This entails that M′ has

treewidth at most k − 1. Furthermore, {fu | u ∈ dom t} is a non-empty (note
that the root ε gives rise to the empty isomorphism) set of partial isomorphisms
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a
man

b
woman

c
man

d
woman

M : M′ : a′
man

b′

woman
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e
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Figure 2.1: Two structures which are not guarded-2-bisimilar over the vocabulary
man(1),woman(1), love(2).

between M and M′, which satisfies the conditions of a guarded-k-bisimulation:
M↔k M

′. Hence, by Proposition 2.7:

Proposition 2.8. If a sentence ψ in GFOk has a model, then it has a model of
treewidth at most k − 1.

Proposition 2.8 is instrumental in the proof of Grädel and Walukiewicz (1999)
that the satisfiability problem for GFOk is in EXPTIME. More precisely, the idea is
to reduce the problem to a modal µ-calculus satisfiability question over (infinite,
countable) trees: given a GFOk formula ψ, one can construct a modal µ-calculus
formula ϕ which describes a tree decomposition of a model of ψ of treewidth at
most k − 1. The complexity then follows by adapting the results of Vardi (1998)
on the emptiness problem for 2ATAs over infinite trees.

Limitations & Extensions

There are extensions on the
guarded fragment that retain
most of its model- and
complexity-theoretic properties,
e.g. the guarded negation
fragment of Bárány, ten Cate,
and Segoufin (2011). Those
extensions do not solve the issues
pointed here.

Although the guarded fragment includes many formulæ of interest in formal se-
mantics, it is not comprehensive: (2.35) is an example of an unguarded formula.
We can furthermore show that there is no equivalent formula in GFO. Observe that
the two structures depicted in Figure 2.1 are guarded-2-bisimilar for the following
set I of partial isomorphisms

fab: a 7→ a′, b 7→ b′ fa: a 7→ a′ fb: b 7→ b′

fcd: c 7→ a′, d 7→ b′ fc: c 7→ a′ fd: d 7→ b′

Because every guarded set in M is in the domain of one of the partial isomorphisms
in I, every guarded set in M′ is in the range of at least one of the partial isomor-
phisms in I, and all the partial isomorphisms in I agree, this is indeed a guarded-
2-bisimulation. Therefore by Proposition 2.7 M and M′ are undistinguishable
through guarded formulæ over the vocabulary {man(1),woman(1), love(2)}. How-
ever, M 6|= ∃x.woman(1)(x)∧(∀y.man(1)(y) ⊃ love(2)(y, x)) but M′ |= ∃x.woman(1)(x)∧
(∀y.man(1)(y) ⊃ love(2)(y, x)). In particular, no ALC formula can express (2.35).

Another issue with the guarded fragment is that the axiom for transitivity of a
binary relation R, which can be expressed by

∀xyz.R(2)(x, y) ∧R(2)(y, z) ⊃ R(2)(x, z) (2.36)

or by

∀xy.R(2)(x, y) ⊃ (∀z.R(2)(y, z) ⊃ R(2)(x, z)) (2.37)

is not guarded—nor in FO2. In fact, the two-variable guarded fragment with-
out equality and only a handful of transitive relations is already undecidable



Logic and Linguistic Modelling 34

(Ganzinger et al., 1999). This is an issue when considering epistemic or temporal
modal logics, where transitivity is assumed; thankfully, decidability can be recov-
ered when restricting transitive relations to occur solely in guards (e.g. Ganzinger
et al., 1999; Michaliszyn, 2009).



Chapter 3

Tree Patterns

In this chapter, we consider formulæ called patterns from severely restricted frag-
ments of first-order logic over trees. These provide concise means to define tree
languages while avoiding the non-elementary complexity of full first-order logic
over finite trees (e.g. Reinhardt, 2002). More precisely, we use patterns to define
finite tree languages, which are then used as elementary trees in a grammar (Sec-
tion 3.2) or as possible semantic readings in ambiguous sentences (Section 3.3).

3.1 Background: Existential First-Order Logic

When describing finite structures, existential sentences of first-order logic pop-up
naturally: given a structure M = 〈W, (Ri)i〉 over a finite domainW = {w1, . . . , wn}
and a finite relational vocabulary (Ri)i (with no constants), the canonical sen-
tence associated with M is

ϕM
def
= ∃x1 . . . xn.χ

+
M(x1, . . . , xn) (3.1)

where the formula χ+
M is its positive diagram and consists of the conjunction of

all the positive relational atomic formulæ true of M:

χ+
M(x1, . . . , xn)

def
=
∧
i

∧
(wi1

,...,wik
)∈Ri

R(ik)(xi1 , . . . , xik) . (3.2)

Observe that M |= ϕM, and more precisely M |=ν χ
+
M(x1, . . . , xn) using the valu-

ation ν:xi 7→ wi. The canonical sentence ϕM only uses existential quantification
and conjunction.

EFO and its Fragments More generally, existential first-order logic (EFO) over
a vocabulary σ is defined syntactically by

α ::= x = y | R(k)(x1, . . . , xk) (atomic formulæ)

ϕ ::= α | ¬α | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃x.ϕ (existential formulæ)

where x, y, x1, . . . , xk range over X the set of variables, and R over the vocabulary
σ.

• If both negated atoms ¬ϕ and disjunctions ϕ ∨ ϕ are forbidden, we obtain
primitive positive formulæ (E+CFO), which are equivalent to conjunctive
queries used in the database literature.

35
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• If negated atoms ¬ϕ are forbidden, we obtain existential positive formulæ
(E+FO), which are equivalent to unions of conjunctive queries used in the
database literature.

• Finally, if disjunctions ϕ∨ϕ are forbidden, we obtain existential conjunctive
formulæ (ECFO).

Normal Forms When putting an existential formula ϕ in disjunctive normal
form, we see that it is equivalent to a finite disjunction of existential conjunctive
formulæ ψi

ϕ ≡
∨
i

ψi (3.3)

where in turn each existential conjunctive formula ψ can be put in prenex form

ψ ≡ ∃x.
∧
j

βj(xj) (3.4)

where the βj ’s are atoms or negated atoms and xj is a subvector of x. (If addi-
tionally ϕ was positive, then each ψi is primitive positive and the βj ’s are atoms.)
Observe finally that any atom of the form x = y in some ψ can be eliminated by
identifying the two variables x and y in ψ:

∃x1x2 . . . xn.χ ∧ x1 = x2 ≡ ∃x2 . . . xn.χ{x1 ← x2} (3.5)

so that the βj ’s are necessarily relational or of the form x 6= y.

Small Models Given an existential conjunctive sentence ψ = ∃x1 . . . xn.χ, we
can look at its models with at most n elements:

Mod≤n(ψ)
def
= {M = 〈W,σ〉 | |W | ≤ n ∧M |= ψ} . (3.6)

If ψ is positive, and positive equality atoms of the form x = y have been elim-
inated as explained just before (thus only positive relational atoms appear in
ψ), then ψ has a canonical model Mψ with domain {w1, . . . , wn} and a tuple
(wi1 , . . . , wik) in a k-ary relation R iff R(k)(xi1 , . . . , xik) is an atom in ψ. Clearly,
Mψ |= ψ, and furthermore the canonical sentence associated with Mψ is ψ itself.

Exercise 3.1 (Canonical Model). Given(∗) an existential conjunctive sentence ψ
without positive equality atoms (but possibly with some negated atom of the form
¬R(k)(xi1 , . . . , xik) or xi 6= xj), we distinguish its positive part ψ+, which con-
tains only the positive relational atoms of ψ. Show that, if ψ is satisfiable, then
Mψ+ |= ψ.

3.1.1 Characterisations over Finite Models

Fix some finite vocabulary σ = (Ri)i. Given two structures M = 〈W, (Ri)i〉 and
M′ = 〈W ′, (R′i)i〉, M is an induced substructure of M′ if W ⊆ W ′ and Ri =
R′i∩W ki for each ki-ary relation. In that case, we also say that M′ is an extension
of M and write M ⊆i M′. A sentence ϕ in FO is preserved under extensions if
M |= ϕ and M ⊆i M′ together imply M′ |= ϕ.

The Łoś-Tarski theorem fails over
the class of all finite

structures (e.g. Ebbinghaus and
Flum, 1999, Section 3.5). See

Asterias et al. (2008) for classes
of finite structures where it holds.

The Łoś-Tarski theorem states that a first-order sentence is preserved under
extensions over the class of all (finite and infinite) structures if and only if it is
equivalent to an existential sentence. If we work on a particular class of structures,
the theorem might fail, but one direction remains correct:
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Proposition 3.1. Let C be a class of structures. If ϕ is equivalent to an existential
sentence over C, then it is preserved under extensions over C.

Proof. Let M = 〈W, (Ri)i〉 and M′ = 〈W ′, (R′i)i〉 be two structures in C with M |=
ϕ and M ⊆i M′. Write ϕ as a finite disjunction of ECFO sentences as in (3.3): there
exists a disjunct ψ such that M |= ψ. More precisely, ψ can be put in prenex normal
form as ψ ≡ ∃x1 . . . xn.χ where χ is a conjunction of atoms and negated atoms,
and M |=ν χ for some valuation ν: {x1, . . . , xn} → W . Consider the substructure
Mν (not necessarily in C) induced by the subset ν({x1, . . . , xn}) ⊆ W in M: then
Mν |=ν χ and Mν ⊆i M ⊆i M′. We can easily check that M′ |=ν χ and the result
follows.

In our applications, we will be especially interested in the (induced-)minimal
models of existential sentences: given a class C of structures and a first-order
sentence ϕ, M in C is a minimal model of ϕ if M |= ϕ and, if M′ (i M, then
M′ 6|= ϕ.

Lemma 3.2. Let C be a class of finite structures closed under induced substructures.
If ϕ is equivalent to an existential sentence over C, then ϕ has finitely many minimal
models in C.

Proof. Using again the disjunctive normal form equivalent to ϕ, it suffices to show
that there are finitely many minimal models for a disjunct ψ in ECFO. Let ψ ≡
∃x1 . . . xn.χ, M be a minimal model of ψ and ν be a valuation such that M |=ν χ.
Then ν induces as in the proof of Proposition 3.1 a substructure Mν ⊆i M with
Mν |=ν χ. Because C is closed under induced substructures, Mν also belongs to
C, and because M was assumed minimal, this in turn entails that Mν and M are
isomorphic, and thus that M has at most n elements.

In other words, if M is a minimal model in C, then

M ∈ Mod≤n(ψ) . (3.7)

(Note that this is not directly implied by Exercise 3.1, because Mψ+ might not be
in C.) We conclude by noting that Mod≤n(ψ) is finite for every n, and that n itself
is bounded by the quantifier depth of ϕ.

Exercise 3.2 (Diagrams). Let (∗)M = 〈W, (Ri)i〉 be a finite structure with W =
{w1, . . . , wn}. We define its diagram as the conjunction of the atomic and negated
atomic formulæ it satisfies under the valuation ν:xj 7→ wj:

χM
def
=
∧

1≤j≤k≤n
xj 6= xk∧

∧
i

( ∧
(wi1

,...wik
)∈Ri

R
(ik)
i (xi1 , . . . , xik)∧

∧
(wi1

,...wik
)6∈Ri

¬R(ik)
i (xi1 , . . . , xik)

)
(3.8)

Show that, for any structure M′, M′ |= ∃x1 . . . xn.χM iff M ⊆i M′ (up to isomor-
phism).

Exercise 3.3 (Converse of Lemma 3.2). Let (∗)C be a class of finite structures and let
ϕ be a first-order sentence preserved under extensions on C. Show that, if ϕ has
finitely many minimal models in C, then it is equivalent to an existential sentence
over C.

Somewhat similar ideas can be worked out for existential positive sentences (in-
stead of existential sentences) and homomorphisms between structures (instead
of induced substructures), see Asterias et al. (2006); Rossman (2008); Dawar
(2010).
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3.1.2 Tree Models

Unranked TreesSee Hidders (2004); Björklund
et al. (2011) for related results

on tree patterns and XPath
fragments.

Let us consider finite ordered unranked trees, with labels taken
from some finite set A; note that for our applications we assume that each tree
position is labelled by a single symbol from A. Because first-order logic cannot
express transitive closures, we explicitly add the transitive reflexive closures ↓∗ of
↓ and→∗ of→ to our signature. In other words, we work over the relational sig-
nature 〈↓, ↓∗,→,→∗, (Pa)a∈A〉, and our class of models is restricted to trees, where
the interpretation of ↓∗ (resp.→∗) must coincide with the transitive reflexive clo-
sure of the interpretation of ↓ (resp.→).

An issue with the class of trees is that it is not closed under induced substruc-
tures. For instance, the proof of Lemma 3.2 is incorrect for trees, e.g. the sentence

∃xyz.Pa(x) ∧ Pb(y) ∧ Pc(z) ∧ x ↓∗ y ∧ x 6 ↓ y ∧ x ↓∗ z ∧ x 6 ↓ z (3.9)

has minimal models of size 4 of the following form, for any label $ in A:

a

$

b c

Ranked Trees Another vocabulary of interest is 〈(↓i)i<k, ↓∗, (Pa)a∈A〉 where A is
a finite ranked alphabet and k is the maximal arity in A. Again, the class of ranked
trees is not closed under induced substructures.

Theorem 3.3 (Koller et al., 2001). Satisfiability of ECFO((↓i)i<k, ↓∗, (Pa)a∈A) sen-
tences is NP-complete.

3.2 Meta-Grammars

In order to cope with the difficulty of hand-writing grammars with an adequate
coverage of a natural language, it turns out to be quite convenient to see the gram-
mar itself as the result of a compilation from a higher-level formalism. There exist
many ways to define such a meta-grammar. Here we will focus on a simple for-
malism where the low-level grammar is the set of minimal models of an existential
first-order formula on trees.

3.2.1 Diathesis Alternation

Section based on Crabbé et al.
(2013).

One of the difficulties in competence grammars is to account for the many possible
subcategorisation frames each lemma might allow. For instance, a transitive verb
like eat allows for the sentences

John eats an apple.
Who eats an apple?
What does John eat?
An apple is eaten by John.

This not only leads to an explosion in the number of elementary tree structures
in a context-free or tree-adjoining grammar, but also makes the semantic mapping
(with adequate thematic roles) more cumbersome.
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Figure 3.1: Basic tree fragments.
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Figure 3.2: A minimal model of (3.10).

By allowing to factor some common patterns in elementary trees, we gain in
succinctness. Moreover, by identifying linguistically-motivated atomic construc-
tions, we obtain a more readable, easier to maintain description of the syntax.
For instance, various elementary trees for transitive verbs can be described by the
formulæ (number agreement could be handled through feature structures):

TransitiveVerb def
= ActiveTransitiveVerb ∨ PassiveTransitiveVerb

ActiveTransitiveVerb def
= Subject ∧ ActiveVerb ∧ (CanonicalObject ∨Wh-NP-Object)

PassiveTransitiveVerb def
= CanonicalSubject ∧ PassiveVerb ∧ CanonicalByObject

Subject def
= CanonicalSubject ∨Wh-NP-Subject

where each of the basic formulæ ActiveVerb, PassiveVerb, etc. is the canonical pos-
itive primitive formula of the corresponding tree in Figure 3.1. For instance, the
conjunction

CanonicalSubject ∧ ActiveVerb ∧Wh-NP-Object (3.10)

gives rise to the unique minimal model of Figure 3.2.

3.2.2 Complexity

Section based on Björklund et al.
(2011).

Observe that we only used the ↓,→, and→+ axes in our examples in Section 3.2.
One might hope that this fragment of E+FO would have a polynomial-time sat-
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isfiability problem, but it turns out to be NP-hard already for primitive positive
sentences with only→ and→+:

Proposition 3.4. Satisfiability of E+CFO(→,→+, (Pa)a) sentences is NP-complete.

Proof. By ??, satisfiability is in NP, thus we only need to prove hardness.
We reduce for this from the Shortest Common Supersequence Problem (SSSP), c.f.

(Räihä and Ukkonen, 1981). An instance of SSSP is an integer k in unary and a
set of strings S = {si = ai1 · · · ai`i}1≤i≤p over some finite alphabet Σ. The instance
is positive if there exists a string s of length at most k, which is simultaneously a
supersequence of every string in S, i.e. for every i, there exist strings s′0, . . . , s

′
i`+1

s.t. s = s′0ai1s
′
1ai2 · · · ai`s′i`+1. Importantly, if s is such a witness, then any super-

sequence of s over some alphabet that includes Σ and of length exactly k is also a
witness.

Given an instance 〈k, S〉 of SSSP, we build an existential positive sentence ϕ,
which is satisfiable iff the instance is positive. The idea is to find a sequence of
children that spells out a witness s for the SSSP instance. In order to isolate this
sequence, we add a fresh symbol # to Σ and make sure that we work between two
nodes labelled with #:

ϕ
def
= ∃zz′.P#(z) ∧ P#(z′) ∧ ϕ=k(z, z

′) ∧ ϕS(z, z′)

On the one hand, our intention is for ϕ=k to make sure that the segment between
z and z′ is of length exactly k:

ϕ=k(z, z
′)

def
= ∃x1 . . . xk.z → x1 ∧ xk → z′ ∧

( ∧
1≤j<k

xj → xj+1

)
.

On the other hand, ϕS(z, z′) should ensure that the segment between z and z′ is
indeed a supersequence of every si = ai1 · · · ai`i :

ϕS(z, z′)
def
=

∧
1≤i≤p

∃y1 . . . y`i .z →
+ y1 ∧ y`i →

+ z′ ∧
( ∧

1≤j≤`i

Paij (yj)
)

∧
( ∧

1≤r<`i

yr →+ yj+1

)
.

3.3 Underspecified Semantics

3.3.1 Scope Ambiguities

An pervasive issue in semantic representations is related to scope ambiguities.
Linguistic expressions are often semantically ambiguous (i.e. they have several
possible readings that are mapped to different meaning representations) but fail
to reflect this ambiguity syntactically (e.g. they have a single syntactic analysis).
For instance, the sentence Every man loves a woman accepts two readings

∃y.woman(y) ∧ ∀x.man(x) ⊃ ∃e.love(e) ∧ agent(e, x) ∧ patient(e, y) (3.11)

∀x.man(x) ⊃ ∃y.woman(y) ∧ ∃e.love(e) ∧ agent(e, x) ∧ patient(e, y) (3.12)

depending on whether we are talking about one single woman or not; there is no
clear reason why we should provide the sentence with different syntactic analyses.

Assuming we view meaning construction as a relation from one syntactic repre-
sentation to several semantic ones, the number of readings can grow exponentially
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with the number of scope-bearing operators (quantifiers, modal operators, etc.),
and simply enumerating the possible readings quickly turns impossible.

For instance, the sentence

A politician can fool most voters on most issues most of the time, but
no politician can fool every voter on every issue all of the time.

(Poesio, 1994)

is reputed as having several thousand readings. Arguably, not all these readings
are born equal: some might be implied by others (just like (3.11) implies (3.12)),
and some downright impossible. However there can still remain a considerable
number of incomparable readings. A naive approach to counting the number of
possible readings is to consider all the permutations of quantifiers in a sentence:
for a sentence with n quantifiers this will yield n! different readings. Hobbs and
Shieber (1987) for instance refine this approach and show how the sentence

Every representative of a company saw most samples.

has actually 5 distinct readings instead of 3! = 6: they argue that the reading
where “for each representative there is a group of most samples which he saw, and
furthermore, for each sample he saw, there was a company he was a representative
of” is impossible.

A broadly adopted solution to the problems raised by scope ambiguities is to
employ underspecified representations for semantics, which allow to represent
several readings with a single representation. One might think such a trick, while
computationally useful, defeats the very purpose of compositionality, but it does
not if we view the underspecified representation as the actual meaning of the sen-
tence. . .

There exist several such formalisms (e.g. Bos, 1996; Egg et al., 2001; Althaus
et al., 2003; Copestake et al., 2005) but we will focus on one in particular: the
hole semantics of Bos. The idea of hole semantics is to take as a semantic repre-
sentation language (SRL) the logic we use for semantic representation (in our case
FO) and build on top of it an underspecified representation language (URL), which
describes the set of desired SRLs. As the latter are terms, the URL can be a formula
s.t. the SRLs are its ranked tree models, i.e. we can reuse classical model-theoretic
methods.

3.3.2 Hole Semantics

Our ECFO presentation of hole
semantics follows Blackburn and
Bos (2005, Chapter 3) rather
than the original definition of Bos
(1996).

The syntax of hole formulæ is a restricted fragment of ECFO((↓i)i<k, ↓∗, (Pa)a∈A).
We distinguish between two sorts of variables: labels l in L and holes h in H
so that dominance relations ↓∗ can only go from holes to labels, and holes can
only appear as unlabeled leaves; furthermore, immediate children relations and
labelling predicates Pa are combined in a construct l : a(r)(x1, . . . , xr) that enforces
the correct arity of a:

γ ::= l : a(r)(x1, . . . , xr) | h ↓∗ l | γ ∧ γ | ∃x.γ (hole formulæ)

where l ranges over L, a(r) over Ar, x, x1, . . . , xr over L ] H, and h over H. As
with ECFO formulæ, hole formulæ γ can be put in prenex normal form

γ ≡ ∃l1 . . . lnh1 . . . hm.
∧
p

γp . (3.13)
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Hole formulæ γ are interpreted in ECFO((↓i)i<k, ↓∗, (Pa)a∈A) by associating a for-
mula [γ]

[γ] = ∃l1 . . . lnh1 . . . hm.
∧

1≤i<j≤n
li 6= lj ∧

∧
p

γp (3.14)

where we interpret

l : a(r)(x1, . . . , xr)
def
= Pa(l) ∧

r∧
i=1

l ↓i−1 xi . (3.15)

A variable x in a hole formula is a root if there does not exist x0, . . . , xr and a(r)

s.t. x0 : a(r)(x1, . . . , xr) is a subformula of γ where x = xj for some 1 ≤ j ≤ r. A
hole formula is normal if

1. in every h ↓∗ l subformula, l is a root of γ,

2. every hole appears exactly once as a child of a l : a(r)(x1, . . . , xr) subformula,
and thus cannot be a root,

3. every label should appear at most once as a parent and at most once as
a child in a l : a(r)(x1, . . . , xr) subformula. This excludes for instance l′ :
f (2)(l, l), l : f (2)(l1, l2) ∧ l : f (2)(l′1, l

′
2), or l1 : g(1)(l) ∧ l2 : g(1)(l).

Normal hole formulæ with this interpretation into ECFO give rise to normal dom-
inance constraints, which are known to be efficiently testable for satisfiability:

Theorem 3.5 (Althaus et al., 2003). Satisfiability of normal hole formulæ is in P.

Constructive Satisfiability

The issue with our interpretation of hole formulæ into ECFO is that not every
model M over A is suitable as a SRL formula. For instance, there could be extra
points in the model not constrained by γ, or conversely several labels could be
mapped to a single node. An alternative notion of model is needed in practice.

Consider a hole formula in prenex conjunctive normal form as in (3.13). Then a
plugging P is an injective function from holes {h1, . . . , hm} to labels {l1, . . . , ln}.
A model M = 〈dom(t), (↓i)i<k, ↓∗, (Pa)a∈A〉 of γ is a plugged model for a plugging
P if its domain is in bijection with the set of labels (we write dom(t) = {l̂1, . . . , l̂n})
and M |=ν γ where the valuation ν is defined by

ν(x)
def
=

{
x̂ if x ∈ L
P̂ (x) if x ∈ H .

(3.16)

The structure M is a constructive model for γ if there exists a plugging P s.t. it is
a plugged model for P .

Example 3.6. Let us extend the syntax of hole formulæ by allowing larger tree
segments:

γ ::= l : a(r)(θ1, . . . , θr) | h ↓∗ l | γ ∧ γ | ∃x.γ (hole formulæ)

θ ::= a(r)(θ1, . . . , θr) | h (tree formulæ)
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∀

x ⊃

man

x

�

∃

y ∧

woman

y

�
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Figure 3.3: Underspecified formula for (3.11) and (3.12). Dominance relations
are indicated through dotted arrows and holes by boxes.

and translating back into hole formulæ by defining

xθ
def
=

{
h if θ = h

lθ ∈ L a fresh label for each θ otherwise

l : a(r)(θ1, . . . , θr)
def
= l : a(r)(xθ1 , . . . , xθr)

a(r)(θ1, . . . , θr)
def
= ∃lθ.lθ : a(r)(xθ1 , . . . , xθr) .

A hole semantic formula that models the two readings (3.11) and (3.12) is the
following (see also Figure 3.3):

∃l1l2l3h1h2.l1 : ∀(2)(x(0),man(1)(x(0)) ⊃(2) h1) ∧ l2 : ∃(2)(y(0),woman(1)(y(0)) ∧(2) h2)

∧l3 : love(2)(x(0), y(0)) ∧ h1 ↓∗ l3 ∧ h2 ↓∗ l3 .

Polynomial-time processing can
be recovered if we further restrict
hole formulæ; see Koller et al.
(2003).

Constructive satisfiability puts a higher toll on computations than basic satisfia-
bility:

Theorem 3.7. Constructive satisfiability of normal hole formulæ is NP-complete.

Proof. For the NP upper bound, deciding whether a formula γ has a constructive
model can be checked by

1. guessing both a plugging P and the corresponding model

M = 〈{l̂1, . . . , l̂n}, (↓i)i<k, (Pa)a∈A〉 ; (3.17)

this model is of polynomial size in |γ|,

2. computing the dominance relation (
⋃
i<k ↓i)? over M (this is in P) to obtain

a model
M′ = 〈{l̂1, . . . , l̂n}, (↓i)i<k, ↓∗, (Pa)a∈A〉 (3.18)

still of polynomial size, and

3. verifying that M′ is a model of the existentially conjunctive formula [γ] for
the assignment ν defined in (3.16) (this is in P).

For the NP lower bound, we exhibit a reduction from the 3-Partition Problem. An
instance of this problem is given by a finite multiset A = {a1, . . . , a3m} of integers
and a bound B, all in N and encoded in unary, such that B

4 < ai <
B
2 for all i and∑3m

i=1 ai = mB. The instance is positive if there exists a partition A1]A2]· · ·]Am
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of A s.t. for all j, |Aj | = 3 and
∑

a∈Aj
a = B. We can assume B > 0 (or ai = 0 for

all i).
This hardness proof from the

3-partition problem is taken from
(Althaus et al., 2003,

Theorem 10.1).

We construct from an instance 〈A,B〉 a hole formula over the ranked alphabet

{$(1), f
(ai+1)
i , g(m), b(0) | 1 ≤ i ≤ 3m}:

∃l$lf1 . . . lf3m lgl
1,1
b . . . l1,B+1

b l2,1b . . . lm,B+1
b h$h

1
g . . . h

m
g h

1
f1 . . . h

a1+1
f1

h1
f2 . . . h

a3m+1
f3m

.

$(1)(h$) ∧
∧

1≤i≤3m

lfi : f
(ai+1)
i (h1

f1 , . . . , h
ai+1
f1

)

∧ lg : g(m)(h1
g, . . . , h

m
g ) ∧

∧
1≤j≤m

∧
1≤k≤B+1

lj,kb : b(0)

∧
∧

1≤i≤3m

h$ ↓∗ lfi ∧ h$ ↓∗ lg ∧
∧

1≤j≤m

∧
1≤k≤B+1

hjg ↓∗ l
j,k
b .

Assume first that there exists a partition A1 ] · · · ] Am of A: we plug h$ with
lg, and for each class Aj = {ax, ay, az} with ax + ay + az = B, we plug hjg

with lfx , hax+1
fx

with lfy , and h
ay+1
fy

with lfz , and the remaining B + 1 holes

h1
fx
, . . . , haxfx , h

1
fy
, . . . , h

ay
fy
, h1

fz
, . . . , haz+1

fz
by the labels lj,kb for 1 ≤ k ≤ B + 1.

Conversely, assume there is a plugging P from holes to labels and let M be the
corresponding plugged model using valuation ν. For every 1 ≤ j ≤ m, consider
the set Aj of integers ai such that fi-rooted fragments are plugged below hjg, i.e.

Aj
def
= {ai |M |=ν h

j
g ↓∗ lfi}. Note thatA1]· · ·]Am forms a partition ofA. Because

a plugging is injective from holes to labels, each fi-rooted fragment requires ai+ 1
labels, hjg requires one, and |Aj | + B + 1 are available using the fi- and b-rooted
fragments, we get that 1 + |Aj |+

∑
a∈Aj

ai ≤ |Aj |+B + 1, hence
∑

a∈Aj
≤ B for

every 1 ≤ j ≤ m. Because
∑

a∈A a = mB, there is no choice and
∑

a∈Aj
a = B.

Furthermore, |Aj | ≥ 3:

• |Aj | 6= 0 since B > 0, and B + 1 fragments rooted by b must be plugged
somewhere below the single hole hg;

• |Aj | 6= 1 since a single fi-rooted fragment provides ai+1 < B
2 < B+1 holes,

• |Aj | 6= 2 since a pair {ax, ay} provides ax + ay + 2− 1 < B + 1 holes.

Thus every Aj is of cardinality at least 3, and because 3m fi-rooted fragments are
available in total, this means that |Aj | = 3 for all j.

Exercise 3.4 (Tree Automata for Hole Formulæ).(∗∗∗) The set of constructive models of
a constraint is clearly a regular tree language. Provide a construction for a regular
tree automaton Aγ that recognizes exactly the constructive models of a normal
hole formula γ.
Hint: I would use 2{l1,...,ln} × {l1, . . . , ln} × 2{h1,...,hm} as state set, although there
certainly are better ways; see for instance Koller et al. (2008).

The size of the automaton constructed in Exercise 3.4 is exponential in the size
of the formula. This is unavoidable, as there exist normal formulæ γn of size O(n)
s.t. any automaton recognizing the set of plugged models of γn requires at least 2n

states: let

An
def
= {a(0), g

(1)
1 , . . . , g(1)

n } (3.19)

γn
def
= ∃ll1 . . . lnh1 . . . hn.l : a(0) ∧

n∧
i=1

li : g
(1)
i (hi) ∧ hi ↓∗ l . (3.20)
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The normal formula γn has n! different models, corresponding to the possible
orderings of its n components gi(�): its set of plugged models is

Ln = {gπ(1)(�) · gπ(2)(�) · · · gπ(n)(a) | π a permutation of {1, . . . , n}} . (3.21)

Lemma 3.8. Any finite tree automaton for Ln requires at least 2n states.

Proof. Define for every subset K = {i1, . . . , i|K|} of {1, . . . , n} (where ij < ij+1)
the context

CK
def
= gi1(�) · · · gi|K|(�) (3.22)

and let K̄ = {1, . . . , n}\K. Then the tree

tK
def
= CK̄ · CK · a (3.23)

is in Ln.
Let QK be the set of states q of an automaton An for Ln s.t.

CK̄ · CK · a =⇒? CK̄ · q =⇒? qf (3.24)

for some final state qf . Since tK is in Ln, QK 6= ∅. Suppose there exist K 6= K ′ s.t.
QK ∩QK′ 6= ∅, i.e. there exists i in K\K ′ and q ∈ QK ∩QK′ . Then i belongs to K̄ ′

and
CK̄′ · CK · a =⇒? CK̄′ · q =⇒? qf (3.25)

recognizes a tree not in Ln (the pattern gi(�) appears twice). Hence the non-
empty sets QK must be disjoint for different sets K, thus An has at least 2n states.

Note that the tree automaton 〈2{1,...,n}, A, δ, {∅}〉 with δ = {(q\{i}, gi, q) | i ∈
q} ∪ {({1, . . . , n}, b)} recognizes Ln, so this bound is optimal.

Lemma 3.8 shows that there might be exponential succinctness gains from the
use of hole formulæ rather than tree automata for the description of semantic
representations. One might object that the classes of tree languages obtained at
the output of the linear higher-order tree functions of Section 4.1.4 are context-
free tree languages and not necessarily regular ones, with potential exponential
gains in succinctness. However, note that Ln is basically a string language, and
the exponential lower bounds on the size of any context-free string grammar for
permutation languages (see e.g. Filmus, 2011) also apply to CFTGs for Ln.
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Chapter 4

Higher-Order Semantics

In this last chapter, we consider the use of higher-order functions in natual lan-
guage semantics. We first motivate the need for such functions in Section 4.1
in order to define the interface between syntax and semantics. We then observe
that, more generally, ‘increasing the order’ allows for elegant solutions to some
difficulties like intensionality phenomena and many-world semantics.

4.1 Compositional Semantics

We have presented several possible first-order analyses for simple sentences in the
previous chapters, but we have not touched yet the subject of how to obtain such
semantic representations from syntactic analyses. A key concept in this regard is
that of compositionality See Janssen (1997) and the

compositionality article of the
Stanford Encyclopedia of
Philosophy for extensive
discussions of compositionality.

:

The meaning of a compound expression is a function of the meanings
of its parts and of the syntactic rule by which they are combined.

(Partee et al., 1990, Chapter 13)

Let us illustrate this principle on Example 2.1: by associating a semantic repre-
sentation to each meaningful word in the sentence, i.e. if we define JJohnK, JeatsK
and so on, then the semantics of each intermediate structure like a red apple or
John eats a red apple can be systematically computed as a function of its parts,
based on the syntactic structures. Note that these structures play a crucial role,
as otherwise John loves Mary and Mary loves John would not be distinguishable as
naive ‘functions of their parts.’

You are probably familiar with this principle from programming language se-
mantics. Typical arguments in favour of this principle for natural language hinge
on productivity and systematicity of semantic construction: we are able to un-
derstand new linguistic expressions, and to understand similar expressions built
from the same blocks and syntactic processes.

Leaving these questions aside and adopting a modelling viewpoint, composition-
ality is a rather strenuous requirement: for instance, assuming JJohnK = John(0)

and Ja red appleK = ∃x.apple(1)(x) ∧ red (1)(x), it is not so clear how one should
combine everything and obtain (2.1) or more involved representations like (2.24).
Moreover any solution will be dependent on the specific syntactic analysis.

47

http://plato.stanford.edu/entries/compositionality/
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4.1.1 Background: Simply Typed Lambda Calculus

See e.g. Hindley (1997). One of the best-studied ways to implement compositional semantics for natural
languages is to use lambda expressions as semantic values associated with each
component (Montague, 1970, 1973). As Church’s simple theory of types provides
an elegant setting for model-theoretic higher-order semantics (see Section 4.3),
we favour a presentation that uses the simply typed λ-calculus over the untyped
one.

Lambda Terms Given an infinite countable set X of variables, and C a countable
set of constants, the set Λ(C) of λ-terms is defined by

L ::= c | x | LL | λx.L

where c is a constant in C and x a variable in X .
The λ operator is a binding with the usual associated notion of free variables.

We draw a distinction between closed terms, which have no free variables, and
ground terms, which have no variables at all.

A λ-term L is a λI-term if in every subterm λx.M , x ∈ FV(M). If furthermore
x appears free in M exactly once, and each free variable y of L has at most one
free occurrence in L, then L is a linear λ-term; we let Λ`(C) denote the set of
linear λ-terms over C. We write by convention λxy.L for λx.λy.L and LMN for
(LM)N (i.e. we treat application as left associative).

We assume the usual definitions for α, β, and η reductions:

λx.L→α λy.(L{x← y})
(λx.L)M →β L{x←M}
λx.(Lx)→η L

(where substitutions have to avoid name clashes and x 6∈ FV(L) for η-reductions),
and recall that βη-reductions are Church-Rosser: if L⇒?

βη M and L⇒?
βη N , then

there exists L′ s.t. M ⇒?
βη L

′ and N ⇒?
βη L

′, which implies that βη reductions
define unique normal forms, noted ⇓βηL.

Types Assume we are provided with some non-empty countable set of atomic
types A; then types in TA are terms defined inductively by

τ ::= a | τ → τ

where a ranges over A. By convention we consider → to be right-associative, i.e.
we write ρ→ σ → τ for ρ→ (σ → τ). The order of a type τ is defined inductively
as

ord(a) = 1 ord(σ → τ) = max(ord(σ) + 1, ord(τ)) .

A higher-order signature is a triple Σ = 〈A,C, τ〉 where A is a set of atomic
types, C a countable set of constants and τ : C → TA a typing of the constants.
Given a higher-order signature, each λI-term of Λ(C) can be assigned a type in TA
by the deduction rules

`Σ c : τ(c)
(Cons)

x : τ `Σ x : τ
(Var)

Γ, x : σ `Σ L : τ

Γ `Σ λx.L : σ → τ
(→I)

Γ `Σ L : σ → τ ∆ `Σ M : σ Γ,∆ compatible

Γ,∆ `Σ LM : τ
(→E)
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where the type contexts Γ,∆ are type assignments from free variables to TA;
in (→E) the two assignments have to be compatible, i.e. assign the same types
to common variables. For linear lambda terms, this compatibility requirement
is useless as FV(L) ∩ FV(M) = ∅. We can extend the typing system to any λ-
term instead of λI-terms if we additionally allow (→I) to work on the premise
Γ `Σ L : τ where x is not among FV(L) nor in the domain of Γ.

Example 4.1 (B combinator). Define B
def
= λxyz.x(yz). It can be typed by:

x : a→ b `Σ x : a→ b

y : c→ a `Σ y : c→ a z : c `Σ z : c

y : c→ a, z : c `Σ yz : a

x : a→ b, y : c→ a, z : c `Σ x(yz) : b

x : a→ b, y : c→ a `Σ λz.x(yz) : c→ b

x : a→ b `Σ λyz.x(yz) : (c→ a)→ c→ b

`Σ λxyz.x(yz) : (a→ b)→ (c→ a)→ c→ b

Properties Let us end this quick survey with a few important properties of the
simply typed λ calculus: See e.g. (Hindley, 1997,

Chapter 2).
The first two show that types are preserved by reductions:

Proposition 4.2 (Subject Reduction). If Γ `Σ L : τ and L⇒?
βη M then Γ `Σ M : τ .

The converse holds for linear terms (and more generally for reductions that do not
exercise non linear variables):

Proposition 4.3 (Subject Expansion). If τ is a linear λ-term, Γ `Σ L : τ , and
M ⇒?

β L, then Γ `Σ M : τ .

Exercise 4.1. Prove (∗)Proposition 4.2 and Proposition 4.3.

The second main result about typed λ-terms is that reduction is strongly nor-
malising: every sequence of rewrites eventually terminates to a term in normal
form: The length of βη reductions can

be non elementary in the size of
the starting term (see Statman,
1979a; Schwichtenberg, 1991).

Theorem 4.4 (Strong Normalisation). If L is a typable λ-term, then every βη-
reduction starting at L is finite.

Remember that not every λ-term is typable; the typical example of a non-typable
term being λx.xx. However, every linear λ-term is typable. A related question is
the type inhabitation problem: given a simple type τ , does there exist a closed
λ-term L with type τ? This is usually formulated over an empty set of constants
C = ∅. By the Curry-Howard isomorphism (see e.g. Hindley, 1997, Chapter 6), the
type inhabitation problem is the same as provability in intuitionistic propositional
logic: The type inhabitation problem

becomes 2EXPTIME-complete for
λI-terms (Schmitz, 2014).Theorem 4.5 (Statman, 1979b). Simple type inhabitation is PSPACE-complete.

4.1.2 Ground Terms over Second-Order Signatures

Because we are typically interested in tree structures, it is worth investigating how
they can be represented in the simply-typed λ-calculus. To this end, we restrict
ourselves to second-order signatures Σ = 〈A,C, τ〉, i.e. signatures such that the
type of any constant c is of form

τ(c) = a1 → · · · → an → a0

for atomic ai’s in A.
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Exercise 4.2 (Normalised Typing System). Consider(∗∗) the normalised typing system
with a single rule

τ(c) = a1 → · · · → an → a0 `′Σ t1 : a1 . . . `′Σ tn : an

`′Σ c t1 · · · tn : a0
(App)

We want to show that, for all ground terms t and atomic types a, `Σ t : a if and
only if `′Σ t : a.

1. Show that, if τ(c) = a1 → · · · → an → a0, 0 ≤ i ≤ n, and `Σ tj : aj for all
0 < j ≤ i, then `Σ c t1 · · · ti : ai+1 → · · · → an → a0. Deduce that `′Σ t : a
implies `Σ t : a if t is ground and a atomic.

2. Show that, if `Σ t : α for a ground term t and type α, then t = c t1 · · · ti for
some constant c with τ(c) = a1 → · · · → an → a0, some 0 ≤ i ≤ n, and some
ground terms t1, . . . , ti such that α = ai+1 → · · · → an → a0 and `Σ tj : aj
for 0 < j ≤ i for some atomic types aj ’s.

3. Deduce that `Σ t : a implies `′Σ t : a whenever t is a ground term and a an
atomic type.

For a second-order constant c with type τ(c) = a1 → · · · → an → a0, we call
n its arity (and thus can see C as a ranked alphabet) and associate to the ground
lambda term t = c t1 · · · tn with atomic type a0 the unique tree t̄ = c(n)(t̄1, . . . , t̄n).
Given a second-order signature Σ and a distinguished atomic type s, we define the
ground tree language

G (Σ, s)
def
= {t̄ ∈ T (C) | `Σ t : s where t is ground} .

Example 4.6. Consider the second-order signature Σ0 with atomic types A0 =
{np, s, c}, constants C0 = {Alice, believe, left, someone, that}, and typing

τ0(Alice) = np τ0(believe) = c→ np→ s

τ0(left) = np→ s τ0(someone) = np

τ0(that) = s→ c

The corresponding ranked alphabet isF0 = {Alice(0), believe(2), left(1), someone(0), that(1)}.
Then the set of trees in G (Σ0, s) is recognised by a tree automatonA = 〈Q,F0, δ, I〉
with Q = A0, I = {s}, and rules

δ = {(np,Alice(0)),

(s, believe(2), c, np)

(s, left(1), np)

(np, someone(0))

(c, that(1), s)} .

Exercise 4.3 (Local Tree Automata). Let(∗∗) F be a ranked alphabet. A deterministic
top-down tree automaton A = 〈Q,F , δ, {q0}〉 is local if there exists a function
`:F → Q such that the rules in δ are all of the form (`(f (n)), f (n), q1, . . . , qn).

1. Show that, if L is recognized by a local deterministic top-down tree automa-
ton, then there is a second order signature Σ and a distinguished atomic type
s such that L = G (Σ, s).
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Figure 4.1: Constituent and dependency analyses for John eats a red apple.

2. Show that, conversely, given a second-order signature Σ and a distinguished
atomic type s, there exists a local top-down deterministic tree automaton A
such that L(A) = G (Σ, s).

By the previous exercise, not every regular tree language can be expressed as
the ground tree language of a second-order signature, e.g. the language L =
{f(g(a), g(b))} is not local.

4.1.3 Higher-Order Homomorphisms

This idea is now pretty common,
and lies at the heart of
(second-order) abstract
categorial grammars (ACG
de Groote, 2001); see also the
context-free λ-term grammar
(CFLG) formulation of Kanazawa
(2007) or the simple
presentation of Blackburn and
Bos (2005, Chapter 2).

One of the main legacies of Richard Montague’s work is the idea that semantic
representations can be obtained through the application of a homomorphism on
the syntactic structure. However tree homomorphisms are clearly too weak for the
kind of tree transductions we want to define; following Montague we use instead
higher-order homomorphisms. The idea of these homomorphisms is to translate
a syntactic tree representation (e.g. a derivation tree or a dependency tree), seen
as a typed λ-term over the input signature, into a λ-term over the output signature
and then to βη-reduce it to a λ-term in normal form.

Definition 4.7 (Higher-Order Homomorphism). A higher-order homomorphism
from a set of constants C to a set of constants C ′ is generated by a function J.K
mapping constants in C to closed λ-terms in Λ(C ′). We lift J.K to a homomorphism
from Λ(C) to Λ(C ′) by JxK = x, JLMK = JLKJMK, and Jλx.LK = λx.JLK.

Example 4.8. Continuing with Example 2.1, Figure 4.1 presents two syntactic
analyses (the dependency one could for instance be obtained from the constituent
one through head percolation analysis or as the derivation tree of a TAG). For the
constituent analysis of Figure 4.1, we have

C = {John(0), apple(0), . . . ,AP(2),NP(2), JJ(1), . . . ,S(2)}

and

C ′ = {John(0),∧(2),∃(2), . . . } .
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We assign the semantics

JJohn(0)K = λx.x John(0)

Japple(0)K = λx.apple(1) x

Jred(0)K = λx.red (1) x

JAP(2)K = λx1x2x.(x1 x) ∧ (x2 x)

Ja(0)K = λxy.∃u.(xu) ∧ (y u)

JNP(2)K = λx1x2x.x1 x2 x

Jeats(0)K = λxy.∃e.(eat (1) e) ∧ x(λa.agent (2) e a)

∧ y(λp.patient (2) e p)

JVP(2)K = λx1x2x.x1 xx2

JS(2)K = λx1x2.x2 x1

(ignoring tree nodes with a single child, for which we set e.g. JNN(1)K = λx1.x1).
The first-order variables u and e could be considered as constants of arity 0 in C ′,
but this causes some naming issues; an alternative would be treat ∃x.ϕ as ∃λx.ϕ.
This definition results successively in

JAP red appleK⇒?
β λx.(red (1) x) ∧ (apple(1) x)

JNP a AP red appleK⇒?
β λx.∃u.(red (1) u) ∧ (apple(1) u) ∧ (xu)

JVP eats NP a AP red appleK⇒?
β λx.∃e.(eat (1) e) ∧ x(λa.agent (2) e a)

∧ ∃u.(red (1) u) ∧ (apple(1) u) ∧ (patient (2) e u)

JS. . . K⇒?
β ∃e.(eat (1) e) ∧ (agent (2) e John(0))

∧ ∃u.(red (1) u) ∧ (apple(1) u) ∧ (patient (2) e u) ,

which is the λ-term encoding of (2.24).

Exercise 4.4. Propose(∗) similarly a higher-order homomorphism from the depen-
dency structure of Figure 4.1 into its semantics.

4.1.4 Tree Transductions

The definition we provided for higher-order homomorphisms does not use types
explicitly; this is easy to remedy:

Definition 4.9 (Typed Homomorphism). A typed homomorphism between two
signatures Σ = 〈A,C, τ〉 and Σ′ = 〈A′, C ′, τ ′〉 extends a higher-order homomor-
phism J.K between C and C ′ by mapping each atomic type of A into a type of TA′

s.t. `Σ′ JcK : Jτ(c)K is a valid typing judgement for all c in C.

Example 4.10 (Higher-Order Tree Functions). Let us see how this definition can
be exercised to define tree transductions. We define the generic tree signature

over a ranked alphabetF as ΣF
def
= 〈{o},F , τF 〉where for every f (n) inF , τF (f (n))

def
=

o→ · · · → o︸ ︷︷ ︸
n times

→ o = on → o.

Let ΣC and ΣC′ be two generic tree signatures over the ranked alphabets C
and C ′, and let J.K be a typed homomorphism between ΣC and ΣC′ , and s ∈ A
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be a distinguished input atomic type with JsK = o. We define the corresponding
(partial) higher-order tree function T :T (C)→ T (C ′) by

T (t̄1) = t̄2 iff `Σ t1 : s ∧ Jt1K⇒?
βη t2 . (4.1)

Note that in this definition, because the bijection .̄ between λ-terms and trees is
only defined for ground λ-terms, t2 must be in βη-normal form.

The semantic construction of Example 4.8 is a higher-order tree function when
setting ΣC and ΣC′ as input and output signatures and if we consider e and v as
nullary constants in C ′.

Linear Higher-Order Tree Functions As often in linguistic applications, a case
of particular interest is the linear one: a higher-order homomorphism between C
and C ′ is linear if JcK is a linear term for every c in C.

Definition 4.11 (Abstract Categorial Grammar). See de Groote (2001).An abstract categorial gram-
mar (ACG) is a tuple G = 〈Σ,Σ′, J.K, s〉 where Σ = 〈A,C, τ〉 and Σ′ = 〈A′, C ′, τ ′〉
are two signatures, J.K is a linear typed homomorphism, and s in A is a distin-
guished atomic type. The abstract language A (G) of G is

A (G)
def
= {L ∈ Λ`(C) | `Σ L : s}

the set of closed linear λ-terms typed by s in the input signature, while its object
language O(G) is

O(G)
def
= JA (G)K

the set of linear λ-terms obtained through the application of the homomorphism
J.K to abstract terms.

A second-order ACG is an ACG with a second-order abstract signature Σ. Such
ACGs are arguably the most relevant for the linguistic applications. Note that our
objects of interest are usually the normal forms found in the object language: these
turn out to be exactly the normal forms of the images of the ground terms in A (G):

⇓βηO(G) = ⇓βη{JtK ∈ Λ`(C
′) | t ground ∈ A (G)} . (4.2)

This follows from ⇓βηJLK = ⇓βηJ⇓βηLK since J.K is a higher-order homomorphism,
and the fact that a closed term L in normal form is of atomic type s iff it is ground
(on a second-order signature).

Therefore, if the object signature is a generic tree signature ΣC′ , then a second-
order ACG can be understood as defining a linear higher-order tree function from
a local tree language (its abstract language) into the set of trees over C ′ (its object
language). The following exercise examines the simplest such situation, where the
homomorphic images of atomic types in the abstract signature are mapped to tree
types o in the object signature:

Exercise 4.5 (Tree Languages of ACG2,1). Given an (∗∗)ACG G = 〈Σ,ΣF , J.K, s〉 with
a second-order abstract signature Σ = 〈A,C, τ〉 and a generic tree signature ΣF
over some ranked alphabet F as object signature, we define its tree language as

T (G)
def
= {t̄ ∈ T (F) | t ground ∈ O(G)} . (4.3)

Assume that maxa∈A ord(JaK) = 1. Show that such ACGs generate exactly the set
of regular tree languages.
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More generally, the expressiveness of second-order ACGs has been studied by
Kanazawa (2010): their object languages correspond to the tree languages of
context-free hyperedge replacement grammars, which are also equivalent to
attributed context-free grammars (Engelfriet and Heyker, 1992) and outputs
of restricted forms of MTTs (Engelfriet and Maneth, 2000). This means that we
could also implement the tree transformations defined by second-order ACGs us-
ing more classical tree transductions. However, this would be at the expense of the
ability to view the translation as one into higher-order semantics, as we will do in
Section 4.3. In that situation, we will no longer work with ground object terms.

4.2 Intensionality

Intensional PhenomenaThis section is based on (Fitting,
2004) and the entry on

intensional logic in the Stanford
Encyclopedia of Philosophy.

deal with the difference between a meaning and its de-
notation. A classical example given by Frege is concerned about equality in math-
ematics: if a and b designate the same object, and equality is about objects and
not about their names, then there is no difference between “a = b” and “a = a”.
There is however a difference in informational content: the truth of these asser-
tions depends on the context, and there exist contexts that differentiate between
the two, namely those where a and b do not denote the same object.

Considering an example with more linguistic content, the sentence John knows
that the morning star is the evening star might have different truth values depend-
ing on the extent of the knowledge of John, but if morning star and evening star
are always mapped to the same object, namely Venus, we cannot model the case
where John is not aware of their identity. Similar intensional phenomena can oc-
cur in relation with temporal modalities instead of epistemic ones: The King of
England was the head of the Church of England holds true after King Henry VIII
separated the Church from Rome in 1534, thus in worlds after 1534 where the
King of England denotes Henry VIII or one of his successors; again an intensional
reading should be preferred. A last classical example of Montague contrasts John
finds a unicorn with John seeks a unicorn. These are structurally similar, but the
first one implies that there exists a unicorn, while the second allows both readings:
the so-called de dicto reading which does not imply the existence of unicorns, and
the de re reading from which existence of unicorns follows. These two readings
could be modelled using different scopes for the modal seeks.

Intensional Logic This reveals an issue with FOML: there is no way to map
variables to different objects depending on the world under consideration. The
solution adopted in first-order intensional logic (FOIL) is to use two sorts of
variables, intensional and extensional ones. Intensions might denote different
objects in different worlds: for instance if f is an intension and w is a world,
then f(w) would be the extension of f in w.

There is an issue with this account of intensionality. If f is an intension and P
a unary predicate, then P (f) could mean that the extension of f verifies P (de re
reading), or that the intension f itself verifies P (de dicto reading). For instance,
The morning star is the evening star would use a de re reading, but The morning
star is the last star seen in the morning would be true regardless of the actual object
denoted by the morning star. If we consider alethic modalities, ♦P (f) might either
mean that in some possible world w, P (f(w)) holds, or that in some possible
world w′, P (f) holds. In order to distinguish between these alternatives, the de re
reading is noted [λx.♦P (x)](f) and the de dicto one ♦[λx.P (x)](f).

http://plato.stanford.edu/entries/logic-intensional/
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Given an infinite countable set of object variables O and an infinite countable
set of intension variables I, FOIL formulæ follow the syntax

ϕ ::= x = x′ | Ri(y1, . . . , yki) | [λx.ϕ](f) | ¬ϕ | ϕ ∧ ϕ | ♦ϕ | ∃y.ϕ

where x, x′ range overO, f over I, y, y1, . . . , yki over I]O, Ri is a ki-ary relational
symbol, and ϕ is a formula with a free object variable x, so that [λx.ϕ](f) denotes
ϕ{x← f}. We write [λxx′.ϕ](f, f ′) for [λx.[λx′.ϕ](g)](f). This last construction is
a form of abstraction limited to first-order. Fitting (2004) also adds a typing

discipline to the relations Ri to
better differentiate between
intensional and extensional
arguments.

Intensional models for FOIL are of form M = 〈W,R,DO, DI , I〉 where a dis-
tinction is drawn between the object domain DO, which is a non-empty set in our
constant semantics, and the intension domain DI , which is a non-empty set of
functions from W to DO, and I maps a relational symbols Ri with arity ki to a
mapping I(Ri) from W to relations over (DO ∪DI)ki . A valuation is now a map-
ping assigning members of DO to object variables and members of DI to intension
variables. The satisfiability relation is similar to that of FOML, with

M, w |=ν ∃f.ϕ iff ∃i ∈ DI(w).M, w |=ν[f←i] ϕ

M, w |=ν [λx.ϕ](f) iff M, w |=ν[x←ν(f)(w)] ϕ .

Example 4.12 (Morning Star). Let us consider again the sentence The morning
star is the evening star and associate f to the intension the morning star and g to
the intension the evening star. Then [λxx′.x = x′](f, g) is correct in the real wordw,
where f and g are associated to the same object ν(f)(w) = ν(g)(w) in DO, namely
Venus. In an epistemic setting, the de dicto reading K[λxx′.x = x′](f, g) can be
falsified if we find another state of knowledge w′ compatible with the real world
w where this information is missing, i.e. where ν(f)(w′) 6= ν(g)(w′)—this could be
the case in the sentence John knows that the morning star is the evening star if John
is unaware of their both being Venus. By contrast, the de re reading [λxx′.K(x =
x′)](f, g) is always satisfied in w because in any state of knowledge compatible
with the real world, f and g have received the same extension ν(f)(w) = ν(g)(w).

Example 4.13 (King of England). The treatment of the sentence The King of Eng-
land was the head of the Church of England is similar: consider the intensions f
for the King of England, g for the head of the Church of England, and a point in
time w. Then P [λxx′.x = x′](f, g) could be invalidated if there is no past time
w′ < w where the denotations ν(f)(w′) and ν(g)(w′) were the same—i.e. before
the 1538 secession from the Roman Church—, but is valid in time points w after
the secession. The de re reading does not make any sense: [λxx′.P (x = x′)](f, g)
holds iff ν(f)(w) = ν(g)(w) at the time of interest, regardless of past times where
equality is evaluated.

Total Intensionality Let D(f, x) stand for [λx′.x = x′](f) where x and x′ are
distinct object variables. Then M, w |=ν D(f, x) holds iff ν(f)(w) = ν(x).

The formula ∀f∃x.D(f, x) is valid in intensional models as defined so far, since
ν(f) is a total function from W to DO. There is however no requirement for every
object to be designated by some intension, i.e. for

∀x.∃f.D(f, x) (4.4)

to hold. This is however a reasonable restriction; let us check for instance the
following equivalence under the hypothesis of (4.4):

∃x.ϕ ≡ ∃f.[λx.ϕ](f) . (4.5)
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Indeed, for all M, w, ν and ϕ,

M, w |=ν ∃f.[λx.ϕ](f)

iff ∃i ∈ DI .M, w |=ν[f←i] [λx.ϕ](f)

iff ∃i ∈ DI .M, w |=ν[f←i,x←i(w)] ϕ

iff ∃e ∈ DO.M, w |=ν[x←e] ϕ (by (4.4) when choosing i(w) = e)

iff M, w |=ν ∃x.ϕ .

Exercise 4.6.(∗) Show the following equivalence when (4.4) holds:

∃f.♦[λx.ϕ](f) ≡ ♦(∃x.ϕ) . (4.6)

Example 4.14 (Unicorn). The sentence John finds a unicorn could be associated
with the semantics

∃ex.find (1)(e) ∧ agent (2)(e, John(0)) ∧ patient (2)(e, x) ∧ unicorn(1)(x) (4.7)

but it is better to treat unicorn as an intension in the formula

∃u.[λx.∃e.find (1)(e) ∧ agent (2)(e, John(0)) ∧ patient (2)(e, x) ∧ unicorn(1)(x)](u) ,
(4.8)

equivalent to (4.7) in totally intensional models according to (4.5). Then we better
see the connection with the sentence John seeks a unicorn: its de dicto semantics
would be

∃u.TRY(John(0), [λx.∃e.find (1)(e) ∧ patient (2)(e, x) ∧ unicorn(1)(x)](u)) (4.9)

≡TRY(John(0),∃ex.find (1)(e) ∧ patient (2)(e, x) ∧ unicorn(1)(x)) (by (4.6))

and its de re semantics

∃u.[λx.TRY(John(0),∃e.find (1)(e) ∧ patient (2)(e, x) ∧ unicorn(1)(x)](u) (4.10)

≡ ∃x.TRY(John(0),∃e.find (1)(e) ∧ patient (2)(e, x) ∧ unicorn(1)(x)) (by (4.5))

and if the interpretation of unicorn(1) is the same in all worlds accessible through
the TRY modality,

≡ ∃x.unicorn(1)(x) ∧ TRY(John(0),∃e.find (1)(e) ∧ patient (2)(e, x)) .

4.3 Higher-Order Logic

Most of the discussion on semantic representations can be recast in the framework
of higher-order logic. This allows in particular to view the higher-order operations
of Section 4.1 not as a technical means to generate λ-terms viewed as trees (which
in turn can be interpreted in some logic), but instead to interpret these terms
directly in the higher-order logic. They become the semantics of the sentences
under consideration, with associated models.

4.3.1 Background: Church’s Simple Theory of Types

See Church (1940) and the entry
in the Stanford Encyclopedia of

Philosophy.

Higher-order semantics are typically expressed in simply typed lambda calculus as
defined in Section 4.1.1. As we want not just to manipulate typed λ-terms, but
also to be able to infer truths, we need to introduce a set of logical constants and
the associated logical rules.

http://plato.stanford.edu/entries/type-theory-church/
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Higher-Order Signature In Church’s simple theory of types, we use a signature
Σ = 〈A,C, t〉 where A = {ι, o} is set of atomic types, where ι denotes entities and
o truths. The logical constants are C = {⊥,⊃, (∀τ )τ∈T (A)} with types t(⊥) = o,
t(⊃) = o→ o→ o, and (∀τ ) = (τ → o)→ o for each type τ in T (A).

We write as usual L ⊃ M for ⊃ LM and ∀τx.L for ∀τ (λx.L). The other logical

connectives are defined as usual: ¬L def
= L ⊃ ⊥, L ∨M def

= (¬L) ⊃ M , L ∧M def
=

¬((¬L) ∨ (¬M)), etc. Equality is defined in the Leibnizian way as L = M
def
=

∀x.xL ⊃ xM , i.e. equality is defined as having L and M agree on all possible
properties x.

Logical and Conversion Rules The formal system needs two types of rules: log-
ical rules for the logical constants, and conversion rules for the λ-terms. In natural
deduction sequent style,

Γ, L  L
(Ax)

Γ,¬L  ⊥
Γ  L

(⊥E)

Γ, L M

Γ  L ⊃M
(⊃I)

Γ  L ⊃M Γ  L

Γ M
(⊃E)

Γ  L x 6∈ FV(Γ)

Γ  ∀τx.L
(∀I)

Γ  ∀τL ∆ `Σ M : τ

Γ  LM
(∀E)

Γ  L L =β M

Γ M
(β)

The deduction system also often includes the extensionality axioms:

Γ  (∀τx.Lx = M x) ⊃ (L = M)
(λX)

Γ  (L ≡M) ⊃ (L = M)
(≡X)

More axioms are used in the
simple theory of types; see Church
(1940).

As their name indicates, the extensionality axioms make the simple theory of types
unable to deal with intensional phenomena directly; a solution we will see in
Section 4.3.2 will be to introduce an new atomic type s ranging over worlds.

Higher-order logic can express a form of set theory: view the set comprehension
{x | P} as λx.P , or e ∈ E as E e. In fact, Church (1940) shows how to implement
Peano’s arithmetic in the simple theory of types, from which we can deduce the
incompleteness of higher-order logic.

Standard Models See also Henkin (1950).Higher-order logic comes with a very natural model theory.
For each τ in T (A), letDτ be the domain of expressions of type τ . LetDo = {>,⊥}
and Dι be some set of entities; then Dτ→ρ denotes the set of functions from Dτ to
Dρ, so that e.g. Dι→o is the type of first-order predicates.

4.3.2 Type-Logical Semantics

We follow Muskens (2011) for
this section, itself based on Gallin
(1975). See also the entry on
Montague semantics in the
Stanford Encyclopedia of
Philosophy.

Many classical modellings of natural language semantics in higher-order logic
posit an additional type s of worlds in order to account for modalities and in-
tensionality phenomena. The idea is to always treat truth values (of type o) as
relativized with respect to a possible world of evaluation. Thus we will consider a

http://plato.stanford.edu/entries/montague-semantics/
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syntactic category examples type
intransitive verbs walk, talk, eat1, . . . ι→ s→ o
transitive verbs eat2, love, . . . ι→ ι→ s→ o
common nouns apple, man, woman, . . . ι→ s→ o
adjectives red, . . . ι→ s→ o
determiners every, a, the, no, . . . (ι→ s→ o)→ (ι→ s→ o)→ s→ o
proper nouns John, Mary, . . . ι
modal adverbs necessarily, possibly, . . . (s→ o)→ s→ o
modal verbs know, believe, . . . (s→ o)→ ι→ s→ o
negation not (s→ o)→ s→ o

Table 4.1: Some constants and their possible types.

JwalkK = walk ι→s→o

Jeat2K = eat2ι→ι→s→o

JappleK = appleι→s→o

JredK = λPι→s→oxιws.red ι→s→o xw ∧ P xw
JeveryK = λPι→s→oP

′
ι→s→ows.∀ιx.(P xw ⊃ P ′ xw)

JaK = λPι→s→oP
′
ι→s→ows.∃ιx.(P xw ∧ P ′ xw)

JnoK = λPι→s→oP
′
ι→s→ows.∀ιx.(P xw ⊃ ¬P ′ xw)

JtheK = λPι→s→oP
′
ι→s→ows.∃ιx.(P ′ xw ∧ ∀ιy.(P xw ≡ x = y))

JJohnK = Johnι

JnecessarilyK = λps→ows.∀sw′.(Rs→s→oww′) ⊃ pw′

JpossiblyK = λps→ows.∃sw′.(Rs→s→oww′) ∧ pw′

JknowK = λps→oxιws.∀sw′.(Kι→s→s→o xww
′) ⊃ pw′

JbelieveK = λps→oxιws.∀sw′.(Bι→s→s→o xww′) ⊃ pw′

JnotK = λps→ows.¬ pw

Table 4.2: Examples of semantics associated with lexical elements.

higher-order signature Σ = 〈A, {⊥,⊃, (∀τ )τ∈T (A)} ∪ C, t〉 as in the simple theory
of types, where A = {s, ι, o} and C denotes additional non-logical constants. To
simplify matters, we avoid explicit events from Section 2.1.2.

Due to the relativisation wrt. worlds, a simple sentence like John walks is ex-
pected to be of type s→ o and to be associated to a logical representation like

walks John . (4.11)

Observe that we introduced an
explicit type for worlds in the

logic: this can be avoided if we
use intensional models as in
(Muskens, 2007). Recall that

Church’s simple type theory
verifies the extensionality axioms!

In order to obtain the appropriate type, a possibility is to set t(walks) = ι→ s→ o
and t(John) = ι. Looking at more complex examples (for instance Example 4.8),
we arrive at the types of Table 4.1. The semantics of a sentence can then be
computed by a higher-order homomorphism as in Section 4.1, but there will be no
need to translate back from λ-terms to first-order terms in order to reason about
the semantics: the λ-term is a meaning representation with full-fledged model
theory. See Table 4.2 for some examples of semantic values.

In this table, the semantics of alethic and epistemic modal logics have been
implemented directly using the R, K, and B constants with types s → s → o,
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ι → s → s → o, and ι → s → s → o respectively. The desired properties of these
relations can also be enforced; for instance ∀sww′. R ww′ forces R to be total.
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