
Tiling Problems and Unary Regular Expressions
Home assignment to hand in before or on December 10, 2015.

26 27 28 29

30

D
ec

em
b

er 1 2 3 4 5 6

7 8 9 10

Electronic versions (PDF only) can be sent by email to ⟨schmitz@lsv.ens-cachan.fr⟩,

paper versions should be handed in on the 10th or put in my mailbox at LSV, ENS

Cachan. No delays. The numbers in the margins next to exercises are indications

of time and difficulty, not necessarily of the points you might earn answering them.

In this home assignment, we are interested in tiling problems as a means to obtain
NP-complete problems with very simple descriptions. In a second part, we apply these
results to prove the coNP-completeness of the universality problem for regular expressions
over a unary alphabet, i.e. an alphabet of cardinal 1.

1 Square Tiling

The objective in a tiling problem is to cover a grid using a finite set of square tiles. Each
tile can be reused as many times as we want. The four edges of each tile are coloured,
so that adjacent tiles must have matching colours; importantly, tiles cannot be rotated.

Example 1. For instance, assume we are given the following set of tiles:

t0 t1 t2 t3 t4

We can use this set to tile the 5 × 5 square grid as follows:

0

1

2

3

4

0 1 2 3 4

mailto:schmitz@lsv.ens-cachan.fr


L3 Complexity November 26, 2015

Note that there is however no tiling of the 3 × 3 square grid using the subset of tiles
{t0, t1, t2, t3}: t1 and t2 can then only be used on the topmost row, and t3 only on the
rightmost column, and we cannot fill the 2 × 2 bottom-left square using only t0.

Definition 1 (Tile Set and Tiling). Let D
def
= {▷,△,◁,▽}. Formally, a tile set is

represented as a tuple T = ⟨C,T, t0⟩ where C is a finite set of colours, T ⊆ CD is a set of
tiles (described by their left, bottom, right, and top colours), and t0 ∈ T is a distinguished

start tile. For instance, the tile set of Example 1 can be defined by C
def
= { , , , }

and T
def
= {t0, t1, t2, t3, t4} where

t0
def
= ⟨ , , , ⟩ , t1

def
= ⟨ , , , ⟩ , t2

def
= ⟨ , , , ⟩ ,

t3
def
= ⟨ , , , ⟩ , t4

def
= ⟨ , , , ⟩ .

Given a positive integer N > 0, a tiling of the N×N square grid by T is an assignment
θ∶N ×N → T such that the bottom-left square is tiled by t0:

θ(0,0) = t0 ,

two horizontally adjacent tiles must have matching right and left colours:

∀0 ≤ i < N − 1.∀0 ≤ j < N . θ(i, j)[◁] = θ(i + 1, j)[▷] ,

and two vertically adjacent tiles must have matching top and bottom colours:

∀0 ≤ i < N.∀0 ≤ j < N − 1 . θ(i, j)[▽] = θ(i, j + 1)[△] .

Exercise 1 (Time-Bounded Computation Problem). Show that the following decision[3]

problem is NP-hard by a reduction from acceptance in polynomial time nondeterministic
Turing machines:

input: A one-tape nondeterministic Turing machineM and a time bound B > 0 encoded
in unary.

question: Does M have a computation of length B on the empty input ε?

Exercise 2 (Square Tiling Problem). Let us show that the following decision problem
is NP-complete:

input: A tile set T and a grid size N > 0 encoded in unary.

question: Does there exist a tiling of the N ×N square grid by T ?

1. Show that the square tiling problem is in NP.[1]

2. Reduce the time-bounded computation problem to the square tiling problem,[3]

thereby showing its NP-hardness. The idea of the reduction is for the top colours
of the jth row in a tiling of the N ×N square to represent the jth configuration of
a Turing machine.

2



L3 Complexity November 26, 2015

2 Universality of Unary Regular Expressions

As seen during the lectures, the universality problem for regular expressions, i.e. whether
L(E) = Σ∗ when given a regular expression E over some alphabet Σ as input, is PSPACE-
complete. Here we are however interested in a particular case: that of a unary alphabet

Σ
def
= {1}.
In this case, a unary regular expression is a term E defined by the abstract syntax

E ∶∶= ∅ ∣ 1 ∣ E +E ∣ E ⋅E ∣ E∗ .

Because the language of such an expression E is a set of words each of form 1n for some
n, it is more convenient to define its semantics JEK ⊆ N as the set of lengths n of words

in its language: JEK def
= {n ∣ 1n ∈ L(E)}. This can also be defined inductively on E by:

J∅K def
= ∅ , J1K def

= {1}

JE + F K def
= JEK ∪ JF K , JE ⋅ F K def

= {m + n ∣m ∈ JEK ∧ n ∈ JF K} ,

JE∗K def
= {0} ∪ {λn ∣ λ ∈ N ∧ n ∈ JEK} .

The universality problem for unary regular expressions is then:

input: A unary regular expression E.

question: Does JEK = N?

In the following, we prove the coNP-completeness of this problem. To facilitate matters,
we actually prove the NP-completeness of the more intuitive non universality problem,
which asks instead whether JEK ≠ N.

Exercise 3 (NP-Easiness). In order to prove that the non universality problem is in
NP, we shall use the fact that any regular expression E can be converted into a non
deterministic finite automaton A = ⟨Q,Σ, δ, I, F ⟩ with ∣Q∣ = ∣E∣ + 1 states and L(A) =

L(E).

1. Show that, if JEK ≠ N, then there exists n ≤ 2∣E∣ such that n /∈ JEK.[2]

2. Consider the transition matrix of A: it is a square matrix A of dimension ∣Q∣ with

A[q, q′] def
= 1 if (q,1, q′) ∈ δ and A[q, q′] def

= 0 otherwise. We similarly view I and F
as vectors in {0,1}∣Q∣.

(a) Show that n ∈ JEK if and only if I ⋅An ⋅ FT > 0.[2]

(b) Show that, for any 0 ≤ i, j < ∣Q∣, whether A2k[i, j] > 0 can be computed in[2]

time polynomial in ∣Q∣ and k.

3. Conclude.[1]

3



L3 Complexity November 26, 2015

Exercise 4 (NP-Hardness). In order to show the NP-hardness of the non universality
problem, we are going to reduce from the square tiling problem. Consider a tile set T
with tiles T = {t0, . . . , tn−1} and a grid size N > 0.

By the Prime Number Theorem, we can find distinct prime numbers pi,j ≥ n for
0 ≤ i, j < N such that maxi,j pi,j is polynomial in N and n. The idea of the reduction is
then to represent a tiling θ of N ×N by T as an integer z ∈ N such that z mod pi,j = k
if and only if θ(i, j) = tk. We are going to build a unary regular expression E such that,
if z /∈ JEK, then z describes a tiling.

1. Provide a regular expression E0 such that z ∈ JE0K if and only if z mod p0,0 ≠ 0.[1]

2. Provide a regular expression ET such that z ∈ JET K if and only if there exist[1]

0 ≤ i, j < N such that z mod pi,j /∈ {0, . . . , n − 1}.

3. Provide a regular expression EH of such that z ∈ JEHK if and only if there exist[3]

0 ≤ i < N − 1 and 0 ≤ j < N such that z mod pi,j = k, z mod pi+1,j = `, and
tk[◁] ≠ t`[▷].

Provide similarly a regular expression EV such that z ∈ JEV K if and only if there
exist 0 ≤ i < N and 0 ≤ j < N − 1 such that z mod pi,j = k, z mod pi,j+1 = `, and
tk[▽] ≠ t`[△].

4. Show that these expressions can be computed in polynomial time and conclude.[1]

4


	Square Tiling
	Universality of Unary Regular Expressions

