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Extending CFG with structures
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ﬂ Some background about TAGs
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From CFG to Tree Substitution Grammars

s —> np vp CFG productions:

np —> pn @ are too local
:B > gstpg — need decorations for info propagation
—_—>
vp —> v np @ are generally not lexicalized
vp —> Vvp pp but info often propagated from words
pp —> prep also more efficient parsing algo for lexicalized grammars
np
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From CFG to Tree Substitution Grammars

s —> np vp CFG productions:

N2 @ are too local
EB > gstpp — need decorations for info propagation
—_—>
vp —> v np @ are generally not lexicalized
vp —> Vvp pp but info often propagated from words
pp —> prep also more efficient parsing algo for lexicalized grammars
np

CFG productions can be grouped into trees
— we get Tree Substitution Grammars (TSG)

S
/\
NP VP
For instance, dealing with ditransitive P
verb donner v NP PP
\ S
manger prep NP
|
a
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Derivation Tree vs Parse Tree

TSG are strongly equivalent to CFG

However, for TSG, parse trees and derivation trees are not equivalent

S S
/\
NP NP VP
: NPO /'\ | T
| v NP - PP Jean \Y NP PP
| \ ; \ \ \
NP © donne . prep NP donne une pomme  prep
| : | : NP2 PN
! a v o7 a Marie
Jean Lo NP 4
NP | T
! Marie T~
une pomme NPO~ NP1 NP2
_— \ T~
T2 T3 T4

Furthermore, several derivations may lead to a same parse tree
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One step farther: adjoining

How to deal with:
Jean donne souvent une pomme a Marie

Need a way to insert the adverb somewhere in the verbal tree
= adjoining operation

~> Tree Adjoining Grammars

INRIA Eric. de la Clergerie TAL 30/09/2014 7/91



TAG: a small example

Tree Adjoining Grammars [TAGs] [Joshi] build parse trees from initial and
auxiliary trees by using 2 tree operations: substitution and adjoining

subst

NP S = P

L /N /\

John NP| VP NP VP
| L
Vv John V
| |
sleeps sleeps
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TAG: a small example

Tree Adjoining Grammars [TAGs] [Joshi] build parse trees from initial and
auxiliary trees by using 2 tree operations: substitution and adjoining

subst adj
NP S - P Y = S
| / N\ /NN / N\
John NP| VP NP VP /// *V  Adv NP VP
| N g | I
V John V a lot John V
| | /N
sleeps sleeps \ Adv

b

sleeps alot
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Paul est plus grand que lui
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A more complex example: French comparative

adjP

supermod

/\

Cadv

plus

INRIA Eric. de la Clergerie

supermod

>(—/\
*supermod CS

~N
\

Oadj

*«adjP

grand

S

/\
NP VP

pn v adjP
\ \ I
Paul est

T

ocesu

que

supermod

—_—

supermod
adv adjP
I I
plus adj
I

grand

TAL

CS

/\
csu NP

| |
que pro
|
lui
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TAGs: (First) Formal definition

ATAG Gis atuple (N, %, S,Z,.A) where
@ Y afinite set of terminal symbols
@ N afinite set of non-terminal symbols
® S € N the axiom

@ 7 and A are two finite sets of elementary trees over N U X U {e}
only leaf nodes v may have a label /(v) € ¥ U {¢}
» the trees a in Z are initial trees
» the trees g in A are auxiliary trees and have a unique leaf node marked (x) as
a foot f3 with same label than the root node rg, i.e. I(fz) = I(rs)

Two operations may be used to combine the elementary trees
@ substitution of a leaf node v of v by some initial tree o € Z, (/(v) = /(L))
@ adjoining of an (internal) node v of v by some auxiliary tree g € A
G generates a tree language and a string language
T(G) = {yla ="y Ayield(y) e X* ANa €I NI, =S}
L(G) = {yield(v)|y € T(G)}
TAL 30/09/2014  11/91



Adjoining

Assuming v = ( E) with v € V and g = (V3, Eg) with rz, fg € V3,
such that I(v) = I(rg) e N

yladj(v, 8)] = (V', E')
with

Vi = VU Vo\{1}

{(x,y) e Elx#v Ay #v}
E=U Eﬁ

{(x,18)|(x,v) € E}

{(f, )I(v,y) € E}

Note: The node sets are assumed to be renamed to avoid clashes,
ie. ENE =10

INRIA Eric. de la Clergerie TAL 30/09/2014 12/91



Adjoining contraints

A full definition of TAGs should include constraints on adjoining nodes:

ATAG Gisatuple (NV,X,S,Z, A, foa, fsa) where,
assuming V set of nodes in ZuU A,

@ fos: V — {0, 1} specify if adjoining on v is obligatory (1) or not (0)

@ fgs: V — 24 specify which auxiliary trees may be adjoined on v
note: v becomes non-adjoinable with fsa(v) = 0

Adjoining constraints necessary for getting the full expressive power of TAGs
but they are often implicit:

@ no adjoining on leaf nodes (including foot nodes)
@ explicit mandatory adjoining (MA, +) marks on some nodes
@ explicit non adjoining (NA, —) marks on some nodes

INRIA Eric. de la Clergerie TAL 30/09/2014 13/91



S NP NP \Y
/\

P
b/
NP | VP Tarzan Jane xVP Adv

/\

/ \
J

V NP |

J

passionately
loves

/ \
Tarzan VP

Adv
/ \ |

NP passionately
l |

loves Jane
a(loves)
subst(NP;)

subst(NP) I adj(VPy) _
| = -
a1 (Tarzan) az(Jane)

For TAGs, derivation tree not isomorphic to parse tree
but close from semantic level

B1(passionately)
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Regular Tree Languages

For a TAG G, its set of derivation trees D(G) forms a regular tree language

i.e., D(G) may be generated by a finite tree automaton
(top-down) term rewrite rules of the form
q0<_a(q17~'~7qn)7 gi € anej:

may also be seen as the parse trees for some CFG G’

INRIA Eric. de la Clergerie TAL 30/09/2014 15/91



Root
Adjunction j i
A o

Auxiliar Tree

Input String
adjoining

@ discontinuity (hole in aux tree)

@ crossing (both sides of the hole)
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Root

adjoining

Input String

Adjunction
Auxiliar Tree

@ discontinuity (hole in aux tree)

@ crossing (both sides of the hole)

nested adjoining
@ unbounded synchronization (both sides of spine)

INRIA Eric. de la Clergerie
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Expressive power of TAGs

The adjoining operation extends the expressive power of TAGs w.r.t. CFGs.
@ long distance dependencies (wh-pronoun extraction for instance)

@ crossed dependencies as given by copy language “ww” or by language

uanbn Cnn

(1) omdat ik Cecillia de nijlpaarden zag voeren
because I Cecilia the hippopotamuses saw feed
because | saw Cecilia feed the hippopotamuses
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TAGs can'’t handle the following languages:

@ a'bmcdmelfm

@ multiple copy languages w" with n > 2.

INRIA Eric. de la Clergerie
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Pumping lemma

Tree Adjoining Languages satisfy a pumping lemma

If Lis a TAL, then there exists N, such for all w € L and |w| > N,
there exist x, y, z, v1, vo, Wy, Wo, W, Wy € L*, such that

[Vivowywowswy| < N
|wiwowswy| > 1

and one of the following case holds
Q w = xwyviwoywsvow,z and VK > 0, xwiviwSywsvowsz € L
Q w = xwiviwavawsywsz and Yk > 0, xwk ™ vy wovows(wawswa )k ywaz € L
Q w = xwiywovywavew,z and forallk > 0, xwyy (wows wa ) waviwavaws ! € L

INRIA Eric. de la Clergerie TAL 30/09/2014 19/91



Closure properties of TALs

As CFLs, TALs form an Abstract Family of Languages (AFL):
@ closed by intersection with regular languages
@ closed by union, concatenation, and Kleene-iteration
© closed by homomorphism and inverse homomorphism

In particular, (1) = notion of Shared Derivation Forest

INRIA Eric. de la Clergerie TAL 30/09/2014 20/91



Shared Derivation Forests

Formal definition in Vijay-Shanker & Weir 1993
o Tarzan i loves » Jane 3 very 4 passionately s

oloves) a1(0,5) = a1(0,1) loves(1,2) az(2,3) A:(1,5,1,3)
/[\\ B1(1,5,1,3) — 52(3,5,4,5) passionately(4,5)
‘ C B2(3,5,4,5) < very(3,4)
subst(/ subst(N adJ(VPJ)\ - (071) - Tarzan(0,1)
/ ‘ SO a1(2,3) «+ Janes(0,1)
aq(Tarzan)  ap(Jane)3q (passionately)

adj(Advs)
|

Ba(very)

More formally, use tree nodes rather than trees
Space complexity in O(nf) by binarization (adj on spine node v)

T . . T ) J_
v (i,j,r,8) =13 (i,J,p,q) v=(P,q,r.S)
TAL 30/09/2014  21/91



Well formed trees

Many possible ways to define elementary trees
In practive, elementary trees follow some linguistic principles:
@ lexical anchoring: at least, one non-empty lexical (frontier) node
the head (or anchor)

@ sub-categorization: a frontier node for each argument sub-categorized by
the head
domain of locality

@ semantic consistency: a tree correspond to the scope of a semantic
predicate with its arguments

@ non-composition: a tree stands for a single semantic unit

A few bad trees:

S V S S S
/ } / \ ¢\ / \
NPl VP| dort NP/ VP C xS NP | VP
¥ | O\
V que V NP
V y / '\
donne regarde th T

le chien
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Feature TAGs

The nodes may be decorated with a pair (top, bot) of decorations

S

A AY
/

VAN
l

vouloir vouloir C xS b:mode=subj

— U

V xS b:mode=inf

que
When adj on v, unification of v.fop with rg.fop and v.bot with fs.bot
alternate way to express adjoining constraints

Note: for flat decorations, same expressive power and complexity
TAL 30/09/2014  24/91



TAG families

Trees derived from a canonical ones grouped into families
e.g. family of transitive verbs

tnOvn1 twninov trn1n0Ov
S s NP
T~ twh=+ /\ T~
VP *NP S
T S T
v — T que S
‘ VP /\
ov | VP
| v \
; \ '
mange ov |
ov

+ all other extractions (on NP,) + passive + extractions on passive
+ ordering + multiple realizations + ...

~» XTAG architecture
@ a set of trees (with anchor nodes) grouped into families
@ a lexicon L specifying for each word w the set of families it may anchor
+ additional constraints
TAL 30/09/2014  25/91



Meta-grammars

Large coverage TAG — many trees to write and maintain !

Alternative: generate the trees from a higher description level: meta-grammars
Abeillé, Candito

@ hierarchy of classes, containing constraints
A precedes B, Adominates B, ...

@ a class deals with a linguistic facet
e.g. verb argument, refined into subject or object

@ a class may require or provide functionalities
@ the classes may be combined to form neutral classes
@ the constraints of the neutral classes used to generate elementary trees

= used for FRMG, a large-coverage French TAG
http://alpage.inria.fr/frmgwiki
(plus mechanisms for factorizing elementary trees)

INRIA Eric. de la Clergerie TAL 30/09/2014 26 /91
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Long-distance dependencies

(Recursive) Adjoining may replace LFG'’s functional uncertainty for
long-distance dependencies

Jean demande [quel homme Paul pense [que Marie regarde €]]

S — NP S
(IWh) =¢ + =1
(tFocus) =1 ({Wh)=+

(tFocus)=1(Comp)*Obj

INRIA Eric. de la Clergerie TAL 30/09/2014 27 /91



Handled through repeated adjoining

s
//,’/ /\
quel homme _--~ NP VP
//’// A/I /\
S -7 Marie, % NP
L |
T | regarde €
NP VP ;
A /\ /,
Paul v cs |
| /\/I
pense csu *g
|

que
INRIA Eric. de la Clergerie
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e Deductive chart-based TAG parsing

INRIA Eric. de la Clergerie
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Deductive parsing

Formalization of chart parsing

Use of

@ universe of tabulable items, representing (set of) partial parses

@ items often build upon dotted rules A Ai.. A0 A q...

@ chart edges labeled by dotted rules (items = (i,j, A+ « e 3))

@ a deductive system specifying how to derive items

INRIA Eric. de la Clergerie TAL 30/09/2014 30/91
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CKY as a deductive system (for CFGs)

A<+ o
[’\
\
AT
v m N
<I,],A(—O[.aﬁ> a:aj+1 i j ]—|—1 (Scan)

(ibj+1,A< aaef)

e —_—

P . /7
(i,j,A+ aeBB) (j,k, B+ ~e) /m'ﬂk
(i,k,A< aBe )

(Complete)
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CKY algorithm for TAGs [Vijay-Shanker & Joshi 85]
Presentation:

@ Dotted trees N*® and N, where N is a node of an elementary tree
node.

@ ltems (N°*,i,p, q,j) and (N., i, p, q,j) with p, g possibly covering a foot

<M0’i’p’ qvj>

q

Without adjoining: (N.,p, —, —, Q)
With adjoining: (N°®, u, —, —, v)

30/09/2014
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Gluing a sub-tree at a foot node.

<Nﬂap7 r,s, q> (Rt.7i7pa qa/>

= label(R Adjoi

(N.i.T.5.]) label(N) = label(R;) (Adjoin)
R:* N°*
/ | |
| [
| |
I |
i pPg j |
N. |
AN I

p s q i rs i

INRIA Eric. de la Clergerie 30/09/2014  33/91 o = DAae



When no adjoining on a node

(tharasaq>
(N.ap7rasaq>

(NoAdjoin)

INRIA Eric. de la Clergerie
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Rule (Complete)

Gluing all node’s children

N'.7I'7 is Qiy li)j— N
<<IN I/1pIUZI- L3>c;1r>v / 1 \ andVi, 1 =r  (Complete)
o) 3} v
N; N,

Note: At most one child (k) covers a foot node with (Up;, Uq;) = (p«, Gk)
N.

ry /1 Px Qk rv

INRIA Eric. de la Clergerie TAL 30/09/2014 35/91



Complexity

Other deductive rules needed to handle
@ substitution
@ terminal scanning

+ axioms

Time complexity O(nMa(8:1+v+2)) with
@ v : maximal number of children per node
@ 2 : number of indexes to cover a possible unique foot node

Normalization using binary-branching trees (v = 2) = complexity O(n®)

4 indexes per item = Space complexity in O(n*) for a recognizer
O(n®) for a parser, keeping backpointers to parents

Optimal worst-case complexities
but practically, even less efficient than CKY for CFGs
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Prediction, dotted trees and dotted producctions

To mark prediction, new dotted trees [Shabes]: *N and N

Alternative: equivalence with dotted productions

N
//l\‘ =N« N;...N,

N, N,
dotted tree dotted production
Nk.a.Nk—H N<—N1...Nk0Nk+1...Nv
*R (root) T <+ eR
R® (root) T < Re QZ 4\>
<N N+ eN;... N, i i -
N, N <+ N;i...Npe b

(N aeMs,i,p,q,j)

INRIA Eric. de la Clergerie TAL 30/09/2014 37/91



Non prefix valid Earley algorithm

@ Glue a sub-tree at foot node F; (maybe useless !)

<M < 7.7p, r,s, q> <—|— — R[.a ia pa qv.l>
(M < ~e.i,r,s,j)

label(M) = label(R;)  (Adjoin)

@ Advance in recognition of N’s children

(N aeMB,i,uvj) (M vejr,s k)
(N—aMepg,i,ulr,vUs,Kk)

(Complete)

(Adjoin) and (Complete) similar to CKY (binary form)
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Predict adjoining at M

(N« aeMB,ip,q,j)

label(M) = label(R;)

(CallAdj)

i Pqj

INRIA Eric. de la Clergerie

30/09/2014 39/91

m]

DELE



Predict adjoining at M

(N« aeMB,ip,q,j)
(T — ’Rt’j’ ) _7j>

label(M) = label(R;)

(CallAd))

O

L———_\
INRIA Eric. de la Clergerie
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Predict a sub-tree root at M to recognize below foot node F;

<Ft — e J_,i,—,

_7j>

label( F;) = label(M)

(CallFoot)

A

INRIA Eric. de la Clergerie
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Predict a sub-tree root at M to recognize below foot node F;

<Ft — e J_,i,—,

_’j>
<M «— .'7”. ) _”>

label( F;) = label(M)

(CallFoot)

INRIA Eric. de la Clergerie
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Predict a sub-tree root at M to recognize below foot node F;

(Ft — e J.,i,—,—,l)

(M« o, i,—,—, i) label(F;) = label(M)

(CallFoot)

30/09/2014 40/ 91
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The prediction of M not related to the node M’ having triggered the adjoining of ¢
= Non prefix valid parsing strategy
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Complexity

@ Space complexity remains O(n*)
@ Dotted productions = implicit binarization = time in O(n®)
@ Non prefix valid: impact difficult to evaluate in practice

@ Note: Dotted productions also applicable to improve CKY
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Complexities time in O(n°) and space in O(n®) due to 6-index items

Actually, {/ and bl may be avoided using dotted productions

INRIA Eric. de la Clergerie
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ESEREEIEriey [Nederhof

Item with only an extra index h: (h,N < «e 3,i,p, q,j)
h states starting (leftmost) position of current tree

N
~

.\\
A ~

(h,N < aBep,i,p,q,j)

INRIA Eric. de la Clergerie
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(h,N < ace MB,i,p,q,j)

label(F;) = label(M)

(CallFootPf)

INRIA Eric. de la Clergerie
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(h,N < ace MB,i,p,q,j)

<j:Ft<_.J—7k7_7_7k>

label(F;) = label(M)

(CallFootPf)

72

INRIA Eric. de la Clergerie
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(h,N < ace MB,i,p,q,j)

<j7Ft<_.J—7k7_7_7k>
<h’M<_.77k’_a_7k>

label(F;) = label(M)

(CallFootPf)

INRIA Eric. de la Clergerie
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(hyN <~ ae MB, i, u,v,j)

(h,M « ~e,p,r,5,q)

label(M) = label(R;)

(AdjoinPf)
\
\
\
\
N\ \\
\ Y
\ \
\ \
\ \ \
\\ \ \\
N _\; — =\
h
p q
INRIA Eric. de la Clergerie
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(hyN <~ ae MB, i, u,v,j)

U’T — Rt‘,j,P, q, k>
(h,M < ~e.p,1,5,q)

label(M) = label( R;) (AdjoinPf)

INRIA Eric. de la Clergerie
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Adjoining return

<h?N<_a.Mﬁ?i7u7 V7j>
U’T — RI.’j’p’ q, k>
(h,M < ~e,p,1,8,0)
(AN~ aMep i,uUr,vUs, k)

label(M) = label( R;) (AdjoinPf)

INRIA Eric. de la Clergerie TAL 30/09/2014 45/ 91



Raw complexity

Maximal time complexity provided by (AdjoinPf) : O(n'®) because of 10 indexes

(h,N e MB,i,u,v,j)
<jv—|— <~ R[.ajapv qa k>
(h,M < ~e,p,1,5,q)

(hyN+ aMepj i uUr,vU s, k)

label(M) = label(R;)  (AdjoinPf)

But (u,v) or (r,s) equals (—, —)
— (Case analysis) splitting rule into 2 sub-rules = O(n®) = not sufficient !
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Splitting and intermediary structures

Split (AdjoinPf) into 2 successive steps with an intermediary structure
M« ~e,j,r, s, K|

This intermediary structure combines the aux. tree with the subtree rooted at M

<ja T+ Rf.vjv p,q, k>
<haM<_ ’Y';P7r73aQ>

M« ~e,j,r, s, K|

(AdjoinPf-1)

(hyN < ae Mj, i u,v,j)
[M < e, j,r,8,K]|
(hyM < ~e,p,r,s,q)
(hyN+—aMep i, uUr,vUs,Kk)

(AdjoinPf-2)
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Projection

<ja T+ Rf.vjvpa q, k>
<haM<_ ’Y‘;P7r75aC7>

M« ~e,j,r, s, K|

(AdjoinPf-1)
Involves 7 indexes {j, p, g, k, h, r, s} but h not consulted

(h,M < ~e,p,r,s,q)
(5, M < ~veo,p,r,5,q)

(Proj)

<ja T ¢ Rf.vjvpa q7 k>
(x M < ye,p,1,5,q)

M« ~e,j,r, s, K|

(AdjoinPf-1)
Finally, O(n®) time complexity
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Case of (AdjoinPf-2)

(hyN < ae Mj,i,u,v,j)
[M < ~e.j,r,5,K]
(h,M < ~e,p,r,s,q) "
(hN<—aMeB,i,ulr,vUsK) (AdjoinPf-2)

10 indexes = Raw complexity in O(n'?)

At least one pair in (u, v) or (r, s) equals (—, —);
Case splitting = O(n®)

Pair (p,q) not consulted; projection = O(n®)
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Preliminary conclusion

Rule splitting, intermediary structures, and projections decrease complexities
but increase the number of steps
To be practically validated !

Designing a tabular algorithm for TAGs is complex!
@ Designing items
@ Understanding the invariants

@ Formulating the deductive rules (simultaneously handling tabulation and
strategy)

@ Optimizing rules (splitting and projections)

How to adapt for close formalisms such as Linear Indexed Grammars [LIG]?

Ao([o 0 x]) = Ar([]) - - Ax([e o ¥) - An([])
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LIG

Indexed Grammars: Context-Free grammars with non terminals decorated with

stacks
Linear Indexed Grammars: a single stack propagated per production

ALIG G= (WN,%,Z,S,P) where
@ Z is a finite set of indices
@ P is a finite set of productions of the form

Alooa] = Ai[]... Ailoof]...An]

or
All =~

withy e ¥*and o, 8 € 7*

Relationship with (linear monadic) Context-Free Tree Languages
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LIGs and TAGs

LIGs and TAGs are weakly equivalent, and almost strongly equivalent

TAGs may be easily encoded by LIGs, using tree nodes as non-terminals
@ adjoining node v in v using aux. tree g

l/[oo] — I'B[o ¢} V]

@ discharging a node v with children v4, ..., v, at a foot node f3
fglo o V] < viau] ... vp[an]
where a; = [00] if v; on spine, and «; = [] otherwise

@ traversing a node v without adjoining
v[oo] < vi[as] . . . vn[an]
with same conditions on «; than above

Reverse way more difficult: no locality constraint between push and pop points
(same aux. tree 3 for TAGs)

Suggest using LPDAs to parse LIGs and TAGs
but non efficient and non termination
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e Automata-based tabular TAG parsing
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From formalisms to automata

Methodology:

@ Automata are operational devices
used to describe the steps of Parsing Strategies

@ Dynamic Programming interpretations of automata used to identify
context-free subderivations that may be tabulated.

Formalisms Automata Tabulation Notes
RegExp FSA
CFG PDA o(n) Lang
TAG / LIG 2-Stack Automata ~ O(nf) Becker, Clergerie & Pardo
Embedded PDA  O(n®) Nederhof

Problem: 2-stack automata (or EPDA) have the power of Turing Machine
(intuition) moving left- or rightward = pushing on first or second stack & popping
the other one

= need restrictions
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EPDA

Embedded Push-Down Automata Becker are natural candidates for LIGs (and
TAGs) by handling stack of stacks.

Two flavors: Top-Down and Bottom-Up EPDAs

CIEC
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2-stack automata for TAGs

Solution: stack asymmetry
Master Stack: to keep trace of uncompleted tree traversals
: only to keep trace of uncompleted adjunctions
Adjunction info: (top-down) 7" = v and (bottom-up) v, = L
°T, T*, °B, B*: prediction and propagation info about top and
bottom node decorations (Feature TAGs)

Calls (top-down prediction) Returns (bottom-up propagation)
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2-stack automata for TAGs

Solution: stack asymmetry
Master Stack: to keep trace of uncompleted tree traversals
: only to keep trace of uncompleted adjunctions
Adjunction info: (top-down) 7" = v and (bottom-up) v, = L
°T, T*, °B, B*: prediction and propagation info about top and
bottom node decorations (Feature TAGs)

Calls (top-down prediction) Returns (bottom-up propagation)

*Tllz" al
o] — v

transition ACALL

el i

transition FRET

174 *B+v" all
e

transition FCALL
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2-stack automata for TAGs

Solution: stack asymmetry
Master Stack: to keep trace of uncompleted tree traversals
: only to keep trace of uncompleted adjunctions
Adjunction info: (top-down) 7" = v and (bottom-up) v, = L
°T, T*, °B, B*: prediction and propagation info about top and
bottom node decorations (Feature TAGs)

Calls (top-down prediction) Returns (bottom-up propagation)

.T ﬁn (GaW/A_ o -l—o v
ram—[ S
transition ACALL transition ARET

5% O 77 C(ﬂ e
Al = P T e e e O — ]

transition FCALL transition FRET
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Transitions

Retracing in erase mode concerns only the size of AS (not its content).

Retracing possible because :

WRITE transitions leave marks (PUSH, POP, NOP, NEW) in the
Master Stack that can only be removed by a dual ERASE transition.

N
PUSH POP

LN

Auxiliary stack

NV .

e WRITE transitions

NEW (C  SWAP Transition
< .

Vo ERASE transitions

| | |

T T T T

INRIA Eric. de la Clergerie
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Context-Free derivation for PDAs

Dynamic Programming : Recursive decomposition of problems into elementary
subproblems that may be combined, tabulated, and reused
eg the knapsack problem
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Context-Free derivation for PDAs

Dynamic Programming : Recursive decomposition of problems into elementary
subproblems that may be combined, tabulated, and reused
eg the knapsack problem

For PDAs, derivations broken into elementary Context-Free sub-derivations:

Init /\/D -----
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Context-Free derivation for PDAs

Dynamic Programming : Recursive decomposition of problems into elementary
subproblems that may be combined, tabulated, and reused
eg the knapsack problem

For PDAs, derivations broken into elementary Context-Free sub-derivations:

Mg.@.@.

AR T2
= % e-ITEM (B, A)

. is the fraction e of information consulted to trigger the subderivation and not

propagated to .
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~ (Escaped) CF derivations for 25A
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(Escaped) CF derivations for 2SA

®

— 5-point xCF items AB[DE]C = (eA)(¢B, b)[(eD, d)(E)](C, c)
[TAG] ~ (eA)(eB)[(eD){E)](C)

When no escaped part = 3-point CF items ABC = (eA)(eB, b)(C)

(new generalization) escaped part [DE] may take place between A and B
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xCFs and TAGs

/

A
®

@ Aroot of elementary tree

@ B start of adjoining

@ C current position in the tree

@ D and E left and right borders of the foot
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ltem shapes

At most 5 indexes per items = Space complexity in O(r°)
SD-2SA restrictions & transition kinds = 6 possible item shapes
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Combining items and transitions

By graphically playing with items and transitions, we find 10 composition rules
with O(n®) time complexity
may be split into 11 rules with O(n®) time complexity

(Easy:) Writea POP mark: 1 + b+ 7 =4
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. o _H:,X
toi
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Combining items and transitions

By graphically playing with items and transitions, we find 10 composition rules
with O(n®) time complexity
may be split into 11 rules with O(n®) time complexity

(Easy:) Writea POP mark: 1 + b+ 7 =14

Consultation of 3 indexes 181 = Complexity O(n®)
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(complex:) Erasinga PUSH mark: /i + b+ +7 =14

e.g. when returning from auxiliary tree (ending adjoining)
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(complex:) Erasinga PUSH mark: /i + b+ +7 =14

e.g. when returning from auxiliary tree (ending adjoining)

NS
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Combining items and transitions (2)

(complex:) Erasinga PUSH mark: /i + b+ +7 =14
e.g. when returning from auxiliary tree (ending adjoining)

/\ A
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Combining items and transitions (2)

(complex:) Erasinga PUSH mark: /i + b+ +7 =14
e.g. when returning from auxiliary tree (ending adjoining)
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Combining items and transitions (2)

( ) Erasinga PUSH mark: /i + b+ kL +7 =14
e.g. when returning from auxiliary tree (ending adjoining)

@ Consultation of 8 indexes (81 = Complexity O(n®)
@ need to decompose, project and use intermediary steps (as seen before)
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CFI >
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CFI >
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Cascade of partial evaluations

| RAI >
CAI
| }
CFI \ RFI > I
L. RFI,
CFI > RFI,
RFI,
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Cascade of partial evaluations

| RAI >
CAl
¢ N |
CFI RFI > A
L~ RFI, +
CFI > RFl,  RFI >
RFI,
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Cascade of partial evaluations
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Cascade of partial evaluations

N\
N\
/
\‘—i" RAI >
CAI RAI ‘ RAI >4
\_i
_‘_
' \_/'\
CFI RFI> I
i \ L~ RFI, H
N\ -
CFI > NI RFI, | RFI >
RFI,
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Simplified Cascade of partial evaluations

@ Not the optimal worst case complexity (because yellow subtree traversed in
the context of larger yellow subtree, keeping trace of unfinished adjoinings)
@ But more efficient in practice !
@ And suggesting extensions, based on the idea of continuation
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Simplified Cascade of partial evaluations

I
CAl
' _
FC.F' PNl
/
\
CFI > ‘—’/\ —— RF

— RAIl > —
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Part Il

MCS in general
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Q Thread Automata and MCS formalisms
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Mildly Context Sensitivity

An informal notion covering formalisms such that:
@ they are powerful enough to model crossing, such as a”b"c”

@ they are parsable with polynomial complexity
i.e. Given L, there exists k, membership w € checked in O(|w/|¥)

@ they generate string languages satisfying the constant growth property
3G, Gfinite ,3ny, Yw € L,|w| > ny = 3g€ G,Iw € L, |w|=|W|+g

(intuition) the languages are generated by finite sets of generators
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Mildly Context Sensitivity

An informal notion covering formalisms such that:
@ they are powerful enough to model crossing, such as a”b"c”

@ they are parsable with polynomial complexity
i.e. Given L, there exists k, membership w € checked in O(|w/|¥)

@ they generate string languages satisfying the constant growth property
3G, Gfinite ,3ny, Yw € L,|w| > ny = 3g€ G,Iw € L, |w|=|W|+g

(intuition) the languages are generated by finite sets of generators

Some MCS languages:
@ TAGs and LIGs
@ Local Multi Component TAGs (MC-TAGs Weir)
@ Linear Context-Free Rewriting Systems (LCFRS Weir)
@ Simple Range Concatenation Grammars (sRCG Boullier)
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Semi-linearity

The Constant Growth property subsumed by stronger semi-linearity under
Parikh image

The Parikh image of w € {ay, ..., as}* defined as p(w) = (|wla,, ..., |Wla,)
The Parikh image of L defined as p(L) = {p(w)|w € L}
A set V of vectors over N* is linear is generated by a base vy, v4,. .., v, € N* by

V= {Vo + 27:1 kivilki € N}

V is semilinear if V = UL V; is a finite union of linear sets V;
A language L is semilinear if p(L) is semilinear

(intuition) A MCS language is generated, modulo some permutations, by a finite
set of generators
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MCS: discontinuity and interleaving

Discontinuous interleaved constituents present in linguistic phenomena
Nesting, Crossing, Topicalization, Deep extraction, Complex Word-Order . ..
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|
A\
/ \
\
\
/ O\
X1 X2 X3 X4 H X5 X6
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MCS: discontinuity and interleaving

Discontinuous interleaved constituents present in linguistic phenomena
Nesting, Crossing, Topicalization, Deep extraction, Complex Word-Order . ..

/A\

\
\
\
\
\
\

A/MA

|
B
X1 X2 X3 X4 H X5 X6

@ LFCRS: A «+ f(B, C), f linear non erasing function on string tuples.
f((x1, X3, Xs5) , (X2, X4, Xe)) = (X1 X2X3X4, X5X5)

@ sRCG A(X1 X2.X3.X4, X5.X5) — B(X1 , X3, X5), C(Xg, X4, X5)
range variables x;; concatenation “.”; holes “)”
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LCFRS

Linear Context-Free Rewriting Systems (LCFRS) , a restricted form of
generalized CFGs

A LCFRSis atuple G= (N, %, S, P, F) where
@ P is a finite set of productions as follows, with f € F
A+ f(A,..., An)
@ Fis a set of linear regular operations over tuples of strings in ©*

f(<X171,...,X17k1>,...,<Xn71,...,X17kn>): <t1,...tk>

where V = {x; ;} are variables (over X*) and f; € (X U V)* and
» (regular or non-erasing) Vx; ;, 3y, Xij € tu
> (linear) Vxj,Xi; €tu AXj; ELy = U=V

Assuming arity(S) =1,
L(G) = {w|S = (w)}
where

A= f() ifA—f()eP
A= f(t;,....t) IfA—F(Ar,....A) P AVi, A=t
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RCG

Range Concatenation Grammars (RCG) [Boullier] :
Constraints on intervals on the input string.
For language a"b"c"

aabbcc  S(]0,6]) —

S(X@Y@Z) — A(X,Y,Z). aabbcc  A(]0,2],12,4],14,6])—
A("a" @ X, "b" @Y, "c"@Z) —> abc A(1,2],]3,4],15,6])—
AX,Y,Z). A(]2,2],]14,4],16,6])—

ACTTLTT) s

RCG is an operational formalism for encoding linguistic formalisms
where discontinuous constituents are used.

RCG allow modular grammar writing
concatenation G(X @ Y) ——> G1(X),G2(Y).
union G(X) ——> G1(X) | G2(X).
intersection G(X) ——> G1(X),G2(X).

Linear non-erasing positive RCGs equivalent to LCFRS
Full RCGs are PTIME (equivalent to Datalog)
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Parsing MCS

® MCS have theoretical polynomial complexity O(n")
depending upon
» degree of discontinuity, (also fanout, arity)
» degree of interleaving, (also rank)

@ But no uniform framework to express parsing strategies and tabular
algorithms
» operational device: Deterministic Tree Walking Transducer (Weir), but no
tabular algorithm
» operational formalism sRCG with tabular algorithm (Boullier)
but not for prefix-valid strategies

Notion of Thread Automata to model discontinuity and interleaving through the
suspension/resume of threads.
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Tree Walking Automata

TWA may be used to check properties of (binary) trees
(by accepting or rejecting them)

A (non-deterministic) TWA is atuple A= (Q,X, I, F, R, ) where
@ Qs afinite set of states
@ ¥ a finite set of node labels
@ [ F, R C Q the initial, accepting, rejecting states
@ ¢ the finite set of transitions in @ x X x Pred x Dirs x Q where

» Pred C {root, left, right, 1eaf} is a set of predicates for testing nodes
» Dirs C {stay, up, left, right} a set of directions

Deterministic TWA: § : Q x X x Pred — Dirs x Q

Given a X-tree T = (V, E), a configuration is given by (v,q) € V x Q

Extensions: Pebble Automata (Engelfriet)
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Tree Walking Transducers

Similar to TWA, but emits strings when walking over a tree (in some tree set)
A deterministic TWD (Weir)isatuple T = (9, G, X0, qi, F, ) where

@ G=(N,X,S,P)isaCFG

@ Y afinite set of output symbols

0 0:9x(NUX;U{e})—Dirsx QxXp

with Dirs = {stay, up, downy, . ..,down,}

A transition step given by
(g, dir) = 6(q, label(v))

V' = dir(v)

(@77 W (o wn) i {
The language generated by T defined as

L(T) = {w|(q1, 7 1y, )= (a1, 7, T, w)}

with gr € F, v a derivation tree for G with root r,
and 1 a virtual node parent of r,
Weir’s result: L(DTWD) = LCFRL
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Thread Automata

Idea: Associate a thread p per constituent and
@ create a subthread p.u for a sub-constituent [PUSH]

@ suspend thread at constituent discontinuity,
and (resume) either the parent thread [SPOP]
or some direct subthread [SPUSH]

@ scan terminal [SWAP]
@ delete thread after full recognition of a constituent [POP]
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Formal presentation of TA

Configuration (position /, active thread path p, thread store S = {p;:A;})
S closed by prefix: p.u € dom(S) = p € dom(S)
Note: stateless automata (but no problem for variants with states)

Triggering function a = ®(A) amount of information needed to trigger
transitions.
— useful to get linear compexity O(|G|) w.r.t. grammar size |G|
Default: ¢ = Identity

Driver function u € §(A) Drive thread creations and suspensions
= reduce number of transitions
(TA variants without ¢ should be possible)
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Formal presentation of TA (cont'd)

SWAP B-%:C : Changes the content of the active thread,
possibly scanning a terminal.

{I,p,S U p:B) {I+|al, p,S U p:C) a=aifate

—
p
PUSH b+ [b]C : Creates a new subthread (unless present)

{I,p,S U p:B) (l,pu,SUpP:BUpu:C) (b,u) € 6(B) A pu & do

=
POP [B]C — D : Terminates thread pu (if no existing subthreads).

(I, pu,S U p:BU pu:C) (I, p,S U p:D) pu & dom(S)

—
-
SPUSH b[C] — [b]D : Resumes the subthread pu (if already created)

{I,p,S Up:BU pu:C) (I,pu,S U p:BU pu:D) (b, u®) € ®5(B)

|_
-

SPOP [B]c — Dic] : Resumes the parent thread p of pu
(I, pu,S U p:BU pu:C) |7 (Lp,SUp:DUpu:C) (c,L) e d§(C)
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Characterizing Thread Automata

Key parameters:

h maximal number of suspensions to the parent thread
h finite ensures termination (of tabular parsing)

d maximal number of simultaneously alive subthreads
I maximal number of subthreads

s maximal number of suspensions (parent + alive subthreads)
s<h+dh<h+1Ih
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d maximal number of simultaneously alive subthreads
I maximal number of subthreads

s maximal number of suspensions (parent + alive subthreads)
s<h+dh<h+1Ih

Worst-case Complexity:

space O(n") where { U= 2+s5+x
time O(n'*+Y) x =min(s, (I — d)(h+ 1))

space between O(n?*+2%) and [when | = d] O(n?+9)
time between O(n®+29)) and [when | = d] O(n®**)
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Characterizing Thread Automata

Key parameters:

h maximal number of suspensions to the parent thread
h finite ensures termination (of tabular parsing)

d maximal number of simultaneously alive subthreads
I maximal number of subthreads

s maximal number of suspensions (parent + alive subthreads)
s<h+dh<h+1Ih

Worst-case Complexity:

space O(n") where { U= 2+s5+x
time O(n'*+Y) x =min(s, (I — d)(h+ 1))

space between O(n?*+2%) and [when | = d] O(n?+9)
time between O(n®+29)) and [when | = d] O(n®**)

Push-Down Automata (PDA) for CFG = TA(h=0,d=1,s=0)
= space O(n?) and time O(n®)
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Idea: Assign a thread per elementary tree traversal (substitution or adjunction)
Suspend and return to parent thread to handle a foot node
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Parsing TAGs

Idea: Assign a thread per elementary tree traversal (substitution or adjunction)
Suspend and return to parent thread to handle a foot node
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Parsing TAGs

Idea: Assign a thread per elementary tree traversal (substitution or adjunction)
Suspend and return to parent thread to handle a foot node

One thread per tree h =1, d = max(depth(trees))
= [s = 1 + d] space O(n*+29) and time O(n*+29)
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Parsing TAG: an alternate parsing strategy

Using more than one thread per elementary tree: 1 thread per subtree (~ LIG)
= implicit extraction of subtrees

= implicit normal form (using a third kind of tree operation)

— usual n® time complexity

Note: Similar to a TAG encoding in RCG proposed by Boullier
TAL 30/09/2014  82/91



Using less threads

Always possible to reduce the number of live subthreads (down to 2).

@ if athread p has d + 1 subthreads, add a new subthread p.v that inherits d
subthreads of p

@ generally increases the number of parent suspensions h

@ but may also exploit good topological properties, such as well-nesting
(TAGS).
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Parsing (ordered simple) RCG

Range Concatenation Grammars (Boullier)
v A(Xi Xe Xa Xy, Xs Xg) — B(X1, X3, X5)C(Xz, X4, Xs)
Ordered simple RCGs = Linear Context-Free Rewriting Systems (LCFRS)

A \
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Parsing (ordered simple) RCG

Range Concatenation Grammars (Boullier)
v A(Xi Xe Xa Xy, Xs Xg) — B(X1, X3, X5)C(Xz, X4, Xs)
Ordered simple RCGs = Linear Context-Free Rewriting Systems (LCFRS)

A \

C thread: - --- P S R T B S e B S
B thread <~ -- \T ........ <~ A l ......... AT SA
t | y t Y
A—71.0 V1A T.2 1.3 1.4 Y2.0 V2.1 V2.2 —>ret
) | t
N A
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Parsing (set-local) MC-TAGs

Idea: assign a thread to traverse (in any order) the elementary trees of a set ¥,
using extended dotted nodes > :po where

p stack of dotted nodes of trees being traversed
{ o sequence of root nodes of trees already traversed
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Idea: assign a thread to traverse (in any order) the elementary trees of a set ¥,
using extended dotted nodes > :po where

p stack of dotted nodes of trees being traversed
{ o sequence of root nodes of trees already traversed

Eg.: Adjoin trees of set ¥» = {1, 5>} on nodes of trees of set

25 I, Zg:rq1.
Yo o T
Z1-.ru1 | | | | Z1 roq
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Parsing (set-local) MC-TAGs

Idea: assign a thread to traverse (in any order) the elementary trees of a set ¥,
using extended dotted nodes > :po where

p stack of dotted nodes of trees being traversed
{ o sequence of root nodes of trees already traversed

Eg.: Adjoin trees of set ¥» = {1, 5>} on nodes of trees of set

ZZQ I, Zg r;1' Zg: I'aZI’B1 22 I3, rﬁ1

m max number of trees per set

; ; 3-+2(m+v)
Time complexity O(n ) where { v max number of nodes per set
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a A Dynamic Programming interpretation for TAs
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Dynamic Programming interpretation

Direct evaluation of TA ~» exponential complexity and non-termination
Use tabular techniques based on Dynamic Programming interpretation of TAs:

Principle: Identification of a class of subderivations that
@ may be tabulated as compact items, removing non-pertinent information
@ may be combined together and with transitions to retrieve all derivations

Methodology followed for PDAs (CFGs) and 2SAs (TAGs)
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Dynamic Programming — Items

DP interpretation of TA derivations:
(Tabulated) Item = pertinent information about an (active) thread

1— Start point 3— (current) Parent suspensions
2— (current) End point  4— (current) Subthread suspensions for live subthread:
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DP interpretation of TA derivations:
(Tabulated) Item = pertinent information about an (active) thread

1— Start point 3— (current) Parent suspensions
2— (current) End point  4— (current) Subthread suspensions for live subthread:

Projection x = ®(X) used to trigger transition applications
= easy way to get complexity O(|G|)
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Dynamic Programming — Items

DP interpretation of TA derivations:
(Tabulated) Item = pertinent information about an (active) thread

1— Start point 3— (current) Parent suspensions
2— (current) End point  4— (current) Subthread suspensions for live subthread:

Projection x = ®(X) used to trigger transition applications
= easy way to get complexity O(|G|)

Space complexity:
@ at most 2 indices per suspensions + start + end = 2(1 + s) < 2(1 + h+ dh)
@ Scanning parts generally of fixed length (independent of n)

_ Nndov Nnor cilicnancinn
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Based on following model:
parentitem sonitem trans
parent or son extension

{fitting son and parent items}
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Dynamic Programming — Application rules

Based on following model:
parent item sonitem frans

parent or son extension

{fitting son and parent items}

Case [SPUSH]: parent item down-extends son item
PU o
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Based on following model:
parent item sonitem frans

parent or son extension

{fitting son and parent items}

Case [SPUSH]: parent item down-extends son item

pu ....H.. ...... lﬁ _fITT ......
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Dynamic Programming — Application rules

Based on following model:
parent item sonitem frans

parent or son extension

{fitting son and parent items}

Case [SPUSH]: parent item down-extends son item

pu ....H., ...... Iﬁ.l_ fITT

Case [SPOP]: son item up-extends parent item

N N S O

INRIA Eric. de la Clergerie TAL 30/09/2014 89/91



Dynamic Programming — Application rules

Based on following model:
parent item sonitem frans

parent or son extension

{fitting son and parent items}

Case [SPUSH]: parent item down-extends son item

et 'ﬁ'f_mfzw
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Dynamic Programming — Application rules

Based on following model:
parent item sonitem frans

parent or son extension {fitting son and parent items}

Case [SPUSH]: parent item down-extends son item

pu ””H‘. ...... Iﬁl_fITT

pu ....Iﬁ‘. ...... lﬁ]' ....... Iﬁﬁ/’

Time complexity: all indices of parent item + end position of son item
ignore indices of son item not related to parent suspensions
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Dynamic Programming: Rules

B—C (a)/S/(B) a=aifae

(a)/S/(C)
I
b [Z])>C//<C/> /(B) { (b,u) € 95(B) A u ¢ ind(/)
[B]C — D (a)/S/(B)' J { J YIA (b,u) € ©5(B)
(a)/S/u/(D) J* =(C) Aind(J) C {1}

BIC]— [bID 1 (@/S/(C) [ INudAI*=(B)
(@/S, L (c)(b)/(D) { (b, u) € d3(B) A (c, L) € d5(C)

[Blc — Dc] (a)/S/(B)' J {waMamemw)
(ay/S,u: (b)(c)/(D) J* = (C)A(c, L) € 5(C)
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