Forme normale de GREIBACH

Devoir à rendre au plus tard le 11 mai 2016.

Vos versions électroniques (PDF) peuvent m'être envoyées par email à (schmitz@lsv.fr), vos versions papier doivent m'être rendues en mains propres le 11 ou placée dans mon casier courrier au LSV. **Pas de délais**.

La forme normale de Greibach (GNF) est la plus difficile à obtenir : le meilleur algorithme connu, que nous allons étudier dans ce devoir, génère une grammaire de taille au pire $O(|\mathcal{G}|^4)$ à partir d'une grammaire algébrique \mathcal{G} quelconque.

Définition 1 (Formes normales de Greibach). Une grammaire algébrique $\mathcal{G} = \langle V, \Sigma, P, S \rangle$ est sous *forme normale de Greibach* si toutes ses productions sont

- soit de la forme $A \to a\alpha$ avec $A \in V$, $a \in \Sigma$ et $\alpha \in V^*$,
- − soit de la forme $S \to \varepsilon$ et si une telle production existe alors $\alpha \in (V \setminus \{S\})^*$ ci-dessus.

Elle est sous forme normale de Greibach *quadratique* si de plus $|\alpha| \le 2$ ci-dessus, et sous forme normale de Greibach quadratique *étendue* si $\alpha \in (V \cup \Sigma)^{\le 2}$.

Une dérivation gauche terminale dans une grammaire algébrique $\mathcal G$ sans ε -règle est une dérivation gauche qui se termine en réécrivant son symbole le plus à gauche en un symbole terminal, c'est-à-dire une dérivation de la forme

$$C \xrightarrow{*}_{q} A\delta \rightarrow_{q} a\alpha\delta$$

avec A et C dans V, a dans Σ , et α et δ dans $(V \cup \Sigma)^*$. La chaîne $a\alpha\delta$ dans la dérivation ci-dessus est appelée un suffixe viable terminal de C.

Exercice 1. Soit $\mathcal{G} = \langle V, \Sigma, P, S \rangle$ une grammaire sous forme quadratique sans ε -règle et $C \in V$. Montrer que l'ensemble des suffixes viables terminaux de C est un langage rationnel sur l'alphabet $(V \cup \Sigma)$. Plus précisément, montrer que ce langage est généré par une grammaire $\mathcal{G}' = \langle V', (V \cup \Sigma), P', S' \rangle$ construite en temps $O(|\mathcal{G}|)$ telle que

- (i) \mathcal{G}' est linéaire gauche,
- (ii) $A' \to X\alpha \in P'$ avec $X \in (V \cup \Sigma)$ implique $X \in \Sigma$ et $\alpha = \varepsilon$,
- (iii) $A' \to \alpha \in P'$ implique $|\alpha| \le 2$,
- (iv) \mathcal{G}' n'a pas d' ε -règle.

Exercice 2. Soit $\mathcal{G} = \langle V, \Sigma, P, S \rangle$ une grammaire algébrique sous forme quadratique sans ε -règle et $C \in V$. Déduire de l'exercice précédent que l'ensemble des suffixes viables terminaux de C est un langage rationnel sur $(V \cup \Sigma)$ généré par une grammaire $\mathcal{G}_C = \langle V_C, (V \cup \Sigma), P_C, S_C \rangle$ construite en temps $O(|V| \cdot |\mathcal{G}|)$ et telle que

- (i) $S_C \to \alpha \in P_C$ implique $\alpha = a\beta$ avec $a \in \Sigma$ et β dans $V_C \cup \{\varepsilon\}$,
- (ii) \mathcal{G}_C est sous forme normale de Greibach quadratique étendue et
- (iii) il y a au plus $O(|\mathcal{G}|)$ règles de la forme $S_C \to \alpha$ dans P_C .

Exercice 3. Démontrer le théorème suivant :

Théoreme 1. Soit $\mathcal{G} = \langle V, \Sigma, P, S \rangle$ une grammaire algébrique. On peut construire une grammaire \mathcal{G}' sous forme normale de Greibach quadratique équivalente en temps $O(|\mathcal{G}|^4)$.

Exercice 4. Appliquer votre construction à la grammaire suivante :

$$S \to AB, A \to BD \mid C, B \to BF \mid A, C \to d, D \to AE, E \to a, F \to b$$
 (G)